Blood cells are the most integral part of the body,which are made up of erythrocytes,platelets and white blood cells.The examination of subcellular structures and proteins within blood cells at the nanoscale can provi...Blood cells are the most integral part of the body,which are made up of erythrocytes,platelets and white blood cells.The examination of subcellular structures and proteins within blood cells at the nanoscale can provide valuable insights into the health status of an individual,accurate diagnosis,and efficient treatment strategies for diseases.Super-resolution microscopy(SRM)has recently emerged as a cutting-edge tool for the study of blood cells,providing numerous advantages over traditional methods for examining subcellular structures and proteins.In this paper,we focus on outlining the fundamental principles of various SRM techniques and their applications in both normal and diseased states of blood cells.Furthermore,future prospects of SRM techniques in the analysis of blood cells are also discussed.展开更多
Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pa...Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.展开更多
AIM: To determine if efficacy of chemotherapy on liver metastasis of gastrointestinal tract cancer can be predicted by apparent diffusion coefficient(ADC) values of diffusion-weighted imaging(DWI). METHODS: In total, ...AIM: To determine if efficacy of chemotherapy on liver metastasis of gastrointestinal tract cancer can be predicted by apparent diffusion coefficient(ADC) values of diffusion-weighted imaging(DWI). METHODS: In total, 86 patients with liver metastasis of gastrointestinal tract cancer(156 metastatic lesions) diagnosed in our hospital were included in this study. The maximum diameters of these tumors were compared with each other before treatment, 2 wk after treatment, and 12 wk after treatment. Selected patients were classified as the effective group and the ineffective group, depending on the maximum diameter of the tumor after 12 wk of treatment; and the ADC values at different treatment times between the two groups were compared. Spearman rank correlation was used to analyze the relationship between ADC value and tumor diameter. Receiver operating characteristic curve(ROC curve) was used to analyze the ADC values before treatment to predict the patient's sensitivity and specificity degree of efficacy to the chemotherapy. RESULTS: There was no difference in age between the two groups and in maximum tumor diameter before treatment and 2 wk after treatment. However, after 12 wk of treatment, maximum tumor diameter in the effective group was significantly lower than that in the ineffective group(P < 0.05). Before treatment, ADC values in the ineffective group were significantly higher than those in the effective group(P < 0.05). There was no difference in ADC values between the effective and ineffective groups after 2 and 12 wk of treatment. However, ADC values were significantly higher after 2 and 12 wk of treatment compared to before treatment in the effective group(P < 0.05). Spearman rank correlation analysis showed that ADC value before treatment and the reduced percentage of the maximum tumor diameter after 12 wk of treatment were negatively correlated, while the increase in the percentage of the ADC value 12 wk after treatment and the decrease in the percentage of the maximum tumor diameter were significantly positively correlated. The results of the ROC curve showed that ADC value with a chemotherapy ineffective threshold value of 1.14 × 10-3 mm2/s before treatment had a sensitivity and specificity of 94.3% and 76.7%, respectively. CONCLUSION: DWI ADC values can be used to predict the response of patients with liver metastasis of gastrointestinal tract cancer to chemotherapy with high sensitivity and relatively high specificity.展开更多
Hepatic encephalopathy(HE) is a neuropsychiatric complication of cirrhosis or acute liver failure. Currently, HE is regarded as a continuous cognitive impairment ranging from the mildest stage, minimal HE to overt HE....Hepatic encephalopathy(HE) is a neuropsychiatric complication of cirrhosis or acute liver failure. Currently, HE is regarded as a continuous cognitive impairment ranging from the mildest stage, minimal HE to overt HE. Hyperammonaemia and neuroinflammation are two main underlying factors which contribute to the neurological alterations in HE. Both structural and functional impairments are found in the white mater and grey mater involved in HE. Although the investigations into HE pathophysiological mechanism are enormous, the exact pathophysiological causes underlying HE remain controversial. Multimodality magnetic resonance imaging(MRI) plays an important role in helping to understand the pathological process of HE. This paper reviews the up-to-date multimodality MRI methods and predominant findings in HE patients with a highlight ofthe increasingly important role of blood oxygen level dependent functional MRI.展开更多
Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting a...Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting and disaster mechanism. Densification and digitalization of seismic networks in this region provides an opportunity to study the velocity structure with bulletin data. In this study, we collect P-wave data of 10 403 regional earthquakes recorded by 79 seismic stations from January 2008 to December 2010. In addition to first arrivals data (Pg with epieentral distance less than 200 km and Pn), the Pg (or P) data with epicentral distance more than 200 km are also considered as later direct arrivals in the tomographic inversion. We also compare the quantity and the quality of the seismic data before 2010 and after 2010. The test results show that adding the follow-up Pg phase can effectively improve the inversion ability of crustal imaging, and quantity and the data quality are significantly improved since 2010. The tomographie results show that: (1) The Honghe fault zone, which is the major fault systems in this region, may cut through the entire crust, and the velocity contrasts between two sides at lower crust beneath the Honghe fault are estimated at higher than 10%, while the velocity difference below Nujiang fault zone extends only in the upper crust; (2) Most of the earthquakes in the region occurred at the interface of high-velocity media and low-velocity media, i.e., the areas with high velocity gradient, which has been validated in other areas.展开更多
Magnetic resonance imaging(MRI)is considered the gold standard for the evaluation of anal fistulas.There is sufficient literature available outlining the interpretation of fistula MRI before performing surgery.However...Magnetic resonance imaging(MRI)is considered the gold standard for the evaluation of anal fistulas.There is sufficient literature available outlining the interpretation of fistula MRI before performing surgery.However,the interpretation of MRI becomes quite challenging in the postoperative period after the surgery of fistula has been undertaken.Incidentally,there are scarce data and no set guidelines regarding analysis of fistula MRI in the postoperative period.In this article,we discuss the challenges faced while interpreting the postoperative MRI,the timing of the postoperative MRI,the utility of MRI in the postoperative period for the management of anal fistulas,the importance of the active involvement and experience of the treating clinician in interpreting MRI scans,and the latest advancements in the field.展开更多
Photoacoustic technology in combination with molecular imaging is a highly effective method for accurately diagnosing brain glioma. For glioma detection at a deeper site, contrast agents with higher photoacoustic imag...Photoacoustic technology in combination with molecular imaging is a highly effective method for accurately diagnosing brain glioma. For glioma detection at a deeper site, contrast agents with higher photoacoustic imaging sensitivity are needed. Herein, we report a MoS_2–ICG hybrid with indocyanine green(ICG) conjugated to the surface of MoS_2 nanosheets. The hybrid significantly enhanced photoacoustic imaging sensitivity compared to MoS_2 nanosheets. This conjugation results in remarkably high optical absorbance across a broad near-infrared spectrum, redshifting of the ICG absorption peak and photothermal/photoacoustic conversion efficiency enhancement of ICG. A tumor mass of 3.5 mm beneath the mouse scalp was clearly visualized by using MoS_2–ICG as a contrast agent for the in vivo photoacoustic imaging of orthotopic glioma, which is nearly twofold deeper than the tumors imaged in our previous report using MoS_2 nanosheet. Thus, combined with its good stability and high biocompatibility, the MoS_2–ICG hybrid developed in this study has a great potential for high-efficiency tumor molecular imaging in translational medicine.展开更多
AIM: To compare 3D Black Blood turbo spin echo(TSE)sampling perfection with application-optimized contrast using different flip angle evolution(SPACE) vs 2D TSE in evaluating atherosclerotic plaques in multiple vascul...AIM: To compare 3D Black Blood turbo spin echo(TSE)sampling perfection with application-optimized contrast using different flip angle evolution(SPACE) vs 2D TSE in evaluating atherosclerotic plaques in multiple vascular territories. METHODS: The carotid, aortic, and femoral arterial walls of 16 patients at risk for cardiovascular or atherosclerotic disease were studied using both 3D black blood magnetic resonance imaging SPACE and conventional 2D multi-contrast TSE sequences using a consolidated imaging approach in the same imaging session. Qualitative and quantitative analyses were performed on the images. Agreement of morphometric measurements between the two imaging sequences was assessed using a two-sample t-test, calculation of the intra-class correlation coefficient and by the method of linear regression and Bland-Altman analyses. RESULTS: No statistically significant qualitative differences were found between the 3D SPACE and 2D TSE techniques for images of the carotids and aorta. For images of the femoral arteries, however, there were statistically significant differences in all four qualitative scores between the two techniques. Using the current approach, 3D SPACE is suboptimal for femoral imaging. However, this may be due to coils not being optimized for femoral imaging. Quantitatively, in our study, higher mean total vessel area measurements for the 3D SPACE technique across all three vascular beds were observed. No significant differences in lumen area for both the right and left carotids were observed between the two techniques. Overall, a significant-correlation existed between measures obtained between the two approaches. CONCLUSION: Qualitative and quantitative measurements between 3D SPACE and 2D TSE techniques are comparable. 3D-SPACE may be a feasible approach in the evaluation of cardiovascular patients.展开更多
When using motion compensation approaches based on the measurement of motion sensors, the residual uncompensated motion errors due to measurement instrument inaccuracies contribute to phase errors and hence degrade Sy...When using motion compensation approaches based on the measurement of motion sensors, the residual uncompensated motion errors due to measurement instrument inaccuracies contribute to phase errors and hence degrade Synthetic Aperture Radar (SAR) images. This paper presents a model to compute the phase error caused by Inertial Measurement Unit (IMU) measurement inaccuracies. By analyzing SAR motion compensation method and the effect of lever arm, this model derives the con-tribution of each term of IMU inaccuracies towards the residual uncompensated motion errors and provides a method to calculate each order of the residual phase error. According to the model, com-puted results of the airborne X-band SAR system with POS AV510 accord closely with the actual image quality.展开更多
Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Ce...Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging(CLI), and optical imageguided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.展开更多
To provide a systematic review of scientific literatureon functional magnetic resonance imaging(fMRI) stud-ies on sustained attention in psychosis. We searchedPubMed to identify fMRI studies pertaining sustainedattent...To provide a systematic review of scientific literatureon functional magnetic resonance imaging(fMRI) stud-ies on sustained attention in psychosis. We searchedPubMed to identify fMRI studies pertaining sustainedattention in both affective and non-affective psycho-sis. Only studies conducted on adult patients using asustained attention task during fMRI scanning wereincluded in the final review. The search was conductedon September 10 th, 2013. 15 fMRI studies met our in-clusion criteria: 12 studies were focused on Schizophre-nia and 3 on Bipolar Disorder Type Ⅰ(BDI). Only halfof the Schizophrenia studies and two of the BDI stud-ies reported behavioral abnormalities, but all of themevidenced significant functional differences in brain re-gions related to the sustained attention system. Alteredfunctioning of the insula was found in both Schizophre-nia and BDI, and therefore proposed as a candidate trait marker for psychosis in general. On the other hand, other brain regions were differently impaired in affective and non-affective psychosis: alterations of cingulate cortex and thalamus seemed to be more common in Schizophrenia and amygdala dysfunctions in BDI. Neural correlates of sustained attention seem to be of great interest in the study of psychosis, highlight-ing differences and similarities between Schizophrenia and BDI.展开更多
The main purpose of a radiologist’s expertise in evaluation of anal fistula magnetic resonance imaging(MRI)is to benefit patients by decreasing the incontinence rate and increasing the healing rate.Any loss of vital ...The main purpose of a radiologist’s expertise in evaluation of anal fistula magnetic resonance imaging(MRI)is to benefit patients by decreasing the incontinence rate and increasing the healing rate.Any loss of vital information during the transfer of this data from the radiologist to the operating surgeon is unwarranted and is best prevented.In this regard,two methods are suggested.First,a short video to be attached with the standardized written report highlighting the vital parameters of the fistula.This would ensure minimum loss of information when it is conveyed from the radiologist to the operating surgeon.Second,inclusion of a new parameter,the amount of external sphincter involvement by the anal fistula.This parameter is usually not included in the MRI report.This can be evaluated as the height of penetration of the external anal sphincter(HOPE)by the fistula.The external anal sphincter plays a pivotal role in maintaining continence.This parameter(HOPE)is distinct from the‘height of internal opening’and assumes immense importance as its knowledge is paramount to prevent damage to the external anal sphincter by the surgeon during surgery.展开更多
BACKGROUND Chronic cocaine use is associated with stroke, coronary artery disease and myocardial infarction, resulting in severe impairments or sudden mortality. In the absence of clear cardiovascular symptoms, indivi...BACKGROUND Chronic cocaine use is associated with stroke, coronary artery disease and myocardial infarction, resulting in severe impairments or sudden mortality. In the absence of clear cardiovascular symptoms, individuals with cocaine use disorder (iCUD) seeking addiction treatment receive mostly psychotherapy and psychiatric pharmacotherapy, with no attention to vascular disease (i.e., atherosclerosis). Little is known about the pre-clinical signs of cardiovascular risk in iCUD and early signs of vascular disease are undetected in this underserved population. AIM To assess inflammation, plaque burden and plaque composition in iCUD aiming to detect markers of atherosclerosis and vascular disease. METHODS The bilateral carotid arteries were imaged with positron emission tomography/magnetic resonance imaging (PET/MRI) in iCUD asymptomatic for cardiovascular disease, healthy controls, and individuals with cardiovascular risk. PET with 18F-fluorodeoxyglucose (18F-FDG) evaluated vascular inflammation and 3-D dark-blood MRI assessed plaque burden including wall area and thickness. Drug use and severity of addiction were assessed with standardized instruments. RESULTS The majority of iCUD and controls had carotid FDG-PET signal greater than 1.6 but lower than 3, indicating the presence of mild to moderate inflammation. However, the MRI measure of wall structure was thicker in iCUD as compared to the controls and cardiovascular risk group, indicating greater carotid plaque burden. iCUD had larger wall area as compared to the healthy controls but not as compared to the cardiovascular risk group, indicating structural wall similarities between the non-control study groups. In iCUD, wall area correlated with greater cocaine withdrawal and craving. CONCLUSION These preliminary results show markers of carotid artery disease burden in cardiovascular disease-asymptomatic iCUD. Broader trials are warranted to develop protocols for early detection of cardiovascular risk and preventive intervention in iCUD.展开更多
Cardiovascular disease(CVD)is the leading cause of death and a major health care challenge globally.Coronary artery disease(CAD)is a primary underlying pathological process in the majority of cardiovascular disease ca...Cardiovascular disease(CVD)is the leading cause of death and a major health care challenge globally.Coronary artery disease(CAD)is a primary underlying pathological process in the majority of cardiovascular disease cases.Magnetic resonance imaging(MRI)can play a potentially important role in the management of CAD as a noninvasive imaging modality without ionizing radiation,although its early promise has not been delivered because of several crucial technical limitations.However,recent innovations in MRI have reopened the door,with tremendous opportunities for multiparametric assessment of CAD including luminal stenosis,plaque burden and composition,and disease activities such as infl ammation and hemorrhage.Novel MRI acquisition and reconstruction strategies now offer much increased spatial resolution and image quality and shortened examination times compared with conventional approaches.Recent clinical experiences of coronary MRI indicated the potential to improve the current management of coronary atherosclerosis,such as identifying the patients at the highest risk and evaluating therapeutic responses.In this review we discuss the latest technical advances and clinical insights in coronary MRI.展开更多
We propose a high-accuracy artifacts-free single-frame digital holographic phase demodulation scheme for relatively lowcarrier frequency holograms-deep learning assisted variational Hilbert quantitative phase imaging(...We propose a high-accuracy artifacts-free single-frame digital holographic phase demodulation scheme for relatively lowcarrier frequency holograms-deep learning assisted variational Hilbert quantitative phase imaging(DL-VHQPI).The method,incorporating a conventional deep neural network into a complete physical model utilizing the idea of residual compensation,reliably and robustly recovers the quantitative phase information of the test objects.It can significantly alleviate spectrum-overlapping-caused phase artifacts under the slightly off-axis digital holographic system.Compared to the conventional end-to-end networks(without a physical model),the proposed method can reduce the dataset size dramatically while maintaining the imaging quality and model generalization.The DL-VHQPI is quantitatively studied by numerical simulation.The live-cell experiment is designed to demonstrate the method's practicality in biological research.The proposed idea of the deep learning-assisted physical model might be extended to diverse computational imaging techniques.展开更多
Aims and Objectives: The aim of this diagnostic observational study was to find an association of final diagnosis of adnexal masses suggested by MRI and compare it as an imaging modality in determining the origin, nat...Aims and Objectives: The aim of this diagnostic observational study was to find an association of final diagnosis of adnexal masses suggested by MRI and compare it as an imaging modality in determining the origin, nature (benign/malignant) & characteristics of adnexal masses by calculating sensitivity, specificity, and diagnostic accuracy. Materials and Methods: The present study was carried out in 90 patients in the department of radio diagnosis and imaging, institute of medical sciences, Banaras Hindu University (BHU). The patients were referred from department of obstetrics & gynecology, institute of medical sciences. Majority of the referred cases were those who had clinical features of abdominal pain, abdominal lump, menstrual irregularity, ascites, and anorexia or weight loss & in whom adnexal mass was suspected clinically. Magnetic resonance imaging was performed using 1.5 Tesla MR Scanner, Magnetom Avanto (Siemens Healthcare). Results: Out of 114 masses, 17 (14.9%) were malignant. The benign adnexal masses were maximum in the age group 20 - 39 years (56/97, 57.7%), while malignant masses were mainly found in women ≥60 years of age (11/17, 64.7%). CA-125 level was grossly elevated in association with 35.3% of the malignant masses. On MRI, the sensitivity for the mass of ovarian origin was (97.7%) and specificity was (73.1%). The diagnostic accuracy was (92.1%). The mass of uterine origin had a sensitivity of (73.1%) and diagnostic accuracy (99.1%). Conclusion: MRI, because of its accuracy in identifying the origin of adnexal mass and characterizing the solid, hemorrhagic, fatty and fibrous content, may obviate surgery or significantly contribute to preoperative planning for a sonographically indeterminate mass. MRI is the state of the art imaging modality for evaluation of adnexal masses with an overall high diagnostic accuracy.展开更多
As one of near-infrared(NIR) fluorescent(FL) nanoprobes, gold nanoclusters(Au NCs) are delicated to passive-targeting tumors for NIR FL imaging, but which easily cleared by the kidneys for the small size(〈1.5...As one of near-infrared(NIR) fluorescent(FL) nanoprobes, gold nanoclusters(Au NCs) are delicated to passive-targeting tumors for NIR FL imaging, but which easily cleared by the kidneys for the small size(〈1.5 nm). Herein, the well-defined gold clusters nanoassembly(Au CNA) was synthesized by the selfassembly of Au NCs based on protein cross-linking approach. The as-prepared Au CNA demonstrated highly effective cellular uptake and precise tumor targeting compared to that of Au NCs. Moreover, with the irradiation of 660 nm laser, Au CNA generated largely reactive oxygen species(ROS) for photodynamic therapy(PDT). In vitro and [39TD$IF]in vivo PDT revealed that Au CNA exhibited largely cell death and significantly tumor removal at a low power density of 0.2 W/cm^2. It could be speculated that the laser-excited Au CNA produced photon energy, which further obtained electron from oxygen to generate radical species.Therefore, Au CNA as a photosensitizer could realize NIR FL imaging and NIR laser induced PDT.展开更多
AIM To demonstrate feasibility of vessel wall imaging of the superficial palmar arch using high frequency microultrasound, 7T and 3T magnetic resonance imaging(MRI).METHODS Four subjects(ages 22-50 years) were scanned...AIM To demonstrate feasibility of vessel wall imaging of the superficial palmar arch using high frequency microultrasound, 7T and 3T magnetic resonance imaging(MRI).METHODS Four subjects(ages 22-50 years) were scanned on a micro-ultrasound system with a 45-MHz transducer(Vevo 2100, Visual Sonics). Subjects' hands were then imaged on a 3T clinical MR scanner(Siemens Biograph MMR) using an 8-channel special purpose phased array carotid coil. Lastly, subjects' hands were imaged on a 7T clinical MR scanner(Siemens Magnetom 7T Whole Body Scanner) using a custom built 8-channel transmit receive carotid coil. All three imaging modalities were subjectively analyzed for image quality and visualization of the vessel wall. RESULTS Results of this very preliminary study indicated that vessel wall imaging of the superficial palmar arch was feasible with a whole body 7T and 3T MRI in comparison with micro-ultrasound. Subjective analysis of image quality(1-5 scale, 1: poorest, 5: best) from B mode, ultrasound, 3T SPACE MRI and 7T SPACE MRI indicated that the image quality obtained at 7T was superior to both 3T MRI and micro-ultrasound. The 3D SPACE sequence at both 7T and 3T MRI with isotropic voxels allowed for multi-planarreformatting of images and allowed for less operator dependent results as compared to high frequency microultrasound imaging. Although quantitative analysis revealed that there was no significant difference between the three methods, the 7T Tesla trended to have better visibility of the vessel and its wall. CONCLUSION Imaging of smaller arteries at the 7T is feasible for evaluating atherosclerosis burden and may be of clinical relevance in multiple diseases.展开更多
In the past decade, phase-contrast imaging (PCI) has become a hot research with an increased improvement of the image contrast with respect to conventional absorption radiography. In this paper, effects of tube voltag...In the past decade, phase-contrast imaging (PCI) has become a hot research with an increased improvement of the image contrast with respect to conventional absorption radiography. In this paper, effects of tube voltage (kVp) on propagation-based phase-contrast imaging have been investigated with two types of microfocus x-ray tubes, a conventional sealed x-ray tube with the focal spot size of 13 - 20 μm and an open x-ray tube with minimum focal spot size less than 2 μm. A cooled x-ray CCD detector with the pixel size of 24 μm was used to acquire digital images. Two thin plastic sheets with different thickness were used as radiography phantoms. Two different phenomena were observed for the two x-ray tubes. For the open tube, phase-contrast effect has a slight drop with the increasing of tube voltage, however, it is opposite for the sealed tube. A further investigation indicates that the variation of focal spot size causes the abnormal result for the sealed tube. It also shows that phase-contrast effect is more sensitive to focal spot size than tube voltage.展开更多
The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized ...The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized the studies comparing the diagnostic and predictive performance for PCa between AI and common clinical assessment methods based on MR images and/or clinical characteristics,thereby investigating whether AI methods are generally superior to common clinical assessment methods for the diagnosis and prediction fields of PCa.First,we found that,in the included studies of the present study,AI methods were generally equal to or better than the clinical assessment methods for the risk assessment of PCa,such as risk stratification of prostate lesions and the prediction of therapeutic outcomes or PCa progression.In particular,for the diagnosis of clinically significant PCa,the AI methods achieved a higher summary receiver operator characteristic curve(SROC-AUC)than that of the clinical assessment methods(0.87 vs.0.82).For the prediction of adverse pathology,the AI methods also achieved a higher SROC-AUC than that of the clinical assessment methods(0.86 vs.0.75).Second,as revealed by the radiomics quality score(RQS),the studies included in the present study presented a relatively high total average RQS of 15.2(11.0–20.0).Further,the scores of the individual RQS elements implied that the AI models in these studies were constructed with relatively perfect and standard radiomics processes,but the exact generalizability and clinical practicality of the AI models should be further validated using higher levels of evidence,such as prospective studies and open-testing datasets.展开更多
基金supported by the following grants:National Key R&D Program of China(Grant no.2022YFC3401100)National Natural Science Foundation of China(Grant nos.32271428,92054110,32201132 and 31600692).
文摘Blood cells are the most integral part of the body,which are made up of erythrocytes,platelets and white blood cells.The examination of subcellular structures and proteins within blood cells at the nanoscale can provide valuable insights into the health status of an individual,accurate diagnosis,and efficient treatment strategies for diseases.Super-resolution microscopy(SRM)has recently emerged as a cutting-edge tool for the study of blood cells,providing numerous advantages over traditional methods for examining subcellular structures and proteins.In this paper,we focus on outlining the fundamental principles of various SRM techniques and their applications in both normal and diseased states of blood cells.Furthermore,future prospects of SRM techniques in the analysis of blood cells are also discussed.
基金supported by National Key Research and Development Program of China(2022YFB2804603,2022YFB2804605)National Natural Science Foundation of China(U21B2033)+4 种基金Fundamental Research Funds forthe Central Universities(2023102001,2024202002)National Key Laborato-ry of Shock Wave and Detonation Physics(JCKYS2024212111)China Post-doctoral Science Fund(2023T160318)Open Research Fund of JiangsuKey Laboratory of Spectral Imaging&Intelligent Sense(JSGP202105,JSGP202201)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX25_0695,SJCX25_0188)。
文摘Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.
文摘AIM: To determine if efficacy of chemotherapy on liver metastasis of gastrointestinal tract cancer can be predicted by apparent diffusion coefficient(ADC) values of diffusion-weighted imaging(DWI). METHODS: In total, 86 patients with liver metastasis of gastrointestinal tract cancer(156 metastatic lesions) diagnosed in our hospital were included in this study. The maximum diameters of these tumors were compared with each other before treatment, 2 wk after treatment, and 12 wk after treatment. Selected patients were classified as the effective group and the ineffective group, depending on the maximum diameter of the tumor after 12 wk of treatment; and the ADC values at different treatment times between the two groups were compared. Spearman rank correlation was used to analyze the relationship between ADC value and tumor diameter. Receiver operating characteristic curve(ROC curve) was used to analyze the ADC values before treatment to predict the patient's sensitivity and specificity degree of efficacy to the chemotherapy. RESULTS: There was no difference in age between the two groups and in maximum tumor diameter before treatment and 2 wk after treatment. However, after 12 wk of treatment, maximum tumor diameter in the effective group was significantly lower than that in the ineffective group(P < 0.05). Before treatment, ADC values in the ineffective group were significantly higher than those in the effective group(P < 0.05). There was no difference in ADC values between the effective and ineffective groups after 2 and 12 wk of treatment. However, ADC values were significantly higher after 2 and 12 wk of treatment compared to before treatment in the effective group(P < 0.05). Spearman rank correlation analysis showed that ADC value before treatment and the reduced percentage of the maximum tumor diameter after 12 wk of treatment were negatively correlated, while the increase in the percentage of the ADC value 12 wk after treatment and the decrease in the percentage of the maximum tumor diameter were significantly positively correlated. The results of the ROC curve showed that ADC value with a chemotherapy ineffective threshold value of 1.14 × 10-3 mm2/s before treatment had a sensitivity and specificity of 94.3% and 76.7%, respectively. CONCLUSION: DWI ADC values can be used to predict the response of patients with liver metastasis of gastrointestinal tract cancer to chemotherapy with high sensitivity and relatively high specificity.
基金Supported by Grants from National Natural Science Foundation of China,Nos.30700194,81171313,81322020 and 81230032(to Zhang LJ)Program for New Century Excellent Talents in University,No.NCET-12-0260(to Zhang LJ)
文摘Hepatic encephalopathy(HE) is a neuropsychiatric complication of cirrhosis or acute liver failure. Currently, HE is regarded as a continuous cognitive impairment ranging from the mildest stage, minimal HE to overt HE. Hyperammonaemia and neuroinflammation are two main underlying factors which contribute to the neurological alterations in HE. Both structural and functional impairments are found in the white mater and grey mater involved in HE. Although the investigations into HE pathophysiological mechanism are enormous, the exact pathophysiological causes underlying HE remain controversial. Multimodality magnetic resonance imaging(MRI) plays an important role in helping to understand the pathological process of HE. This paper reviews the up-to-date multimodality MRI methods and predominant findings in HE patients with a highlight ofthe increasingly important role of blood oxygen level dependent functional MRI.
基金supported by China National Special Fund for Earthquake Scientific Research in Public Interest (Grant 201208004)National Natural Science Foundation of China (grant 41174040)Scientific Research Institutes’ Basic Research and Development Operations Special Fund of Institute of Geophysics,China Earthquake Administration (grant DQJB10A01)
文摘Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting and disaster mechanism. Densification and digitalization of seismic networks in this region provides an opportunity to study the velocity structure with bulletin data. In this study, we collect P-wave data of 10 403 regional earthquakes recorded by 79 seismic stations from January 2008 to December 2010. In addition to first arrivals data (Pg with epieentral distance less than 200 km and Pn), the Pg (or P) data with epicentral distance more than 200 km are also considered as later direct arrivals in the tomographic inversion. We also compare the quantity and the quality of the seismic data before 2010 and after 2010. The test results show that adding the follow-up Pg phase can effectively improve the inversion ability of crustal imaging, and quantity and the data quality are significantly improved since 2010. The tomographie results show that: (1) The Honghe fault zone, which is the major fault systems in this region, may cut through the entire crust, and the velocity contrasts between two sides at lower crust beneath the Honghe fault are estimated at higher than 10%, while the velocity difference below Nujiang fault zone extends only in the upper crust; (2) Most of the earthquakes in the region occurred at the interface of high-velocity media and low-velocity media, i.e., the areas with high velocity gradient, which has been validated in other areas.
文摘Magnetic resonance imaging(MRI)is considered the gold standard for the evaluation of anal fistulas.There is sufficient literature available outlining the interpretation of fistula MRI before performing surgery.However,the interpretation of MRI becomes quite challenging in the postoperative period after the surgery of fistula has been undertaken.Incidentally,there are scarce data and no set guidelines regarding analysis of fistula MRI in the postoperative period.In this article,we discuss the challenges faced while interpreting the postoperative MRI,the timing of the postoperative MRI,the utility of MRI in the postoperative period for the management of anal fistulas,the importance of the active involvement and experience of the treating clinician in interpreting MRI scans,and the latest advancements in the field.
基金National Natural Science Foundation of China (NSFC) Grants 91739117, 81522024, 81427804, 61405234, 81430038 and 61475182National Key Basic Research (973) Program of China Grant 2014CB744503 and 2015CB755500+3 种基金Guangdong Natural Science Foundation Grant 2014B050505013 and 2014A030312006Shenzhen Science and Technology Innovation Grant JCYJ20170413153129570, JCYJ20160531175040976, JCYJ 20150521144321005, JCYJ20160608214524052, JCYJ201604221 53149834 JCYJ20150731154850923SIAT Innovation Program for Excellent Young Researchers 201510
文摘Photoacoustic technology in combination with molecular imaging is a highly effective method for accurately diagnosing brain glioma. For glioma detection at a deeper site, contrast agents with higher photoacoustic imaging sensitivity are needed. Herein, we report a MoS_2–ICG hybrid with indocyanine green(ICG) conjugated to the surface of MoS_2 nanosheets. The hybrid significantly enhanced photoacoustic imaging sensitivity compared to MoS_2 nanosheets. This conjugation results in remarkably high optical absorbance across a broad near-infrared spectrum, redshifting of the ICG absorption peak and photothermal/photoacoustic conversion efficiency enhancement of ICG. A tumor mass of 3.5 mm beneath the mouse scalp was clearly visualized by using MoS_2–ICG as a contrast agent for the in vivo photoacoustic imaging of orthotopic glioma, which is nearly twofold deeper than the tumors imaged in our previous report using MoS_2 nanosheet. Thus, combined with its good stability and high biocompatibility, the MoS_2–ICG hybrid developed in this study has a great potential for high-efficiency tumor molecular imaging in translational medicine.
基金Supported by NIH NHLBI R01HL71021(Fayad ZA)and Siemens Medical Solutions
文摘AIM: To compare 3D Black Blood turbo spin echo(TSE)sampling perfection with application-optimized contrast using different flip angle evolution(SPACE) vs 2D TSE in evaluating atherosclerotic plaques in multiple vascular territories. METHODS: The carotid, aortic, and femoral arterial walls of 16 patients at risk for cardiovascular or atherosclerotic disease were studied using both 3D black blood magnetic resonance imaging SPACE and conventional 2D multi-contrast TSE sequences using a consolidated imaging approach in the same imaging session. Qualitative and quantitative analyses were performed on the images. Agreement of morphometric measurements between the two imaging sequences was assessed using a two-sample t-test, calculation of the intra-class correlation coefficient and by the method of linear regression and Bland-Altman analyses. RESULTS: No statistically significant qualitative differences were found between the 3D SPACE and 2D TSE techniques for images of the carotids and aorta. For images of the femoral arteries, however, there were statistically significant differences in all four qualitative scores between the two techniques. Using the current approach, 3D SPACE is suboptimal for femoral imaging. However, this may be due to coils not being optimized for femoral imaging. Quantitatively, in our study, higher mean total vessel area measurements for the 3D SPACE technique across all three vascular beds were observed. No significant differences in lumen area for both the right and left carotids were observed between the two techniques. Overall, a significant-correlation existed between measures obtained between the two approaches. CONCLUSION: Qualitative and quantitative measurements between 3D SPACE and 2D TSE techniques are comparable. 3D-SPACE may be a feasible approach in the evaluation of cardiovascular patients.
基金Supported by the National Basic Research Program (973)of China (No. 2009CB724003)the National High-Tech Research and Development Program (863) of China (No. 2007AA120302)
文摘When using motion compensation approaches based on the measurement of motion sensors, the residual uncompensated motion errors due to measurement instrument inaccuracies contribute to phase errors and hence degrade Synthetic Aperture Radar (SAR) images. This paper presents a model to compute the phase error caused by Inertial Measurement Unit (IMU) measurement inaccuracies. By analyzing SAR motion compensation method and the effect of lever arm, this model derives the con-tribution of each term of IMU inaccuracies towards the residual uncompensated motion errors and provides a method to calculate each order of the residual phase error. According to the model, com-puted results of the airborne X-band SAR system with POS AV510 accord closely with the actual image quality.
文摘Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging(CLI), and optical imageguided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.
文摘To provide a systematic review of scientific literatureon functional magnetic resonance imaging(fMRI) stud-ies on sustained attention in psychosis. We searchedPubMed to identify fMRI studies pertaining sustainedattention in both affective and non-affective psycho-sis. Only studies conducted on adult patients using asustained attention task during fMRI scanning wereincluded in the final review. The search was conductedon September 10 th, 2013. 15 fMRI studies met our in-clusion criteria: 12 studies were focused on Schizophre-nia and 3 on Bipolar Disorder Type Ⅰ(BDI). Only halfof the Schizophrenia studies and two of the BDI stud-ies reported behavioral abnormalities, but all of themevidenced significant functional differences in brain re-gions related to the sustained attention system. Alteredfunctioning of the insula was found in both Schizophre-nia and BDI, and therefore proposed as a candidate trait marker for psychosis in general. On the other hand, other brain regions were differently impaired in affective and non-affective psychosis: alterations of cingulate cortex and thalamus seemed to be more common in Schizophrenia and amygdala dysfunctions in BDI. Neural correlates of sustained attention seem to be of great interest in the study of psychosis, highlight-ing differences and similarities between Schizophrenia and BDI.
文摘The main purpose of a radiologist’s expertise in evaluation of anal fistula magnetic resonance imaging(MRI)is to benefit patients by decreasing the incontinence rate and increasing the healing rate.Any loss of vital information during the transfer of this data from the radiologist to the operating surgeon is unwarranted and is best prevented.In this regard,two methods are suggested.First,a short video to be attached with the standardized written report highlighting the vital parameters of the fistula.This would ensure minimum loss of information when it is conveyed from the radiologist to the operating surgeon.Second,inclusion of a new parameter,the amount of external sphincter involvement by the anal fistula.This parameter is usually not included in the MRI report.This can be evaluated as the height of penetration of the external anal sphincter(HOPE)by the fistula.The external anal sphincter plays a pivotal role in maintaining continence.This parameter(HOPE)is distinct from the‘height of internal opening’and assumes immense importance as its knowledge is paramount to prevent damage to the external anal sphincter by the surgeon during surgery.
基金Supported by NIDA,No.K23DA045928-01(to Bachi K) and No.R01DA041528(to Goldstein RZ)NIH/NHLBI,No.R01HL071021+1 种基金Translational and Molecular Imaging Institute internal funding(to Fayad ZAF)American Heart Association Grant in Aid,No.17GRNT33420119(to Mani VM)
文摘BACKGROUND Chronic cocaine use is associated with stroke, coronary artery disease and myocardial infarction, resulting in severe impairments or sudden mortality. In the absence of clear cardiovascular symptoms, individuals with cocaine use disorder (iCUD) seeking addiction treatment receive mostly psychotherapy and psychiatric pharmacotherapy, with no attention to vascular disease (i.e., atherosclerosis). Little is known about the pre-clinical signs of cardiovascular risk in iCUD and early signs of vascular disease are undetected in this underserved population. AIM To assess inflammation, plaque burden and plaque composition in iCUD aiming to detect markers of atherosclerosis and vascular disease. METHODS The bilateral carotid arteries were imaged with positron emission tomography/magnetic resonance imaging (PET/MRI) in iCUD asymptomatic for cardiovascular disease, healthy controls, and individuals with cardiovascular risk. PET with 18F-fluorodeoxyglucose (18F-FDG) evaluated vascular inflammation and 3-D dark-blood MRI assessed plaque burden including wall area and thickness. Drug use and severity of addiction were assessed with standardized instruments. RESULTS The majority of iCUD and controls had carotid FDG-PET signal greater than 1.6 but lower than 3, indicating the presence of mild to moderate inflammation. However, the MRI measure of wall structure was thicker in iCUD as compared to the controls and cardiovascular risk group, indicating greater carotid plaque burden. iCUD had larger wall area as compared to the healthy controls but not as compared to the cardiovascular risk group, indicating structural wall similarities between the non-control study groups. In iCUD, wall area correlated with greater cocaine withdrawal and craving. CONCLUSION These preliminary results show markers of carotid artery disease burden in cardiovascular disease-asymptomatic iCUD. Broader trials are warranted to develop protocols for early detection of cardiovascular risk and preventive intervention in iCUD.
文摘Cardiovascular disease(CVD)is the leading cause of death and a major health care challenge globally.Coronary artery disease(CAD)is a primary underlying pathological process in the majority of cardiovascular disease cases.Magnetic resonance imaging(MRI)can play a potentially important role in the management of CAD as a noninvasive imaging modality without ionizing radiation,although its early promise has not been delivered because of several crucial technical limitations.However,recent innovations in MRI have reopened the door,with tremendous opportunities for multiparametric assessment of CAD including luminal stenosis,plaque burden and composition,and disease activities such as infl ammation and hemorrhage.Novel MRI acquisition and reconstruction strategies now offer much increased spatial resolution and image quality and shortened examination times compared with conventional approaches.Recent clinical experiences of coronary MRI indicated the potential to improve the current management of coronary atherosclerosis,such as identifying the patients at the highest risk and evaluating therapeutic responses.In this review we discuss the latest technical advances and clinical insights in coronary MRI.
基金We are grateful for financial supports from the National Natural Science Foundation of China(61905115,62105151,62175109,U21B2033,62227818)Leading Technology of Jiangsu Basic Research Plan(BK20192003)+5 种基金Youth Foundation of Jiangsu Province(BK20190445,BK20210338)Biomedical Competition Foundation of Jiangsu Province(BE2022847)Key National Industrial Technology Cooperation Foundation of Jiangsu Province(BZ2022039)Fundamental Research Funds for the Central Universities(30920032101)Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging&Intelligent Sense(JSGP202105,JSGP202201)National Science Center,Poland(2020/37/B/ST7/03629).The authors thank F.Sun for her contribution to this paper in terms of language expression and grammatical correction.
文摘We propose a high-accuracy artifacts-free single-frame digital holographic phase demodulation scheme for relatively lowcarrier frequency holograms-deep learning assisted variational Hilbert quantitative phase imaging(DL-VHQPI).The method,incorporating a conventional deep neural network into a complete physical model utilizing the idea of residual compensation,reliably and robustly recovers the quantitative phase information of the test objects.It can significantly alleviate spectrum-overlapping-caused phase artifacts under the slightly off-axis digital holographic system.Compared to the conventional end-to-end networks(without a physical model),the proposed method can reduce the dataset size dramatically while maintaining the imaging quality and model generalization.The DL-VHQPI is quantitatively studied by numerical simulation.The live-cell experiment is designed to demonstrate the method's practicality in biological research.The proposed idea of the deep learning-assisted physical model might be extended to diverse computational imaging techniques.
文摘Aims and Objectives: The aim of this diagnostic observational study was to find an association of final diagnosis of adnexal masses suggested by MRI and compare it as an imaging modality in determining the origin, nature (benign/malignant) & characteristics of adnexal masses by calculating sensitivity, specificity, and diagnostic accuracy. Materials and Methods: The present study was carried out in 90 patients in the department of radio diagnosis and imaging, institute of medical sciences, Banaras Hindu University (BHU). The patients were referred from department of obstetrics & gynecology, institute of medical sciences. Majority of the referred cases were those who had clinical features of abdominal pain, abdominal lump, menstrual irregularity, ascites, and anorexia or weight loss & in whom adnexal mass was suspected clinically. Magnetic resonance imaging was performed using 1.5 Tesla MR Scanner, Magnetom Avanto (Siemens Healthcare). Results: Out of 114 masses, 17 (14.9%) were malignant. The benign adnexal masses were maximum in the age group 20 - 39 years (56/97, 57.7%), while malignant masses were mainly found in women ≥60 years of age (11/17, 64.7%). CA-125 level was grossly elevated in association with 35.3% of the malignant masses. On MRI, the sensitivity for the mass of ovarian origin was (97.7%) and specificity was (73.1%). The diagnostic accuracy was (92.1%). The mass of uterine origin had a sensitivity of (73.1%) and diagnostic accuracy (99.1%). Conclusion: MRI, because of its accuracy in identifying the origin of adnexal mass and characterizing the solid, hemorrhagic, fatty and fibrous content, may obviate surgery or significantly contribute to preoperative planning for a sonographically indeterminate mass. MRI is the state of the art imaging modality for evaluation of adnexal masses with an overall high diagnostic accuracy.
基金supported by the Major State Basic Research Development Program of China(973 Program)(No.2015CB755500)National Natural Science Foundation of China(Nos.31571013,21375141,81501580,81401521,81301272 and 81571745)+3 种基金Shenzhen Science and Technology Program(Nos.KQCX20140521115045447,JCYJ20150403091443298,JCYJ20130402092657771,JCYJ20150401145529015 and JCYJ20160229200902680)Instrument Developing Project of the CAS(No.YZ201439)Key International S&T Cooperation Project(No.2015DFH50230)Guangdong Natural Science Foundation of Research Team(2016A030312006)
文摘As one of near-infrared(NIR) fluorescent(FL) nanoprobes, gold nanoclusters(Au NCs) are delicated to passive-targeting tumors for NIR FL imaging, but which easily cleared by the kidneys for the small size(〈1.5 nm). Herein, the well-defined gold clusters nanoassembly(Au CNA) was synthesized by the selfassembly of Au NCs based on protein cross-linking approach. The as-prepared Au CNA demonstrated highly effective cellular uptake and precise tumor targeting compared to that of Au NCs. Moreover, with the irradiation of 660 nm laser, Au CNA generated largely reactive oxygen species(ROS) for photodynamic therapy(PDT). In vitro and [39TD$IF]in vivo PDT revealed that Au CNA exhibited largely cell death and significantly tumor removal at a low power density of 0.2 W/cm^2. It could be speculated that the laser-excited Au CNA produced photon energy, which further obtained electron from oxygen to generate radical species.Therefore, Au CNA as a photosensitizer could realize NIR FL imaging and NIR laser induced PDT.
文摘AIM To demonstrate feasibility of vessel wall imaging of the superficial palmar arch using high frequency microultrasound, 7T and 3T magnetic resonance imaging(MRI).METHODS Four subjects(ages 22-50 years) were scanned on a micro-ultrasound system with a 45-MHz transducer(Vevo 2100, Visual Sonics). Subjects' hands were then imaged on a 3T clinical MR scanner(Siemens Biograph MMR) using an 8-channel special purpose phased array carotid coil. Lastly, subjects' hands were imaged on a 7T clinical MR scanner(Siemens Magnetom 7T Whole Body Scanner) using a custom built 8-channel transmit receive carotid coil. All three imaging modalities were subjectively analyzed for image quality and visualization of the vessel wall. RESULTS Results of this very preliminary study indicated that vessel wall imaging of the superficial palmar arch was feasible with a whole body 7T and 3T MRI in comparison with micro-ultrasound. Subjective analysis of image quality(1-5 scale, 1: poorest, 5: best) from B mode, ultrasound, 3T SPACE MRI and 7T SPACE MRI indicated that the image quality obtained at 7T was superior to both 3T MRI and micro-ultrasound. The 3D SPACE sequence at both 7T and 3T MRI with isotropic voxels allowed for multi-planarreformatting of images and allowed for less operator dependent results as compared to high frequency microultrasound imaging. Although quantitative analysis revealed that there was no significant difference between the three methods, the 7T Tesla trended to have better visibility of the vessel and its wall. CONCLUSION Imaging of smaller arteries at the 7T is feasible for evaluating atherosclerosis burden and may be of clinical relevance in multiple diseases.
文摘In the past decade, phase-contrast imaging (PCI) has become a hot research with an increased improvement of the image contrast with respect to conventional absorption radiography. In this paper, effects of tube voltage (kVp) on propagation-based phase-contrast imaging have been investigated with two types of microfocus x-ray tubes, a conventional sealed x-ray tube with the focal spot size of 13 - 20 μm and an open x-ray tube with minimum focal spot size less than 2 μm. A cooled x-ray CCD detector with the pixel size of 24 μm was used to acquire digital images. Two thin plastic sheets with different thickness were used as radiography phantoms. Two different phenomena were observed for the two x-ray tubes. For the open tube, phase-contrast effect has a slight drop with the increasing of tube voltage, however, it is opposite for the sealed tube. A further investigation indicates that the variation of focal spot size causes the abnormal result for the sealed tube. It also shows that phase-contrast effect is more sensitive to focal spot size than tube voltage.
基金supported by the Natural Science Foundation of Beijing(Z200027)the National Natural Science Foundation of China(62027901,81930053)the Key-Area Research and Development Program of Guangdong Province(2021B0101420005).
文摘The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized the studies comparing the diagnostic and predictive performance for PCa between AI and common clinical assessment methods based on MR images and/or clinical characteristics,thereby investigating whether AI methods are generally superior to common clinical assessment methods for the diagnosis and prediction fields of PCa.First,we found that,in the included studies of the present study,AI methods were generally equal to or better than the clinical assessment methods for the risk assessment of PCa,such as risk stratification of prostate lesions and the prediction of therapeutic outcomes or PCa progression.In particular,for the diagnosis of clinically significant PCa,the AI methods achieved a higher summary receiver operator characteristic curve(SROC-AUC)than that of the clinical assessment methods(0.87 vs.0.82).For the prediction of adverse pathology,the AI methods also achieved a higher SROC-AUC than that of the clinical assessment methods(0.86 vs.0.75).Second,as revealed by the radiomics quality score(RQS),the studies included in the present study presented a relatively high total average RQS of 15.2(11.0–20.0).Further,the scores of the individual RQS elements implied that the AI models in these studies were constructed with relatively perfect and standard radiomics processes,but the exact generalizability and clinical practicality of the AI models should be further validated using higher levels of evidence,such as prospective studies and open-testing datasets.