Clostridium difficile infection(CDI)is a major global public health concern,accounting for 15%-25%of antibiotic-associated diarrhea,50%-75%of antibiotic-associated colitis,and nearly all cases of pseudomembranous coli...Clostridium difficile infection(CDI)is a major global public health concern,accounting for 15%-25%of antibiotic-associated diarrhea,50%-75%of antibiotic-associated colitis,and nearly all cases of pseudomembranous colitis.Over the past decade,CDI outbreaks have become increasingly prevalent in North America and Europe,with rising incidence and mortality rates.In 2019,the Centers for Disease Control and Prevention(CDC)in the United States classified CDI as a“critical”public health threat in their report on antibiotic resistance threats[1].CDI incidence varies widely across countries,healthcare settings,and age groups,with cumulative incidence rates ranging from 1.12 to 631.80 per 100,000 people annually[2].As the epidemiology of CDI continues to evolve and our understanding of the disease advances,reassessing its burden remains essential.The Global Burden of Disease,Injury,and Risk Factors Study(GBD 2021)database offers new insights into this issue.展开更多
This study investigates the distribution,geochemical behavior,and potential anthropogenic influences of rare earth elements(REEs)in the surface sediments of Qinghai Lake,the largest saline lake in China.A total of 36 ...This study investigates the distribution,geochemical behavior,and potential anthropogenic influences of rare earth elements(REEs)in the surface sediments of Qinghai Lake,the largest saline lake in China.A total of 36 surface sediment samples were analyzed for REE concentrations with a combination of self-organizing maps(SOM)and positive matrix factorization(PMF).Results indicate distinct enrichment patterns,with light REEs(LREEs)exhibiting higher concentrations than heavy REEs(HREEs),reflecting natural abundances and geochemical behaviors.The minimum value was found in Lu as low as 0.091 mg/kg,and the maximum concentration was exhibited in Ce at 78.877 mg/kg.Geoaccumulation index(I_(geo))analysis reveals minor to moderate enrichment of specific REEs of Sm and Nd,suggesting possible localized anthropogenic inputs,particularly near river mouths.Spatial analysis using inverse distance weighting(IDW)and self-organizing maps(SOM)highlights significant correlations between REE distributions and riverine inputs,underscoring fluvial transport's role in sedimentary REE dynamics.PMF identifies mixed natural and anthropogenic sources,with agricultural and industrial activities contributing to elevated REE levels in sediment.These findings provide critical insights into the geochemical behavior of REEs in saline lake systems and off er a foundation for pollution control and sustainable resource management in sensitive environments like Qinghai Lake.展开更多
The Erenhot-Huailai zone, as an important dust emission source area in northern China, affects the air quality of Beijing City, Tianjin City, and Hebei Province and human activities in this zone have a profound impact...The Erenhot-Huailai zone, as an important dust emission source area in northern China, affects the air quality of Beijing City, Tianjin City, and Hebei Province and human activities in this zone have a profound impact on surface dust emission. In order to explore the main source areas of surface dust emission and quantify the impacts of human activities on surface dust emission, we investigated the surface dust emission of different land types on the Erenhot-Huailai zone by model simulation, field observation, and comparative analysis. The results showed that the average annual inhalable atmospheric particles(PM_(10)) dust emission fluxes in arid grassland, Hunshandake Sandy Land, semi-arid grassland,semi-arid agro-pastoral area, dry sub-humid agro-pastoral area, and semi-humid agro-pastoral area were 4.41, 0.71, 3.64, 1.94, 0.24, and 0.14 t/hm^(2), respectively, and dust emission in these lands occurred mainly from April to May. Due to the influence of human activities on surface dust emission, dust emission fluxes from different land types were 1.66–4.41 times greater than those of their background areas, and dust emission fluxes from the main dust source areas were 1.66–3.89 times greater than those of their background areas. According to calculation, the amount of PM_(10) dust emission influenced by human disturbance accounted for up to 58.00% of the total dust emission in the study area. In addition, the comparative analysis of model simulation and field observation results showed that the simulated and observed dust emission fluxes were relatively close to each other, with differences ranging from 0.01 to 0.21 t/hm^(2) in different months, which indicated that the community land model version 4.5(CLM4.5) had a high accuracy. In conclusion, model simulation results have important reference significance for identifying dust source areas and quantifying the contribution of human activities to surface dust emission.展开更多
Phenology shifts influence regional climate by altering energy,and water fluxes through biophysical processes.However,a quantitative understanding of the phenological control on vegetation’s biophysical feedbacks to ...Phenology shifts influence regional climate by altering energy,and water fluxes through biophysical processes.However,a quantitative understanding of the phenological control on vegetation’s biophysical feedbacks to re gional climate remains elusive.Using long-term remote sensing observations and Weather Research and Fore casting(WRF)model simulations,we investigated vegetation phenology changes from 2003 to 2020 and quan tified their biophysical controls on the regional climate in Northeast China.Our findings elucidated that earlier green-up contributed to a prolonged growing season in forests,while advanced green-up and delayed dormancy extended the growing season in croplands.This prolonged presence and increased maximum green cover in tensified climate-vegetation interactions,resulting in more significant surface cooling in croplands compared to forests.Surface cooling from forest phenology changes was prominent during May’s green-up(-0.53±0.07°C),while crop phenology changes induced cooling throughout the growing season,particularly in June(-0.47±0.15°C),July(-0.48±0.11°C),and September(-0.28±0.09°C).Furthermore,we unraveled the contributions of different biophysical pathways to temperature feedback using a two-resistance attribution model,with aero dynamic resistance emerging as the dominant factor.Crucially,our findings underscored that the land surface temperature(LST)sensitivity,exhibited substantially higher values in croplands rather than temperate forests.These strong sensitivities,coupled with the projected continuation of phenology shifts,portend further growing season cooling in croplands.These findings contribute to a more comprehensive understanding of the intricate feedback mechanisms between vegetation phenology and surface temperature,emphasizing the significance of vegetation phenology dynamics in shaping regional climate pattern and seasonality.展开更多
Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understand...Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.展开更多
The purpose of this paper is to document the likely impacts of climate change on China's agriculture and the current adaptation efforts made by government and farmers. The review of literature shows that climate chan...The purpose of this paper is to document the likely impacts of climate change on China's agriculture and the current adaptation efforts made by government and farmers. The review of literature shows that climate change will have a significant impact on agriculture, primarily through its effect on crop yields. The extent of predicted impacts highly depends on the crop, the CO2 fertilization effect assumption and adaptation abilities. Market response to the production shocks resulting from climate change will lessen the impacts on agricultural production predicted by natural scientists. On adaptation, the government's major efforts have been in the developing new technologies, reforming extension system and enhancing institutional capacity. Farmers do adapt to climate change, but their adaptation measures cannot fully offset the negative impacts of climate change. The paper concludes and makes implications for future studies.展开更多
The population growth and demand for high living standard not only increase food demand but also cause more loss of the limited cultivated land resources. Cultivated land loss caused by disasters and the implementatio...The population growth and demand for high living standard not only increase food demand but also cause more loss of the limited cultivated land resources. Cultivated land loss caused by disasters and the implementation of the "Conversion of Cropland to Forest or Grassland" project make this situation even worse in China. Thus, there is a problem to be solved imminently that to what extent the cultivated land can guarantee food security of China. Based on time-series data on food production and cultivated land area from 1989 to 2003 and other research results, this paper constructs quality index of cultivated land according to different land quality. Regression models are adopted to predicate changes of main factors from 2004 to 2030, which have great effect on cultivated land area or grain productivity, and verify accuracy with coc^cient of determination (R2). Nine results were got according to three scenarios of decreasing rate of population growth rate and three cases of urban and rural built-up area per capita. There results show that China's food supply can only be maintained at a low to middle level of 370-410kg per capita, that is, China has enough land productivity to meet primary demand of food independently. However, it cannot reach the safe target of 500kg per capita if there is no breakthrough in breeding or no remarkable improvement of irrigation works, when the grain self-sufficiency maintains no less than 80%. To breed productive crops and to improve land productivity by mefiorating low quality cultivated land are appropriate measures to shrink the gap between food demand and supply. The results may offer helpful information for the formulation of policies on population growth, land use, protection of cultivated land.展开更多
Quantitative assessment of development sustainability could be a challenge to regional management and planning, especially for areas facing great risks of water shortage. Surface-water decline and groundwater over-pum...Quantitative assessment of development sustainability could be a challenge to regional management and planning, especially for areas facing great risks of water shortage. Surface-water decline and groundwater over-pumping have caused serious environmental problems and limited economic development in many regions all around the world. In this paper, a framework for quantitatively evaluating development sustainability was established with water-related eco-environmental carrying capacity (EECC) as the core measure. As a case study, the developed approach was applied to data of the Haihe River Basin, China, during 1998 through 2007. The overall sustainable development degree (SDD) is determined to be 0.39, suggesting that this rate of development is not sustainable. Results of scenario analysis revealed that overshoot, or resource over- exploitation, of the Basin's EECC is about 20% for both population and economy. Based on conditions in the study area in 2007, in order to achieve sustainable development, i.e., SDD〉0.70 in this study, the EECC could support a population of 108 million and gross domestic product (GDP) of 2.72 trillion CNY. The newly developed approach in quantifying ecoenvironmental carrying capacity is anticipated to facilitate sustainable development oriented resource management in waterdeficient areas.展开更多
Topsoil soil organic carbon (SOC) that plays an important role in mitigating atmospheric carbon dioxide (CO_2) buildup is greatly affected by human activities.To evaluate the influence of land-use changes on SOC stock...Topsoil soil organic carbon (SOC) that plays an important role in mitigating atmospheric carbon dioxide (CO_2) buildup is greatly affected by human activities.To evaluate the influence of land-use changes on SOC stocks in paddy soils,a new algorithm was developed by integrating MODIS (moderate resolution imaging spectral-radiometer) and TM/ETM data for timely monitoring the land-use change in Wujiang County.Thereafter,the land-use class-maps derived from MODIS and TM/ETM analyses were further used to estima...展开更多
The diurnal and seasonal dynamics of soil respiration in the A. ordosica shrubland on Ordos Plateau were investigated in the growing season (May-October) of 2006 and their environmental driving factors were also ana...The diurnal and seasonal dynamics of soil respiration in the A. ordosica shrubland on Ordos Plateau were investigated in the growing season (May-October) of 2006 and their environmental driving factors were also analyzed, Results indicated that diurnal dynamics of soil respiration rate and its temperature dependence showed some discrepancy in two different growth stages (the vegetative growth stage and the reproductive growth stage). During the vegetative growth stage, the diurnal variation of soil respiration was slight and not correlated with the daily temperature change, but during the reproductive growth stage, the daily respiration variation was relatively large and significantly correlated with the diurnal variation of air and soil temperature. In the growing season, the peak value of soil respiration occurred at July and August because of the better soil water-heat conditions and their optimal deployment in this period. In the shrubland ecosystem, precipitation was the switch of soil respiration pulses and can greatly increase soil respiration rates after soil rewetting. Moreover, the soil respiration rates in the growing season and the air temperature and soil surface water content were closely correlated (p〈0.05) each other. The stepwise regression model indicated that the variation of soil surface moisture accounted for 41.9% of the variation in soil respiration (p〈0.05).展开更多
The overall goal of this paper is to examine impacts of climate change on water supply and demand balance and their consequences on agricultural production in ten river basins in China. To realize this goal, China Wat...The overall goal of this paper is to examine impacts of climate change on water supply and demand balance and their consequences on agricultural production in ten river basins in China. To realize this goal, China Water Simulation Model (CWSM) is used to analyze three alternative climate scenarios (A1B, A2 and B2). The results show that the impacts of climate change on water supply and demand balance differ largely among alternative scenarios. While significant impacts of climate change on water balance will occur under the A1B scenario, the impacts of climate change under the A2 and B2 scenarios will be marginal. Under the A1B scenario, the water shortage in the river basins located in the northern China will become more serious, particularly in Liaohe and Haihe river basins, but the other river basins in the southern China will improve their water balance situations. Despite larger impacts of climate change on water balance in the northern China, its impacts on total crops' production will be moderate if farmers would be able to reallocate water among crops and adjust irrigated and rainfed land. The paper concludes with some policy implications.展开更多
In order to understand the similarity or difference of inorganic As species uptake and transport related to phosphorus in Ashyperaccumulator, uptake and transport of arsenate (As(V)) and arsenite (As(Ⅲ)) were...In order to understand the similarity or difference of inorganic As species uptake and transport related to phosphorus in Ashyperaccumulator, uptake and transport of arsenate (As(V)) and arsenite (As(Ⅲ)) were studied using Pteris vittata L. under sand culture. Higher concentrations of phosphate were found to inhibit accumulation of arsenate and arsenite in the fronds of P. vittata. The reduction in As accumulation was greater in old fronds than in young fronds, and relatively weak in root and rhizome. Moderate increases, from 0.05 to 0.3 mmol/L, in phosphate reduced uptake of As(Ⅲ) more than As(Ⅴ), while the reverse was observed at high concentrations of phosphate (≥1.0 mmol/L). Phosphate apparently reduced As transport and the proportion of As accumulated in fronds of P. vittata when As was supplied as As(Ⅴ). It may in part be due to competition between phosphorus and As(Ⅴ) during transport. In contrast, phosphate had a much smaller effect on As transport when the As was supplied as As(Ⅲ). Therefore, the results from present experiments indicates that a higher concentration of phosphate suppressed As accumulation and transport in P. vittata, especially in the fronds, when exposed to As(Ⅴ), but the suppression of phosphate to As transport may be insignificant when P. vittata exposed to As(Ⅲ) under sand culture conditions. The finding will help to understand the interaction of P and As during their uptake process in P. vittata.展开更多
The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by...The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by global climate warming. For a better understanding of the cause, this study investigates the dynamic changes of Baiyangdian Lake wetland over the last 40 years. It is shown that since the 1980s, Baiyangdian Lake has suffered from an insufficient water input and shrunk considerably. By using SPSS 11.0, this study urines a detailed Analysis on the signifficance of the effects of the possible driving factors for the degradation. It is identified that the North China Plain has been warrnin~ up significantly in recent years, which causes a significant reduction in the precipitation and inflow to the lake. Although human disturbances such as the irrigation and storage of water in reservoirs do not play a decisive role, they accelerate the degradation and their effects should be minimized.展开更多
The most serious erosion on the Loess Plateau of China exists in the wind-water erosion crisscross region where the annual precipitation is about 400 mm,the ecological environment is very fragile,and water is the key ...The most serious erosion on the Loess Plateau of China exists in the wind-water erosion crisscross region where the annual precipitation is about 400 mm,the ecological environment is very fragile,and water is the key limiting factor for improving the environment. In this study,changes of soil moisture content for Caragana korshinskii Kom. shrubland in the gully bank of the Loess Plateau were studied using the methods of soil sampling and neutron probe. A typical gully(75 m long,28 m wide,and 10 m deep) was selected,and six neutron probe access tubes(6 m long) were installed at points 50,100,200,300,400,and 500 cm from the gully border for obtaining soil moisture data from July to October 2004 at approximately 10 d intervals. Soil samplings were simultaneously carried out for moisture determination at the six points. Results showed that the soil moisture of the shrubland in the gully bank significantly varied between 300 and 400 cm in the horizontal direction and up to 600 cm in vertical direction of the gully. Seasonal changes in soil moisture revealed a curve with a single peak that occurred at the end of August or early September. A linear regression equation was fit for soil water storage and the distance from the gully border,with coefficients depending on rainfall characteristics,sampling point,and time of measurement.展开更多
Soil respiration is a key component of the global terrestrial ecosystem carbon cycle. The static opaque chamber method was used to measure the CO2 effiuxes from soil of a semiarid Aneurolepidium chinense steppe and a ...Soil respiration is a key component of the global terrestrial ecosystem carbon cycle. The static opaque chamber method was used to measure the CO2 effiuxes from soil of a semiarid Aneurolepidium chinense steppe and a Stipa krylovii steppe in the Xilin River Basin of Inner Mongolia, China from March 2002 to December 2004. The results indicated that the soil respiration rates of the semiarid Aneurolepidium chinense steppe and the Stipa krylovii steppe were both relatively high from mid-May to mid-September of each year and remained low during the rest of the year. The minimum value of soil respiration occurred in December or January and negative effiuxes of CO2 appeared for several days during the non-growing season of individual years at the two sampling sites. A high annual variation was found in the two steppes with the coefficients of variance (CV) being over 94%, even high to 131%. The annual sums of soil CO2 effiux of the Aneurolepidium chinense steppe varied between 356.4 gC m^-2 yr^-1 and 408.8 gC m^-2 yr^-1, while those of the Stipa krylovii steppe in the three years were in the range of 110.6 gC m^-2 yr^-1 to 148.6 g Cm^-2 yr^-1. The mean respiration rates of the Aneurolepidium chinense steppe were significantly higher than those of the Stipa krylovii steppe in different statistical periods with the exception of the non-growing season. About 59.9% and 80.6% of the soil respiration variations in both steppes for the whole sampling period were caused by the changes of temperature and soil water content. In the Aneurolepidium chinense steppe, the soil respiration rate has significant or extremely significant positive correlation (r = 0.58 - 0.85, p 〈 0.05 or p 〈 0.01) with air temperature and ground temperature of the topsoil except in 2002; the unique contributions of temperature change to the soil respiration variation of the three years were 53.3%, 81.0% and 58.6%, respectively. But, for the Stipa krylovii steppe in the same time interval, the soil water content (especially that of the 10-20 cm layer) has a greater effect on the change of soil respiration, and the unique contributions of the change of the 10-20 cm soil water content to the variations of soil respiration in 2002 and 2003 were 60.0% and 54.3%, respectively. In 2004, in spite of the higher contribution of temperature than soil water content, the contribution of ground temperature at a depth of 10 cm was only 46.2%, much weaker than that of any single year in the Aneurolepidium chinense steppe.展开更多
The water conservation capacities of main forests in Beijing,China were estimated through the quantitative analysis.Various methods developed in published papers on forest hydrology were employed.The forests in Huairo...The water conservation capacities of main forests in Beijing,China were estimated through the quantitative analysis.Various methods developed in published papers on forest hydrology were employed.The forests in Huairou,Yanqing,Miyun,Mentougou and Fangshan districts are the main contributors to water conservation(the cumulative ratio reaches 65%),and the forests in Tongzhou,Chaoyang,Shunyi and Daxing districts have the highest water conservation capacity(3000 m3/ha).Altitude and slope are the key factors to affect the water conservation capacity.The forests located in Plain Area,Hilly Area,Low Mountain,and Middle Mountain contributes 27%,28%,24% and 21% of the conserved water,respectively.The water conservation capacity of forests in Plain Area(2 948 m3/ha),is superior to the forests in other regions.And the forests situated on Flat Slope,Moderate Slope and Gentle Slope constitute the largest proportion(nearly 93%) of water conservation,while the forests on Flat Slope has the highest water conservation capacity(2 797 m3/ha),and the forest on Steep slope has the lowest water conservation capacity(948 m3/ha).展开更多
The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of...The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of the interannual and interdecadal variability of the water cycle over the HRB to the Pacific Decadal Oscillation (PDO) and E1 Nino-Southern Oscillation (ENSO) phenomena were investigated using the observational and National Centers for Environmental Prediction (NCEP) reanalysis data. There was a strong interdecadal variability for the water cycle (such as precipitation and water vapor transport) over the region, with an abrupt change occurring mostly in the mid 1970s. The intensity of the East Asian summer monsoon largely affected the atmospheric water vapor transport. Generally, the net meridional convergence of the water vapor flux over the region was relatively large before 1965, and it declined gradually from then on with a further notable decrease since mid 1970s. Zonal water vapor transport was similar to meridional, but with a much smaller magnitude and no noteworthy turning in the mid 1970s. Results also suggested that the wind field played an important role in the water vapor transport over the HRB before the mid 1960s, and the interdecadal variability of the water cycle (precipitation, water vapor transport, etc.) in the summer was related to the PDO; however, interannual variation of the water vapor transport could also be related to the ENSO phenomena.展开更多
Daba Mountain area is one of the two endemic selenosis areas in China,which may relate with the environmental behaviors of selenium (Se) in soil.This study focuses on the concentraion and distribution of Se and its re...Daba Mountain area is one of the two endemic selenosis areas in China,which may relate with the environmental behaviors of selenium (Se) in soil.This study focuses on the concentraion and distribution of Se and its relationships with some other elements in natural soil in the area.The average concentration of Se in Daba Mountain soils was 14.3 times higher than the value cited for natural soil background worldwide,suggesting that soils in the region were contaminated by the element.The finding was confirmed...展开更多
Elemental composition and geochemical characteristics of iron-manganese nodules from nine main soils in China were studied by chemical and multivariate statistical analyses to better understand the reactions and funct...Elemental composition and geochemical characteristics of iron-manganese nodules from nine main soils in China were studied by chemical and multivariate statistical analyses to better understand the reactions and functions of iron-manganese nodules in soils and sediment. Compared to the corresponding soils, Mn, Ba, Cd, Co and Pb had strong accumulation, Ni had moderate accumulation, while Ca, Cu, Fe, Na, P, Sr and Zn accumulated to a minor degree in the iron-manganese nodules. In contrast, Si, Al, K, Mg and Ti were reduced in the iron-manganese nodules. The contents of Ba, Cd, Co, Cu, Ni, Pb and Zn were positively and significantly correlated with that of MnO2 in the iron-manganese nodules, while the contents of Cr, Cu, Ni, Pb and Zn were positively and significantly correlated with that of Fe2O3 in soils. Based on a principle component analysis, the elements of iron-manganese nodules were divided into four groups: 1) Mn, Ba, Cd, Co, Cu, Li, Ni, Pb and Zn that were associated with Mn oxides, 2) Fe, Cr and P that were associated with Fe oxides, 3) Si, K, and Mg that were included in the elemental composition of phyllosilicate, and 4) Ca, Na, Al and Ti that existed in todorokite, birnessite, lithiophorite and phyllosilicate. It was suggested that accumulation, mineralization and specific adsorption were involved in the formation processes of soil iron-manganese nodules.展开更多
In the research of fractal cities, the fractal dimension is very important. It is used to describe the fractal character of the city. The authors have designed two approaches to calculate the fractal dimension by the ...In the research of fractal cities, the fractal dimension is very important. It is used to describe the fractal character of the city. The authors have designed two approaches to calculate the fractal dimension by the box-counting method through an example of Beijing, which are called the vector method and the grid method, respectively. The former calculates the fractal dimension through an intersecting analysis in ArcView; and the latter is carried out by programming in Matlab. They are compared from three aspects: the calculating process, the limits in use, and the results. As a result, the conclusion is made that there are merits and faults on both methods, and they should be chosen to use properly in practical situation.展开更多
基金supported by the Beijing Natural Science Foundation(No.L202008)the Chinese Center for Disease Control and Prevention Foundation(No.201833).
文摘Clostridium difficile infection(CDI)is a major global public health concern,accounting for 15%-25%of antibiotic-associated diarrhea,50%-75%of antibiotic-associated colitis,and nearly all cases of pseudomembranous colitis.Over the past decade,CDI outbreaks have become increasingly prevalent in North America and Europe,with rising incidence and mortality rates.In 2019,the Centers for Disease Control and Prevention(CDC)in the United States classified CDI as a“critical”public health threat in their report on antibiotic resistance threats[1].CDI incidence varies widely across countries,healthcare settings,and age groups,with cumulative incidence rates ranging from 1.12 to 631.80 per 100,000 people annually[2].As the epidemiology of CDI continues to evolve and our understanding of the disease advances,reassessing its burden remains essential.The Global Burden of Disease,Injury,and Risk Factors Study(GBD 2021)database offers new insights into this issue.
基金funded by the Basic Research Program of Qinghai Province(2023-ZJ-910M)。
文摘This study investigates the distribution,geochemical behavior,and potential anthropogenic influences of rare earth elements(REEs)in the surface sediments of Qinghai Lake,the largest saline lake in China.A total of 36 surface sediment samples were analyzed for REE concentrations with a combination of self-organizing maps(SOM)and positive matrix factorization(PMF).Results indicate distinct enrichment patterns,with light REEs(LREEs)exhibiting higher concentrations than heavy REEs(HREEs),reflecting natural abundances and geochemical behaviors.The minimum value was found in Lu as low as 0.091 mg/kg,and the maximum concentration was exhibited in Ce at 78.877 mg/kg.Geoaccumulation index(I_(geo))analysis reveals minor to moderate enrichment of specific REEs of Sm and Nd,suggesting possible localized anthropogenic inputs,particularly near river mouths.Spatial analysis using inverse distance weighting(IDW)and self-organizing maps(SOM)highlights significant correlations between REE distributions and riverine inputs,underscoring fluvial transport's role in sedimentary REE dynamics.PMF identifies mixed natural and anthropogenic sources,with agricultural and industrial activities contributing to elevated REE levels in sediment.These findings provide critical insights into the geochemical behavior of REEs in saline lake systems and off er a foundation for pollution control and sustainable resource management in sensitive environments like Qinghai Lake.
基金supported by the National Basic Research Program of China (2016YFA0601901)Basic Scientific Research of Henan Academy of Sciences (240601083)Joint Fund of Henan Province Science and Technology Research and Development Program (225200810047)。
文摘The Erenhot-Huailai zone, as an important dust emission source area in northern China, affects the air quality of Beijing City, Tianjin City, and Hebei Province and human activities in this zone have a profound impact on surface dust emission. In order to explore the main source areas of surface dust emission and quantify the impacts of human activities on surface dust emission, we investigated the surface dust emission of different land types on the Erenhot-Huailai zone by model simulation, field observation, and comparative analysis. The results showed that the average annual inhalable atmospheric particles(PM_(10)) dust emission fluxes in arid grassland, Hunshandake Sandy Land, semi-arid grassland,semi-arid agro-pastoral area, dry sub-humid agro-pastoral area, and semi-humid agro-pastoral area were 4.41, 0.71, 3.64, 1.94, 0.24, and 0.14 t/hm^(2), respectively, and dust emission in these lands occurred mainly from April to May. Due to the influence of human activities on surface dust emission, dust emission fluxes from different land types were 1.66–4.41 times greater than those of their background areas, and dust emission fluxes from the main dust source areas were 1.66–3.89 times greater than those of their background areas. According to calculation, the amount of PM_(10) dust emission influenced by human disturbance accounted for up to 58.00% of the total dust emission in the study area. In addition, the comparative analysis of model simulation and field observation results showed that the simulated and observed dust emission fluxes were relatively close to each other, with differences ranging from 0.01 to 0.21 t/hm^(2) in different months, which indicated that the community land model version 4.5(CLM4.5) had a high accuracy. In conclusion, model simulation results have important reference significance for identifying dust source areas and quantifying the contribution of human activities to surface dust emission.
基金supported by the Strategic Pri-ority Research Program(A)of the Chinese Academy of Sciences(Grant No.XDA28080503)the National Natural Science Foundation of China(Grant No.42071025)+1 种基金the Youth Innovation Promotion Associa-tion of Chinese Academy of Sciences(Grant No.2023240)the Pacific Northwest National Laboratory which is operated for DOE by Battelle Memorial Institute under Contract DE-A06-76RLO 1830.
文摘Phenology shifts influence regional climate by altering energy,and water fluxes through biophysical processes.However,a quantitative understanding of the phenological control on vegetation’s biophysical feedbacks to re gional climate remains elusive.Using long-term remote sensing observations and Weather Research and Fore casting(WRF)model simulations,we investigated vegetation phenology changes from 2003 to 2020 and quan tified their biophysical controls on the regional climate in Northeast China.Our findings elucidated that earlier green-up contributed to a prolonged growing season in forests,while advanced green-up and delayed dormancy extended the growing season in croplands.This prolonged presence and increased maximum green cover in tensified climate-vegetation interactions,resulting in more significant surface cooling in croplands compared to forests.Surface cooling from forest phenology changes was prominent during May’s green-up(-0.53±0.07°C),while crop phenology changes induced cooling throughout the growing season,particularly in June(-0.47±0.15°C),July(-0.48±0.11°C),and September(-0.28±0.09°C).Furthermore,we unraveled the contributions of different biophysical pathways to temperature feedback using a two-resistance attribution model,with aero dynamic resistance emerging as the dominant factor.Crucially,our findings underscored that the land surface temperature(LST)sensitivity,exhibited substantially higher values in croplands rather than temperate forests.These strong sensitivities,coupled with the projected continuation of phenology shifts,portend further growing season cooling in croplands.These findings contribute to a more comprehensive understanding of the intricate feedback mechanisms between vegetation phenology and surface temperature,emphasizing the significance of vegetation phenology dynamics in shaping regional climate pattern and seasonality.
基金supported by NSF China(No.61960206002,62020106005,42050105,62061146002)Shanghai Pilot Program for Basic Research–Shanghai Jiao Tong University.
文摘Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.
基金the financial support of Ministry of Science and Technology of China (2012CB955700, 2010CB428406)the National Natural Sciences Foundation of China (70925001 and 71161140351)+1 种基金International Development Research Center (107093-001)World Bank, and the CAS (Chinese Academy of Sciences) Strategic Priority Research Program (XDA01020304)
文摘The purpose of this paper is to document the likely impacts of climate change on China's agriculture and the current adaptation efforts made by government and farmers. The review of literature shows that climate change will have a significant impact on agriculture, primarily through its effect on crop yields. The extent of predicted impacts highly depends on the crop, the CO2 fertilization effect assumption and adaptation abilities. Market response to the production shocks resulting from climate change will lessen the impacts on agricultural production predicted by natural scientists. On adaptation, the government's major efforts have been in the developing new technologies, reforming extension system and enhancing institutional capacity. Farmers do adapt to climate change, but their adaptation measures cannot fully offset the negative impacts of climate change. The paper concludes and makes implications for future studies.
基金Under the auspices of the National Natural Science Foundation of China (No. 40671007), Innovation Project of Institute of Geographical Sciences and Natural Resources Research, CAS
文摘The population growth and demand for high living standard not only increase food demand but also cause more loss of the limited cultivated land resources. Cultivated land loss caused by disasters and the implementation of the "Conversion of Cropland to Forest or Grassland" project make this situation even worse in China. Thus, there is a problem to be solved imminently that to what extent the cultivated land can guarantee food security of China. Based on time-series data on food production and cultivated land area from 1989 to 2003 and other research results, this paper constructs quality index of cultivated land according to different land quality. Regression models are adopted to predicate changes of main factors from 2004 to 2030, which have great effect on cultivated land area or grain productivity, and verify accuracy with coc^cient of determination (R2). Nine results were got according to three scenarios of decreasing rate of population growth rate and three cases of urban and rural built-up area per capita. There results show that China's food supply can only be maintained at a low to middle level of 370-410kg per capita, that is, China has enough land productivity to meet primary demand of food independently. However, it cannot reach the safe target of 500kg per capita if there is no breakthrough in breeding or no remarkable improvement of irrigation works, when the grain self-sufficiency maintains no less than 80%. To breed productive crops and to improve land productivity by mefiorating low quality cultivated land are appropriate measures to shrink the gap between food demand and supply. The results may offer helpful information for the formulation of policies on population growth, land use, protection of cultivated land.
基金funding support from the Key Knowledge Innovation Project of the Chinese Academy of Sciences(Kzcx2-yw-126)the Key Technology R&D Program of China(2006BAB14B07)the National Natural Sciences Foundation of China(40730632,40701027)
文摘Quantitative assessment of development sustainability could be a challenge to regional management and planning, especially for areas facing great risks of water shortage. Surface-water decline and groundwater over-pumping have caused serious environmental problems and limited economic development in many regions all around the world. In this paper, a framework for quantitatively evaluating development sustainability was established with water-related eco-environmental carrying capacity (EECC) as the core measure. As a case study, the developed approach was applied to data of the Haihe River Basin, China, during 1998 through 2007. The overall sustainable development degree (SDD) is determined to be 0.39, suggesting that this rate of development is not sustainable. Results of scenario analysis revealed that overshoot, or resource over- exploitation, of the Basin's EECC is about 20% for both population and economy. Based on conditions in the study area in 2007, in order to achieve sustainable development, i.e., SDD〉0.70 in this study, the EECC could support a population of 108 million and gross domestic product (GDP) of 2.72 trillion CNY. The newly developed approach in quantifying ecoenvironmental carrying capacity is anticipated to facilitate sustainable development oriented resource management in waterdeficient areas.
文摘Topsoil soil organic carbon (SOC) that plays an important role in mitigating atmospheric carbon dioxide (CO_2) buildup is greatly affected by human activities.To evaluate the influence of land-use changes on SOC stocks in paddy soils,a new algorithm was developed by integrating MODIS (moderate resolution imaging spectral-radiometer) and TM/ETM data for timely monitoring the land-use change in Wujiang County.Thereafter,the land-use class-maps derived from MODIS and TM/ETM analyses were further used to estima...
基金National Natural Sciences Foundation of China (Nos.40501072 and 40673067)the Major State Basic Research Develop-ment Program of China (No.2002CB 412503)the Knowledge Inno-vation Program of the Institute of Geographic Sciences and Natural Re-sources Research,CAS "The effect of human activities on regional envi-ronmental quality,the health risk and the environmental remediation"
文摘The diurnal and seasonal dynamics of soil respiration in the A. ordosica shrubland on Ordos Plateau were investigated in the growing season (May-October) of 2006 and their environmental driving factors were also analyzed, Results indicated that diurnal dynamics of soil respiration rate and its temperature dependence showed some discrepancy in two different growth stages (the vegetative growth stage and the reproductive growth stage). During the vegetative growth stage, the diurnal variation of soil respiration was slight and not correlated with the daily temperature change, but during the reproductive growth stage, the daily respiration variation was relatively large and significantly correlated with the diurnal variation of air and soil temperature. In the growing season, the peak value of soil respiration occurred at July and August because of the better soil water-heat conditions and their optimal deployment in this period. In the shrubland ecosystem, precipitation was the switch of soil respiration pulses and can greatly increase soil respiration rates after soil rewetting. Moreover, the soil respiration rates in the growing season and the air temperature and soil surface water content were closely correlated (p〈0.05) each other. The stepwise regression model indicated that the variation of soil surface moisture accounted for 41.9% of the variation in soil respiration (p〈0.05).
基金the financial support of Ministry of Science and Technology of China (2012CB955700,2010CB428406)the National Natural Sciences Foundation of China (70925001, 71161140351)+2 种基金the International Development Research Center (107093-001)the Australian Center for International Agriculture (ADP/2010/070)World Bank, and the CAS Strategic Priority Research Program(XDA01020304)
文摘The overall goal of this paper is to examine impacts of climate change on water supply and demand balance and their consequences on agricultural production in ten river basins in China. To realize this goal, China Water Simulation Model (CWSM) is used to analyze three alternative climate scenarios (A1B, A2 and B2). The results show that the impacts of climate change on water supply and demand balance differ largely among alternative scenarios. While significant impacts of climate change on water balance will occur under the A1B scenario, the impacts of climate change under the A2 and B2 scenarios will be marginal. Under the A1B scenario, the water shortage in the river basins located in the northern China will become more serious, particularly in Liaohe and Haihe river basins, but the other river basins in the southern China will improve their water balance situations. Despite larger impacts of climate change on water balance in the northern China, its impacts on total crops' production will be moderate if farmers would be able to reallocate water among crops and adjust irrigated and rainfed land. The paper concludes with some policy implications.
基金Project supported by the National Foundation for Distinguished Youthof China(No.40325003)the National Natural Science Foun-dation of China(No.40232022).
文摘In order to understand the similarity or difference of inorganic As species uptake and transport related to phosphorus in Ashyperaccumulator, uptake and transport of arsenate (As(V)) and arsenite (As(Ⅲ)) were studied using Pteris vittata L. under sand culture. Higher concentrations of phosphate were found to inhibit accumulation of arsenate and arsenite in the fronds of P. vittata. The reduction in As accumulation was greater in old fronds than in young fronds, and relatively weak in root and rhizome. Moderate increases, from 0.05 to 0.3 mmol/L, in phosphate reduced uptake of As(Ⅲ) more than As(Ⅴ), while the reverse was observed at high concentrations of phosphate (≥1.0 mmol/L). Phosphate apparently reduced As transport and the proportion of As accumulated in fronds of P. vittata when As was supplied as As(Ⅴ). It may in part be due to competition between phosphorus and As(Ⅴ) during transport. In contrast, phosphate had a much smaller effect on As transport when the As was supplied as As(Ⅲ). Therefore, the results from present experiments indicates that a higher concentration of phosphate suppressed As accumulation and transport in P. vittata, especially in the fronds, when exposed to As(Ⅴ), but the suppression of phosphate to As transport may be insignificant when P. vittata exposed to As(Ⅲ) under sand culture conditions. The finding will help to understand the interaction of P and As during their uptake process in P. vittata.
基金Under the auspices of the National Natural Science Foundation of China (No. 30570303)
文摘The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by global climate warming. For a better understanding of the cause, this study investigates the dynamic changes of Baiyangdian Lake wetland over the last 40 years. It is shown that since the 1980s, Baiyangdian Lake has suffered from an insufficient water input and shrunk considerably. By using SPSS 11.0, this study urines a detailed Analysis on the signifficance of the effects of the possible driving factors for the degradation. It is identified that the North China Plain has been warrnin~ up significantly in recent years, which causes a significant reduction in the precipitation and inflow to the lake. Although human disturbances such as the irrigation and storage of water in reservoirs do not play a decisive role, they accelerate the degradation and their effects should be minimized.
基金the National Science Found for Distinguished Young Scholars of China (No.40025106)the National Natural Science Foundation of China (Nos.90102012 and 40371074).
文摘The most serious erosion on the Loess Plateau of China exists in the wind-water erosion crisscross region where the annual precipitation is about 400 mm,the ecological environment is very fragile,and water is the key limiting factor for improving the environment. In this study,changes of soil moisture content for Caragana korshinskii Kom. shrubland in the gully bank of the Loess Plateau were studied using the methods of soil sampling and neutron probe. A typical gully(75 m long,28 m wide,and 10 m deep) was selected,and six neutron probe access tubes(6 m long) were installed at points 50,100,200,300,400,and 500 cm from the gully border for obtaining soil moisture data from July to October 2004 at approximately 10 d intervals. Soil samplings were simultaneously carried out for moisture determination at the six points. Results showed that the soil moisture of the shrubland in the gully bank significantly varied between 300 and 400 cm in the horizontal direction and up to 600 cm in vertical direction of the gully. Seasonal changes in soil moisture revealed a curve with a single peak that occurred at the end of August or early September. A linear regression equation was fit for soil water storage and the distance from the gully border,with coefficients depending on rainfall characteristics,sampling point,and time of measurement.
基金This work was jointly supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX1-SW-01-04) the National Natural Science Foundation of China (Grant No. 40501072) the project on the Carbon Cycle and Driving Mechanisms in the Chinese Terrestrial Ecosystem (Grant No. 2002CB412503).
文摘Soil respiration is a key component of the global terrestrial ecosystem carbon cycle. The static opaque chamber method was used to measure the CO2 effiuxes from soil of a semiarid Aneurolepidium chinense steppe and a Stipa krylovii steppe in the Xilin River Basin of Inner Mongolia, China from March 2002 to December 2004. The results indicated that the soil respiration rates of the semiarid Aneurolepidium chinense steppe and the Stipa krylovii steppe were both relatively high from mid-May to mid-September of each year and remained low during the rest of the year. The minimum value of soil respiration occurred in December or January and negative effiuxes of CO2 appeared for several days during the non-growing season of individual years at the two sampling sites. A high annual variation was found in the two steppes with the coefficients of variance (CV) being over 94%, even high to 131%. The annual sums of soil CO2 effiux of the Aneurolepidium chinense steppe varied between 356.4 gC m^-2 yr^-1 and 408.8 gC m^-2 yr^-1, while those of the Stipa krylovii steppe in the three years were in the range of 110.6 gC m^-2 yr^-1 to 148.6 g Cm^-2 yr^-1. The mean respiration rates of the Aneurolepidium chinense steppe were significantly higher than those of the Stipa krylovii steppe in different statistical periods with the exception of the non-growing season. About 59.9% and 80.6% of the soil respiration variations in both steppes for the whole sampling period were caused by the changes of temperature and soil water content. In the Aneurolepidium chinense steppe, the soil respiration rate has significant or extremely significant positive correlation (r = 0.58 - 0.85, p 〈 0.05 or p 〈 0.01) with air temperature and ground temperature of the topsoil except in 2002; the unique contributions of temperature change to the soil respiration variation of the three years were 53.3%, 81.0% and 58.6%, respectively. But, for the Stipa krylovii steppe in the same time interval, the soil water content (especially that of the 10-20 cm layer) has a greater effect on the change of soil respiration, and the unique contributions of the change of the 10-20 cm soil water content to the variations of soil respiration in 2002 and 2003 were 60.0% and 54.3%, respectively. In 2004, in spite of the higher contribution of temperature than soil water content, the contribution of ground temperature at a depth of 10 cm was only 46.2%, much weaker than that of any single year in the Aneurolepidium chinense steppe.
基金supported by the Major State Basic Research Development Program of China (973 Program) (2009CB421106)Self-deployment & Innovation Project of IGSNRR (200905010)
文摘The water conservation capacities of main forests in Beijing,China were estimated through the quantitative analysis.Various methods developed in published papers on forest hydrology were employed.The forests in Huairou,Yanqing,Miyun,Mentougou and Fangshan districts are the main contributors to water conservation(the cumulative ratio reaches 65%),and the forests in Tongzhou,Chaoyang,Shunyi and Daxing districts have the highest water conservation capacity(3000 m3/ha).Altitude and slope are the key factors to affect the water conservation capacity.The forests located in Plain Area,Hilly Area,Low Mountain,and Middle Mountain contributes 27%,28%,24% and 21% of the conserved water,respectively.The water conservation capacity of forests in Plain Area(2 948 m3/ha),is superior to the forests in other regions.And the forests situated on Flat Slope,Moderate Slope and Gentle Slope constitute the largest proportion(nearly 93%) of water conservation,while the forests on Flat Slope has the highest water conservation capacity(2 797 m3/ha),and the forest on Steep slope has the lowest water conservation capacity(948 m3/ha).
基金the Key Knowledge Innovation Project of the Chinese Academy of Sciences (Nos. KZCX2-SW-317and KZCX3-SW-226).
文摘The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of the interannual and interdecadal variability of the water cycle over the HRB to the Pacific Decadal Oscillation (PDO) and E1 Nino-Southern Oscillation (ENSO) phenomena were investigated using the observational and National Centers for Environmental Prediction (NCEP) reanalysis data. There was a strong interdecadal variability for the water cycle (such as precipitation and water vapor transport) over the region, with an abrupt change occurring mostly in the mid 1970s. The intensity of the East Asian summer monsoon largely affected the atmospheric water vapor transport. Generally, the net meridional convergence of the water vapor flux over the region was relatively large before 1965, and it declined gradually from then on with a further notable decrease since mid 1970s. Zonal water vapor transport was similar to meridional, but with a much smaller magnitude and no noteworthy turning in the mid 1970s. Results also suggested that the wind field played an important role in the water vapor transport over the HRB before the mid 1960s, and the interdecadal variability of the water cycle (precipitation, water vapor transport, etc.) in the summer was related to the PDO; however, interannual variation of the water vapor transport could also be related to the ENSO phenomena.
文摘Daba Mountain area is one of the two endemic selenosis areas in China,which may relate with the environmental behaviors of selenium (Se) in soil.This study focuses on the concentraion and distribution of Se and its relationships with some other elements in natural soil in the area.The average concentration of Se in Daba Mountain soils was 14.3 times higher than the value cited for natural soil background worldwide,suggesting that soils in the region were contaminated by the element.The finding was confirmed...
基金Project supported by the National Natural Science Foundation of China (No. 40101017)the Doctor Foundation of the Ministry of Education of China (No. 2002050411).
文摘Elemental composition and geochemical characteristics of iron-manganese nodules from nine main soils in China were studied by chemical and multivariate statistical analyses to better understand the reactions and functions of iron-manganese nodules in soils and sediment. Compared to the corresponding soils, Mn, Ba, Cd, Co and Pb had strong accumulation, Ni had moderate accumulation, while Ca, Cu, Fe, Na, P, Sr and Zn accumulated to a minor degree in the iron-manganese nodules. In contrast, Si, Al, K, Mg and Ti were reduced in the iron-manganese nodules. The contents of Ba, Cd, Co, Cu, Ni, Pb and Zn were positively and significantly correlated with that of MnO2 in the iron-manganese nodules, while the contents of Cr, Cu, Ni, Pb and Zn were positively and significantly correlated with that of Fe2O3 in soils. Based on a principle component analysis, the elements of iron-manganese nodules were divided into four groups: 1) Mn, Ba, Cd, Co, Cu, Li, Ni, Pb and Zn that were associated with Mn oxides, 2) Fe, Cr and P that were associated with Fe oxides, 3) Si, K, and Mg that were included in the elemental composition of phyllosilicate, and 4) Ca, Na, Al and Ti that existed in todorokite, birnessite, lithiophorite and phyllosilicate. It was suggested that accumulation, mineralization and specific adsorption were involved in the formation processes of soil iron-manganese nodules.
文摘In the research of fractal cities, the fractal dimension is very important. It is used to describe the fractal character of the city. The authors have designed two approaches to calculate the fractal dimension by the box-counting method through an example of Beijing, which are called the vector method and the grid method, respectively. The former calculates the fractal dimension through an intersecting analysis in ArcView; and the latter is carried out by programming in Matlab. They are compared from three aspects: the calculating process, the limits in use, and the results. As a result, the conclusion is made that there are merits and faults on both methods, and they should be chosen to use properly in practical situation.