BACKGROUND Complement-mediated thrombotic microangiopathy(TMA)is a rare endothelial injury syndrome caused by dysregulated activation of the alternative complement pathway,often linked to genetic abnormalities in comp...BACKGROUND Complement-mediated thrombotic microangiopathy(TMA)is a rare endothelial injury syndrome caused by dysregulated activation of the alternative complement pathway,often linked to genetic abnormalities in complement factor H(CFH),complement factor I,or complement factor H-related(CFHR)proteins.Both renal transplantation and pregnancy are independent triggers for recurrence.This case highlights a genetically high-risk patient who achieved a successful term pregnancy after renal transplantation without complement inhibition,emphasizing individualized risk stratification,close surveillance,and multidisciplinary management for favourable maternal and graft outcomes.CASE SUMMARY A 32-year-old woman with end-stage renal disease secondary to genetically confirmed complement-mediated TMA—homozygous CFH exon 17 deletion and CFHR3-CFHR1 duplication—was maintained on dialysis for 2.5 years before undergoing a successful live-donor kidney transplant from her mother.Post-transplant immunosuppression included tacrolimus,mycophenolate mofetil,and prednisolone,later modified to azathioprine during pregnancy planning.One-year post-transplant,she conceived spontaneously.Pregnancy was complicated by transient gestational hypertension,controlled with nifedipine,labetalol,and amlodipine.Proteinuria remained<150 mg/day;white blood cell counts 5.8-7.2×109/L without cytopenia.Serum creatinine ranged 0.9-1.1 mg/dL,and tacrolimus trough levels 5-7 ng/mL.At 36 weeks,she delivered a healthy 3 kg infant by elective caesarean section.Postpartum follow-up at three months confirmed stable maternal and graft function.CONCLUSION High-risk complement-mediated TMA patients can achieve successful pregnancy post-transplant through individualized care without mandatory complement blockade.展开更多
This study investigates the impact of Zn alloying on the dispersion of the reinforcing particle in Mg_(2)Sn/Mg composites.In the composite,Zn manifests in three distinct forms:Zn segregation layer between Mg–Mg_(2)Sn...This study investigates the impact of Zn alloying on the dispersion of the reinforcing particle in Mg_(2)Sn/Mg composites.In the composite,Zn manifests in three distinct forms:Zn segregation layer between Mg–Mg_(2)Sn,the solid solution and the MgZn_(2)phase.First-principles calculations confirm that the formation of Zn segregation layer decreases the interfacial energy of the Mg–Mg_(2)Sn.Importantly,this segregation layer significantly enhances the comigration capability of Mg_(2)Sn particles with Mg matrix during sintering flow,effectively hindering the agglomeration and coarsening of the nano-sized reinforcing phase.The dense and uniformly distributed nano-sized Mg_(2)Sn significantly increases the activity of non-basal slip,ensuring good elongation of the composite while enhancing strength.It can be concluded that enhancing the comigration-ability of reinforcing particles with the matrix is an effective strategy for achieving controlled dispersion of high-volume reinforcing particles and an excellent combination of strength and ductility in magnesium matrix composites.展开更多
The purpose of this study was to evaluate the clinical application of a rotating pod and assess its dosimetric considerations,positional accuracy,and anatomical structure stability.A pre-dosimetric study conducted on ...The purpose of this study was to evaluate the clinical application of a rotating pod and assess its dosimetric considerations,positional accuracy,and anatomical structure stability.A pre-dosimetric study conducted on 11 patients revealed the potential for lung dose reduction using the rotational pod.Subsequently,seven patients underwent treatment with the rotational pod,and the target coverage and organs at risk doses were compared with those of conventional methods.The positional accuracy of the rotational pod,in collaboration with the imaging guidance system,was analyzed.The Dice similarity coefficient(DSC)was used to assess the settlement of tumors,trachea,and thoracic vertebrae after rotation for 20 min.In the pre-dosimetric study,there was no statistically significant difference in the volume of the internal gross tumor volume receiving≥99%of the prescription dose between the pod and conventional couch plans.However,compared to conventional couch plans,pod plans demonstrated a significant reduction in the average lung dose by 5-53%(p<0.01).Patient accrual,comprising seven cases,revealed reduced lung doses(9-26%)in four patients.For the other three patients,although there was no significant reduction in the lung dose,the use of the 90°beamline contributed to a decrease in the patient admission waiting time.The positional errors between the beams for lateral,longitudinal,vertical,ISO,pitch,and roll directions were 0.0 mm±5.3 mm,-1.2 mm±2.3 mm,-1.1 mm±2.7 mm,0.0°±0.6°,-0.1°±0.5°,and 0.0°±0.8°,respectively.The DSC for the target region and thoracic vertebrae between CT images captured before and after a 20-min rotation was higher than 0.85,whereas the DSC for the trachea was approximately 0.8.The preliminary clinical application of the rotational pod for lung tumors in fixed ion beamlines shows promise for achieving target coverage,reducing lung dose,and maintaining position accuracy.展开更多
The associations of volatile organic compounds(VOCs)exposure with short sleep duration(SSD)have rarely been studied.We aimed to evaluate the correlation between VOC exposure and SSD risk,while also exploring the poten...The associations of volatile organic compounds(VOCs)exposure with short sleep duration(SSD)have rarely been studied.We aimed to evaluate the correlation between VOC exposure and SSD risk,while also exploring the potential mediating influence of depressive symptoms.Blood concentrations of seven VOCs,namely benzene,toluene,ethylbenzene,m-/p-xylene,o-xylene,styrene(collectively known as BTEXS),and 1,4-dichlorobenzene,were analyzed in 2905 U.S.adults.Weighted logistic regression,quantile-based g-computation(QGC),and weighted quantile sum(WQS)regression were employed to investigate associations between selected VOCs and SSD risk.Mediation analyses were conducted to explore the potential mediating effects of depressive symptoms on these relationships.Increased blood levels of BTEXS were positively correlated with SSD risk,with odds ratios(OR)ranging from 1.130 to 1.212(all P<0.05).A nonlinear association between toluene concentration and SSD risk was observed(P for nonlinearity=0.028).Both QGC and WQS analyses indicated a positive association between co-exposure to VOCs and SSD,with styrene showing the highest positive weights(QGC:OR=1.313,95%confidence interval(CI):1.038–1.660;WQS:OR=1.386,95%CI:1.111–1.731).Furthermore,BTEXS exposure was positively linked to depressive symptoms,which in turn were significantly associated with SSD risk.Mediation analyses revealed that depressive symptoms partially mediated the relationships between individual and mixed VOCs and SSD risk,with mediation proportions ranging from 15.87%to 20.54%(all P<0.05).These findings indicated that exposure to VOCs increased SSD risk,with depressive symptoms playing a partial mediating role.展开更多
Low dark current photocathode guns are highly desired for high-brightness continuous-wave operations.Direct-current superconducting radio-frequency(DC-SRF)gun,a hybrid photocathode gun combining a DC gap and an SRF ca...Low dark current photocathode guns are highly desired for high-brightness continuous-wave operations.Direct-current superconducting radio-frequency(DC-SRF)gun,a hybrid photocathode gun combining a DC gap and an SRF cavity,effectively isolates the photocathode from the SRF cavity and offers significant advantages in terms of minimizing dark current levels.This paper presents an in-depth analysis of the dark current of a newly developed high-brightness DC-SRF photocathode gun(DC-SRF-Ⅱ gun).Particularly,a systematic experimental investigation of the dark current was conducted,and a comprehensive understanding of its formation was achieved through compliant simulations and measurements.Additionally,measures for attaining sub-nanoampere dark currents in the DC-SRF-Ⅱ gun are presented,including design considerations,cavity processing,assembly,and conditioning.The findings of this study establish a strong foundation for achieving high-performance operation of the DC-SRF-Ⅱ gun and provide a valuable reference for other photocathode guns.展开更多
Designing novel two-dimensional structures and precisely modulating their second harmonic generation(SHG)attributes are key to advancing nonlinear photonic technologies.In this work,through first-principles calculatio...Designing novel two-dimensional structures and precisely modulating their second harmonic generation(SHG)attributes are key to advancing nonlinear photonic technologies.In this work,through first-principles calculations,we propose a novel tetrahedral phase of transition metal dichalcogenides(TMDs)and validate its structural feasibility in a family of compounds,i.e.,ZX_(2)(Z=Ti,Zr,Hf;X=S,Se,Te).Cohesive energy and phonon dispersion calculations further demonstrate that eight of nine possible ZX_(2)monolayers are dynamically stable.All the ZX_(2)monolayers exhibit pronounced out-of-plane SHG with nonlinear susceptibility components reaching the order of 10^(2)pm/V.Strain engineering imposes a profound influence on the SHG response of ZX_(2)monolayers by reducing symmetry and modifying nonlinear susceptibility components.The redshift and significant enhancement of the prominent peak in SHG spectra are also revealed due to strain-induced charge redistribution and band gap reduction.Intriguingly,strain-driven nonlinear optical switching effects are realized in the ZX_(2)monolayers,with a reversible switching of SHG component ordering under tensile and compressive strain.In such a case,the anisotropic SHG pattern transforms from fourfold to twofold symmetry under the strain.Our work demonstrates the efficacy of strain engineering in precisely enhancing SHG,paving the way for the integration of novel TMD structures into tunable and flexible nonlinear optical devices.展开更多
We study the fragmentation of NO^(q+)(q=2,3)molecular ions produced by collisions between 96 keV O^(6+)ions and neutral nitric oxide(NO)molecules,using the cold target recoil ion momentum spectrometer(COLTRIMS).The ki...We study the fragmentation of NO^(q+)(q=2,3)molecular ions produced by collisions between 96 keV O^(6+)ions and neutral nitric oxide(NO)molecules,using the cold target recoil ion momentum spectrometer(COLTRIMS).The kinetic energy release(KER)for various dissociation channels is obtained.For the channel NO^(2+)→N^(+)+O^(+),double-electron capture followed by autoionization of the projectile ions is the dominant process,which can be explained by the recapture of loosely bound electrons into highly excited states of the target.For NO3+trication,two dissociation channels,i.e.,(a)N^(+)+O^(2+)and(b)N^(2+)+O^(+),are observed,where channel(b)is the dominant channel.Moreover,for dissociation channels originating from the same parent molecular ion,the dissociation channel with a higher charge for the oxygen ion fragment exhibits a higher most probable KER,which is consistent with studies of CO fragmentation by Rajput et al.Additionally,it is observed that as capture stability increases,the average KER shifts to higher values.展开更多
Circadian rhythm is a self-sustaining endogenous oscillation that serves as an internal timekeeping mechanism adapted to the Earth’s 24-h rotational schedule.It exists ubiquitously in nearly all organisms,from prokar...Circadian rhythm is a self-sustaining endogenous oscillation that serves as an internal timekeeping mechanism adapted to the Earth’s 24-h rotational schedule.It exists ubiquitously in nearly all organisms,from prokaryotes to mammals,and regulates diverse physiological and behavioral processes by synchronizing them with environmental fluctuations[1].Previous reports indicated that circadian rhythms exist in biological individuals and cells cultured in vitro[2].The mammalian circadian rhythm system consists of a central pacemaker located in the suprachiasmatic nucleus(SCN)of the hypothalamus,which coordinates peripheral rhythms through the sympathetic and parasympathetic nervous systems[3].This hierarchical mechanism uses neural populations as optimal models for circadian rhythm research.展开更多
State-selective single-and double-electron capture processes in collisions of S^(5+)ions with helium at energies ranging from 50.8 keV to 100 keV were investigated using cold target recoil ion momentum spectroscopy(CO...State-selective single-and double-electron capture processes in collisions of S^(5+)ions with helium at energies ranging from 50.8 keV to 100 keV were investigated using cold target recoil ion momentum spectroscopy(COLTRIMS).Q-value spectra and projectile scattering angle distributions were obtained.For single-electron capture,single electron capture into n=3 states of the projectile ion is dominant.As the projectile energy increases,the contribution of single electron capture into n=4 states is observed.Experimental relative cross-sections for single-electron capture into different projectile final states were compared with theoretical predictions based on the molecular orbital close-coupling(MOCC)method.In double-electron capture,two-electron populating into the 3s^(2)3p and 3s3p^(2)states of projectile dominates.The reaction window calculated from the classical molecular Coulombic barrier model can qualitatively explain the experimental results.The scattering angle distribution of the multi-peak structure of the double-electron capture process is observed.The database is openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00233.展开更多
Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have ...Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have been used for pile-up rejection,both digital and analogue,but some pile-up events may contain pulses of interest and need to be reconstructed.The paper proposes a new method for reconstructing pile-up events acquired with a neutron detector array(NEDA)using an one-dimensional convolutional autoencoder(1D-CAE).The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA.The new pile-up signal reconstruction method is evaluated from the point of view of how similar the reconstructed signals are to the original ones.Furthermore,it is analysed considering the result of the neutron-gamma discrimination based on charge comparison,comparing the result obtained from original and reconstructed signals.展开更多
Atomic radiative data such as excitation energies, transition wavelengths, radiative rates, and level lifetimes with high precision are the essential parameters for the abundance analysis, simulation, and diagnostics ...Atomic radiative data such as excitation energies, transition wavelengths, radiative rates, and level lifetimes with high precision are the essential parameters for the abundance analysis, simulation, and diagnostics in fusion and astrophysical plasmas. In this work, we mainly focus on reviewing our two projects performed in the past decade. One is about the ions with Z■30 that are generally of astrophysical interest, and the other one is about the highly charged krypton(Z = 36)and tungsten(Z = 74) ions that are relevant in research of magnetic confinement fusion. Two different and independent methods, namely, multiconfiguration Dirac–Hartree–Fock(MCDHF) and the relativistic many-body perturbation theory(RMBPT) are usually used in our studies. As a complement/extension to our previous works for highly charged tungsten ions with open M-shell and open N-shell, we also mainly focus on presenting and discussing our complete RMBPT and MCDHF calculations for the excitation energies, wavelengths, electric dipole(E1), magnetic dipole(M1), electric quadrupole(E2), and magnetic quadrupole(M2) transition properties, and level lifetimes for the lowest 148 levels belonging to the 3l3configurations in Al-like W61+. We also summarize the uncertainties of our systematical theoretical calculations, by cross-checking/validating our datasets from our RMBPT and MCDHF calculations, and by detailed comparisons with available accurate observations and other theoretical calculations. The data are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.10569.展开更多
Atrial fibrillation(AF)is a prevalent cardiac arrhythmia with a multifactorial pathophysiology involving electrical,structural,and autonomic remodeling of the atria.AF is closely associated with elevated interleukin-6...Atrial fibrillation(AF)is a prevalent cardiac arrhythmia with a multifactorial pathophysiology involving electrical,structural,and autonomic remodeling of the atria.AF is closely associated with elevated interleukin-6(IL-6)levels,which contribute to atrial remodeling and the progression of AF.This review summarizes the mechanisms by which IL-6 promotes AF through inflammatory pathways,atrial fibrosis,electrical remodeling,and calcium mishandling.Experimental models have demonstrated that IL-6 neutralization reduces the incidence of AF,highlighting its potential as a therapeutic target.Future studies should focus on IL-6 blockade strategies to manage AF,aiming to improve patient outcomes.展开更多
Within the framework of the dinuclear system(DNS)model by implementing the cluster transfer into the dissipation process,we systematically investigated the energy spectra and the angular distribution of the pre-equili...Within the framework of the dinuclear system(DNS)model by implementing the cluster transfer into the dissipation process,we systematically investigated the energy spectra and the angular distribution of the pre-equilibrium clusters(n,p,d,t,^(3)He,α,6,^(7)Li,^(8,9)Be)in the massive transfer reactions of^(12C)+^(209)Bi,^(14)N+^(159)Tb,^(14)N+^(169)Tm,^(14)N+^(181)Ta,^(14)N+^(197)Au,^(14)N+^(209)Bi,58,64,^(72)Ni+^(198)Pt near the Coulomb barrier energies.It was found that the neutron emission is the most probable in comparison with the charged particles,and theαyields are comparable to the hydrogen isotopes in magnitude.Prequilibrium clusters are mainly produced from projectile-like and target-like fragments during the evolution of the dinuclear system.The kinetic energy spectra manifest a Boltzmann distribution,and the Coulomb potential influences the structure.The pre-equilibrium clusters follow the angular distribution of the multinucleon transfer fragments.展开更多
By taking the BUU model, we simulate the superheavy element synthesis reaction. With the rotation effect being included in the BUU model, the effect of the non-centrality of the reaction ^48Ca+^238U→^286 112 is stud...By taking the BUU model, we simulate the superheavy element synthesis reaction. With the rotation effect being included in the BUU model, the effect of the non-centrality of the reaction ^48Ca+^238U→^286 112 is studied. It is shown that the promising impact parameter in the synthesis process can be released from zero to a value little smaller than the radius of the smaller nucleus involved in the reaction. Meanwhile, the compound nucleus may involve rich shape phases.展开更多
The ab initio calculations of electron-impact resonant excitation rate coefficients from the ground level to 54 fine-structure levels of 3d94l (1 = s, p, d, f) configurations of Ni-like tantalum ion are performed by...The ab initio calculations of electron-impact resonant excitation rate coefficients from the ground level to 54 fine-structure levels of 3d94l (1 = s, p, d, f) configurations of Ni-like tantalum ion are performed by using a fully relativistic distorted-wave approximation. The configuration-interaction effects are taken into account. The decays to autoionizing levels possibly followed by autoionization cascades are also included in the calculation. The contributions from doubly-excited intermediate states of Cu-like 31^17n′l′n′l″ (n′ = 4, 5; n″ = 5 - 15) are calculated explicitly, and the contributions from high Rydberg states (n″〉 15) are taken into account by using n-3 scaling law. The present results should be more accurate than the existent calculations.展开更多
We investigate the impact of high-energy O ions on the occurrence of single-event burnout(SEB) in silicon carbide(Si C) metal–oxide–semiconductor field-effect transistors(MOSFETs) under various bias conditions. Thro...We investigate the impact of high-energy O ions on the occurrence of single-event burnout(SEB) in silicon carbide(Si C) metal–oxide–semiconductor field-effect transistors(MOSFETs) under various bias conditions. Through a combination of SRIM, GEANT4, and TCAD simulations, we explore the role of secondary ions generated by nuclear reactions between high-energy O ions and Si C materials. These secondary ions, with significantly higher linear energy transfer(LET) values, contribute to electron–hole pair generation, leading to SEB. Our results show that the energy deposition and penetration depth of these secondary ions, especially those with high LET, are sufficient to induce catastrophic SEB in Si C MOSFETs. The study also highlights the critical influence of reverse bias voltage on SEB occurrence and provides insights into the failure mechanisms induced by nuclear reactions with high-energy O ions. This work offers valuable understanding for improving the radiation resistance of Si C-based power devices used in space and high-radiation environments,contributing to the design of more reliable electronics for future space missions.展开更多
We present a comprehensive investigation of the vibrational spectra and conformational distribution of neutral and cationic monoethanolamine(MEA)in the gas phase.Using infrared-vacuum ultraviolet non-resonant ionizati...We present a comprehensive investigation of the vibrational spectra and conformational distribution of neutral and cationic monoethanolamine(MEA)in the gas phase.Using infrared-vacuum ultraviolet non-resonant ionization fragmentation detected IR spectroscopy(NRIFD-IR),we obtained vibrational spectra in the 2500-3800 cm^(−1)range for both neutral and cationic MEA.Density functional theory(DFT)calculations at the B3LYPD3(BJ)/def2-TZVPP level were employed to elucidate the molecular structures and vibrational modes.Our analysis revealed twelve distinct conformers for neutral MEA,with N1gʹGgʹbeing the most stable,while cationic MEA exhibited four conformers,among which C1gʹGt conformer was found to be the primary contributor to the observed spectra.The experimental spectra were interpreted through comparison with anharmonic calculations,allowing for detailed assignment of vibrational modes.Notably,we observed significant differences in the OH stretch region between neutral and cationic species,reflecting changes in intramolecular hydrogen bonding upon ionization.Furthermore,our study highlights the necessity for distinct scaling factors when calculating harmonic frequencies for neutral and cationic substances.展开更多
A state-of-the-art detector array with a digital data acquisition system has been developed for charged-particle decay studies,includingβ-delayed protons,αdecay,and direct proton emissions from exotic proton-rich nu...A state-of-the-art detector array with a digital data acquisition system has been developed for charged-particle decay studies,includingβ-delayed protons,αdecay,and direct proton emissions from exotic proton-rich nuclei.The digital data acquisition system enables precise synchronization and processing of complex signals from various detectors,such as plastic scintillators,silicon detectors,and germaniumγdetectors.The system's performance was evaluated using theβdecay of^(32)Ar and its neighboring nuclei,produced via projectile fragmentation at the first Radioactive Ion Beam Line in Lanzhou(RIBLL1).Key measurements,including the half-life,charged-particle spectrum,andγ-ray spectrum,were obtained and compared with previous results for validation.Using the implantation–decay method,the isotopes of interest were implanted into two doublesided silicon strip detectors,where their subsequent decays were measured and correlated with preceding implantations using both position and time information.This detection system has potential for further applications,including the study ofβ-delayed charged-particle decay and direct proton emissions from even more exotic proton-rich nuclei.展开更多
This paper presents the interactions between two cold atmospheric plasma jets. By changing the experimental conditions including the gas flow rate, the applied voltage, the power supply frequency and the inter-electro...This paper presents the interactions between two cold atmospheric plasma jets. By changing the experimental conditions including the gas flow rate, the applied voltage, the power supply frequency and the inter-electrode distance d, three different interaction modes, attraction, repulsion and combination, were observed. It is shown that the interaction modes of the two jets are principally affected by the electrodes, the gas flow rate, the plasma jets and the power supply frequency.展开更多
We present a systematic investigation of the impact of changing the geometry structure of the SPC/E water model by performing a series of molecular dynamic simulations at 1 bar (1 bar = 105 Pa) and 298.15 K. The geo...We present a systematic investigation of the impact of changing the geometry structure of the SPC/E water model by performing a series of molecular dynamic simulations at 1 bar (1 bar = 105 Pa) and 298.15 K. The geometric modification includes altering the H-O-H angle range from 90° to 115° and modifying the O-H length range from 0.90 A to 1.10 A in the SPC/E model. The former is achieved by keeping the dipole moment constant by modifying the O-H length, while in the latter only the O-H length is changed. With the larger bond length and angle, we find that the liquid shows a strong quadrupole interaction and high tetrahedral structure order parameter, resulting in the enhancement of the network structure of the liquid. When the bond length or angle is reduced, the hydrogen bond lifetime and self-diffusion constant decrease due to the weakening of the intermolecular interaction. We find that modifying the water molecular bond length leading to the variation of the intermolecular interaction strength is more intensive than changing the bond angle. Through calculating the average reduced density gradient and thermal fluctuation index, it is found that the scope of vdW interaction with neighbouring water molecules is inversely proportional to the change of the bond length and angle. The effect is mainly due to a significant change of the hydrogen bond network. To study the effect of water models as a solvent whose geometry has been modified, the solutions of ions in different solvent environments are examined by introducing NaCI. During the dissolving process, NaCI ions are ideally dissolved in SPC/E water and bond with natural water more easily than with other solvent models.展开更多
文摘BACKGROUND Complement-mediated thrombotic microangiopathy(TMA)is a rare endothelial injury syndrome caused by dysregulated activation of the alternative complement pathway,often linked to genetic abnormalities in complement factor H(CFH),complement factor I,or complement factor H-related(CFHR)proteins.Both renal transplantation and pregnancy are independent triggers for recurrence.This case highlights a genetically high-risk patient who achieved a successful term pregnancy after renal transplantation without complement inhibition,emphasizing individualized risk stratification,close surveillance,and multidisciplinary management for favourable maternal and graft outcomes.CASE SUMMARY A 32-year-old woman with end-stage renal disease secondary to genetically confirmed complement-mediated TMA—homozygous CFH exon 17 deletion and CFHR3-CFHR1 duplication—was maintained on dialysis for 2.5 years before undergoing a successful live-donor kidney transplant from her mother.Post-transplant immunosuppression included tacrolimus,mycophenolate mofetil,and prednisolone,later modified to azathioprine during pregnancy planning.One-year post-transplant,she conceived spontaneously.Pregnancy was complicated by transient gestational hypertension,controlled with nifedipine,labetalol,and amlodipine.Proteinuria remained<150 mg/day;white blood cell counts 5.8-7.2×109/L without cytopenia.Serum creatinine ranged 0.9-1.1 mg/dL,and tacrolimus trough levels 5-7 ng/mL.At 36 weeks,she delivered a healthy 3 kg infant by elective caesarean section.Postpartum follow-up at three months confirmed stable maternal and graft function.CONCLUSION High-risk complement-mediated TMA patients can achieve successful pregnancy post-transplant through individualized care without mandatory complement blockade.
基金support provided by the National Natural Science Foundation of China(No.52174357)Fundamental Research Funds for the Central Universities(No.DUT21LAB132)The Basic and Applied Basic Research Major Programme of Guangdong Province,China(No.2021B0301030003)。
文摘This study investigates the impact of Zn alloying on the dispersion of the reinforcing particle in Mg_(2)Sn/Mg composites.In the composite,Zn manifests in three distinct forms:Zn segregation layer between Mg–Mg_(2)Sn,the solid solution and the MgZn_(2)phase.First-principles calculations confirm that the formation of Zn segregation layer decreases the interfacial energy of the Mg–Mg_(2)Sn.Importantly,this segregation layer significantly enhances the comigration capability of Mg_(2)Sn particles with Mg matrix during sintering flow,effectively hindering the agglomeration and coarsening of the nano-sized reinforcing phase.The dense and uniformly distributed nano-sized Mg_(2)Sn significantly increases the activity of non-basal slip,ensuring good elongation of the composite while enhancing strength.It can be concluded that enhancing the comigration-ability of reinforcing particles with the matrix is an effective strategy for achieving controlled dispersion of high-volume reinforcing particles and an excellent combination of strength and ductility in magnesium matrix composites.
基金supported by the Shanghai Municipal Health Commission Funds(No.20214Y0026).
文摘The purpose of this study was to evaluate the clinical application of a rotating pod and assess its dosimetric considerations,positional accuracy,and anatomical structure stability.A pre-dosimetric study conducted on 11 patients revealed the potential for lung dose reduction using the rotational pod.Subsequently,seven patients underwent treatment with the rotational pod,and the target coverage and organs at risk doses were compared with those of conventional methods.The positional accuracy of the rotational pod,in collaboration with the imaging guidance system,was analyzed.The Dice similarity coefficient(DSC)was used to assess the settlement of tumors,trachea,and thoracic vertebrae after rotation for 20 min.In the pre-dosimetric study,there was no statistically significant difference in the volume of the internal gross tumor volume receiving≥99%of the prescription dose between the pod and conventional couch plans.However,compared to conventional couch plans,pod plans demonstrated a significant reduction in the average lung dose by 5-53%(p<0.01).Patient accrual,comprising seven cases,revealed reduced lung doses(9-26%)in four patients.For the other three patients,although there was no significant reduction in the lung dose,the use of the 90°beamline contributed to a decrease in the patient admission waiting time.The positional errors between the beams for lateral,longitudinal,vertical,ISO,pitch,and roll directions were 0.0 mm±5.3 mm,-1.2 mm±2.3 mm,-1.1 mm±2.7 mm,0.0°±0.6°,-0.1°±0.5°,and 0.0°±0.8°,respectively.The DSC for the target region and thoracic vertebrae between CT images captured before and after a 20-min rotation was higher than 0.85,whereas the DSC for the trachea was approximately 0.8.The preliminary clinical application of the rotational pod for lung tumors in fixed ion beamlines shows promise for achieving target coverage,reducing lung dose,and maintaining position accuracy.
文摘The associations of volatile organic compounds(VOCs)exposure with short sleep duration(SSD)have rarely been studied.We aimed to evaluate the correlation between VOC exposure and SSD risk,while also exploring the potential mediating influence of depressive symptoms.Blood concentrations of seven VOCs,namely benzene,toluene,ethylbenzene,m-/p-xylene,o-xylene,styrene(collectively known as BTEXS),and 1,4-dichlorobenzene,were analyzed in 2905 U.S.adults.Weighted logistic regression,quantile-based g-computation(QGC),and weighted quantile sum(WQS)regression were employed to investigate associations between selected VOCs and SSD risk.Mediation analyses were conducted to explore the potential mediating effects of depressive symptoms on these relationships.Increased blood levels of BTEXS were positively correlated with SSD risk,with odds ratios(OR)ranging from 1.130 to 1.212(all P<0.05).A nonlinear association between toluene concentration and SSD risk was observed(P for nonlinearity=0.028).Both QGC and WQS analyses indicated a positive association between co-exposure to VOCs and SSD,with styrene showing the highest positive weights(QGC:OR=1.313,95%confidence interval(CI):1.038–1.660;WQS:OR=1.386,95%CI:1.111–1.731).Furthermore,BTEXS exposure was positively linked to depressive symptoms,which in turn were significantly associated with SSD risk.Mediation analyses revealed that depressive symptoms partially mediated the relationships between individual and mixed VOCs and SSD risk,with mediation proportions ranging from 15.87%to 20.54%(all P<0.05).These findings indicated that exposure to VOCs increased SSD risk,with depressive symptoms playing a partial mediating role.
基金partially supported by the National Key Research and Development Program of China(Nos.2016YFA0401904 and 2017YFA0701001)the State Key Laboratory of Nuclear Physics and Technology,Peking University(Nos.NPT2022ZZ01).
文摘Low dark current photocathode guns are highly desired for high-brightness continuous-wave operations.Direct-current superconducting radio-frequency(DC-SRF)gun,a hybrid photocathode gun combining a DC gap and an SRF cavity,effectively isolates the photocathode from the SRF cavity and offers significant advantages in terms of minimizing dark current levels.This paper presents an in-depth analysis of the dark current of a newly developed high-brightness DC-SRF photocathode gun(DC-SRF-Ⅱ gun).Particularly,a systematic experimental investigation of the dark current was conducted,and a comprehensive understanding of its formation was achieved through compliant simulations and measurements.Additionally,measures for attaining sub-nanoampere dark currents in the DC-SRF-Ⅱ gun are presented,including design considerations,cavity processing,assembly,and conditioning.The findings of this study establish a strong foundation for achieving high-performance operation of the DC-SRF-Ⅱ gun and provide a valuable reference for other photocathode guns.
基金supported by the National Natural Science Foundation of China(Grant Nos.12304220,12174157,12074150,and 12374174)the Natural Science Foundation of Jiangsu Province(Grant No.BK20230518)+2 种基金the China Postdoctoral Science Foundation(Grant No.2023M731383)the College Student Innovation Project(Grant No.202410299946X)the Scientific Research Project of Jiangsu University(Grant No.22A397).
文摘Designing novel two-dimensional structures and precisely modulating their second harmonic generation(SHG)attributes are key to advancing nonlinear photonic technologies.In this work,through first-principles calculations,we propose a novel tetrahedral phase of transition metal dichalcogenides(TMDs)and validate its structural feasibility in a family of compounds,i.e.,ZX_(2)(Z=Ti,Zr,Hf;X=S,Se,Te).Cohesive energy and phonon dispersion calculations further demonstrate that eight of nine possible ZX_(2)monolayers are dynamically stable.All the ZX_(2)monolayers exhibit pronounced out-of-plane SHG with nonlinear susceptibility components reaching the order of 10^(2)pm/V.Strain engineering imposes a profound influence on the SHG response of ZX_(2)monolayers by reducing symmetry and modifying nonlinear susceptibility components.The redshift and significant enhancement of the prominent peak in SHG spectra are also revealed due to strain-induced charge redistribution and band gap reduction.Intriguingly,strain-driven nonlinear optical switching effects are realized in the ZX_(2)monolayers,with a reversible switching of SHG component ordering under tensile and compressive strain.In such a case,the anisotropic SHG pattern transforms from fourfold to twofold symmetry under the strain.Our work demonstrates the efficacy of strain engineering in precisely enhancing SHG,paving the way for the integration of novel TMD structures into tunable and flexible nonlinear optical devices.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1602500)the National Natural Science Foundation of China(Grant Nos.11934004,12064040,and 11974358)Strategic Key Research Program of the Chinese Academy of Sciences(Grant No.XDB34020000).
文摘We study the fragmentation of NO^(q+)(q=2,3)molecular ions produced by collisions between 96 keV O^(6+)ions and neutral nitric oxide(NO)molecules,using the cold target recoil ion momentum spectrometer(COLTRIMS).The kinetic energy release(KER)for various dissociation channels is obtained.For the channel NO^(2+)→N^(+)+O^(+),double-electron capture followed by autoionization of the projectile ions is the dominant process,which can be explained by the recapture of loosely bound electrons into highly excited states of the target.For NO3+trication,two dissociation channels,i.e.,(a)N^(+)+O^(2+)and(b)N^(2+)+O^(+),are observed,where channel(b)is the dominant channel.Moreover,for dissociation channels originating from the same parent molecular ion,the dissociation channel with a higher charge for the oxygen ion fragment exhibits a higher most probable KER,which is consistent with studies of CO fragmentation by Rajput et al.Additionally,it is observed that as capture stability increases,the average KER shifts to higher values.
基金funded by the National Natural Science Foundation of China(no.12275329,Nan Ding,and no.12175289,Jufang Wang)the West Light Foundation of The Chinese Academy of Sciences(xbzglzb2022003,Nan Ding)+2 种基金the Science and Technology Research Project of Gansu Province(no.145RTSA012,Jufang Wang,and no.21JR7RA108,Nan Ding)the Gansu Provincial Science Fund for Distinguished Young Scholars(no.22JR5RA942,Wei Wang)the CuiYing Science and Technology Innovation Program of the Second Hospital of Lanzhou University(CY2023-MS-A03,Wei Wang).
文摘Circadian rhythm is a self-sustaining endogenous oscillation that serves as an internal timekeeping mechanism adapted to the Earth’s 24-h rotational schedule.It exists ubiquitously in nearly all organisms,from prokaryotes to mammals,and regulates diverse physiological and behavioral processes by synchronizing them with environmental fluctuations[1].Previous reports indicated that circadian rhythms exist in biological individuals and cells cultured in vitro[2].The mammalian circadian rhythm system consists of a central pacemaker located in the suprachiasmatic nucleus(SCN)of the hypothalamus,which coordinates peripheral rhythms through the sympathetic and parasympathetic nervous systems[3].This hierarchical mechanism uses neural populations as optimal models for circadian rhythm research.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1602500)the National Natural Science Foundation of China(Grant No.11974358)。
文摘State-selective single-and double-electron capture processes in collisions of S^(5+)ions with helium at energies ranging from 50.8 keV to 100 keV were investigated using cold target recoil ion momentum spectroscopy(COLTRIMS).Q-value spectra and projectile scattering angle distributions were obtained.For single-electron capture,single electron capture into n=3 states of the projectile ion is dominant.As the projectile energy increases,the contribution of single electron capture into n=4 states is observed.Experimental relative cross-sections for single-electron capture into different projectile final states were compared with theoretical predictions based on the molecular orbital close-coupling(MOCC)method.In double-electron capture,two-electron populating into the 3s^(2)3p and 3s3p^(2)states of projectile dominates.The reaction window calculated from the classical molecular Coulombic barrier model can qualitatively explain the experimental results.The scattering angle distribution of the multi-peak structure of the double-electron capture process is observed.The database is openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00233.
基金partially supported by MICIU MCIN/AEI/10.13039/501100011033Spain with grant PID2020-118265GB-C42,-C44,PRTR-C17.I01+1 种基金Generalitat Valenciana,Spain with grant CIPROM/2022/54,ASFAE/2022/031,CIAPOS/2021/114the EU NextGenerationEU,ESF funds,and the National Science Centre (NCN),Poland (grant No.2020/39/D/ST2/00466)
文摘Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have been used for pile-up rejection,both digital and analogue,but some pile-up events may contain pulses of interest and need to be reconstructed.The paper proposes a new method for reconstructing pile-up events acquired with a neutron detector array(NEDA)using an one-dimensional convolutional autoencoder(1D-CAE).The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA.The new pile-up signal reconstruction method is evaluated from the point of view of how similar the reconstructed signals are to the original ones.Furthermore,it is analysed considering the result of the neutron-gamma discrimination based on charge comparison,comparing the result obtained from original and reconstructed signals.
基金the support from the National Natural Science Foundation of China (Grant Nos. 12074081 and 12104095)。
文摘Atomic radiative data such as excitation energies, transition wavelengths, radiative rates, and level lifetimes with high precision are the essential parameters for the abundance analysis, simulation, and diagnostics in fusion and astrophysical plasmas. In this work, we mainly focus on reviewing our two projects performed in the past decade. One is about the ions with Z■30 that are generally of astrophysical interest, and the other one is about the highly charged krypton(Z = 36)and tungsten(Z = 74) ions that are relevant in research of magnetic confinement fusion. Two different and independent methods, namely, multiconfiguration Dirac–Hartree–Fock(MCDHF) and the relativistic many-body perturbation theory(RMBPT) are usually used in our studies. As a complement/extension to our previous works for highly charged tungsten ions with open M-shell and open N-shell, we also mainly focus on presenting and discussing our complete RMBPT and MCDHF calculations for the excitation energies, wavelengths, electric dipole(E1), magnetic dipole(M1), electric quadrupole(E2), and magnetic quadrupole(M2) transition properties, and level lifetimes for the lowest 148 levels belonging to the 3l3configurations in Al-like W61+. We also summarize the uncertainties of our systematical theoretical calculations, by cross-checking/validating our datasets from our RMBPT and MCDHF calculations, and by detailed comparisons with available accurate observations and other theoretical calculations. The data are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.10569.
基金supported by the National Natural Science Foundation of China(No.82170326 and No.82470328 to Y.D.,No.82100339 to Q.D.).
文摘Atrial fibrillation(AF)is a prevalent cardiac arrhythmia with a multifactorial pathophysiology involving electrical,structural,and autonomic remodeling of the atria.AF is closely associated with elevated interleukin-6(IL-6)levels,which contribute to atrial remodeling and the progression of AF.This review summarizes the mechanisms by which IL-6 promotes AF through inflammatory pathways,atrial fibrosis,electrical remodeling,and calcium mishandling.Experimental models have demonstrated that IL-6 neutralization reduces the incidence of AF,highlighting its potential as a therapeutic target.Future studies should focus on IL-6 blockade strategies to manage AF,aiming to improve patient outcomes.
基金supported by the National Natural Science Foundation of China(Nos.12175072 and 12311540139).
文摘Within the framework of the dinuclear system(DNS)model by implementing the cluster transfer into the dissipation process,we systematically investigated the energy spectra and the angular distribution of the pre-equilibrium clusters(n,p,d,t,^(3)He,α,6,^(7)Li,^(8,9)Be)in the massive transfer reactions of^(12C)+^(209)Bi,^(14)N+^(159)Tb,^(14)N+^(169)Tm,^(14)N+^(181)Ta,^(14)N+^(197)Au,^(14)N+^(209)Bi,58,64,^(72)Ni+^(198)Pt near the Coulomb barrier energies.It was found that the neutron emission is the most probable in comparison with the charged particles,and theαyields are comparable to the hydrogen isotopes in magnitude.Prequilibrium clusters are mainly produced from projectile-like and target-like fragments during the evolution of the dinuclear system.The kinetic energy spectra manifest a Boltzmann distribution,and the Coulomb potential influences the structure.The pre-equilibrium clusters follow the angular distribution of the multinucleon transfer fragments.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10425521, 10075002, and 10135030, the Major State Basic Research Development Programme under Grant No G2000077400, and Doctoral Program Foundation of the Ministry of Education of China under Grant No 20040001010, the Foundation for University Key Teacher by the Ministry of Education of China.
文摘By taking the BUU model, we simulate the superheavy element synthesis reaction. With the rotation effect being included in the BUU model, the effect of the non-centrality of the reaction ^48Ca+^238U→^286 112 is studied. It is shown that the promising impact parameter in the synthesis process can be released from zero to a value little smaller than the radius of the smaller nucleus involved in the reaction. Meanwhile, the compound nucleus may involve rich shape phases.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10574029 and No 10434050, the Chinese Association of Atomic and Molecular Data and National High-Tech ICF Committee in China.
文摘The ab initio calculations of electron-impact resonant excitation rate coefficients from the ground level to 54 fine-structure levels of 3d94l (1 = s, p, d, f) configurations of Ni-like tantalum ion are performed by using a fully relativistic distorted-wave approximation. The configuration-interaction effects are taken into account. The decays to autoionizing levels possibly followed by autoionization cascades are also included in the calculation. The contributions from doubly-excited intermediate states of Cu-like 31^17n′l′n′l″ (n′ = 4, 5; n″ = 5 - 15) are calculated explicitly, and the contributions from high Rydberg states (n″〉 15) are taken into account by using n-3 scaling law. The present results should be more accurate than the existent calculations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12035019 and 62234013)the National Key Research and Development Program of China(Grant Nos. 2023YFA1609000 and 2022YFB3604001)。
文摘We investigate the impact of high-energy O ions on the occurrence of single-event burnout(SEB) in silicon carbide(Si C) metal–oxide–semiconductor field-effect transistors(MOSFETs) under various bias conditions. Through a combination of SRIM, GEANT4, and TCAD simulations, we explore the role of secondary ions generated by nuclear reactions between high-energy O ions and Si C materials. These secondary ions, with significantly higher linear energy transfer(LET) values, contribute to electron–hole pair generation, leading to SEB. Our results show that the energy deposition and penetration depth of these secondary ions, especially those with high LET, are sufficient to induce catastrophic SEB in Si C MOSFETs. The study also highlights the critical influence of reverse bias voltage on SEB occurrence and provides insights into the failure mechanisms induced by nuclear reactions with high-energy O ions. This work offers valuable understanding for improving the radiation resistance of Si C-based power devices used in space and high-radiation environments,contributing to the design of more reliable electronics for future space missions.
基金the Dalian Coherent Light Source (DCLS) for support and assistancesurported by the National Natural Science Foundation of China (No.22288201)+1 种基金the Chinese Academy of Sciences (GJJSTD20220001)the Innovation Program for Quantum Science and Technology (No.2021ZD0303305)。
文摘We present a comprehensive investigation of the vibrational spectra and conformational distribution of neutral and cationic monoethanolamine(MEA)in the gas phase.Using infrared-vacuum ultraviolet non-resonant ionization fragmentation detected IR spectroscopy(NRIFD-IR),we obtained vibrational spectra in the 2500-3800 cm^(−1)range for both neutral and cationic MEA.Density functional theory(DFT)calculations at the B3LYPD3(BJ)/def2-TZVPP level were employed to elucidate the molecular structures and vibrational modes.Our analysis revealed twelve distinct conformers for neutral MEA,with N1gʹGgʹbeing the most stable,while cationic MEA exhibited four conformers,among which C1gʹGt conformer was found to be the primary contributor to the observed spectra.The experimental spectra were interpreted through comparison with anharmonic calculations,allowing for detailed assignment of vibrational modes.Notably,we observed significant differences in the OH stretch region between neutral and cationic species,reflecting changes in intramolecular hydrogen bonding upon ionization.Furthermore,our study highlights the necessity for distinct scaling factors when calculating harmonic frequencies for neutral and cationic substances.
基金supported by the National Key Research and Development Project,China(No.2023YFA1606404)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34010300)+5 种基金the National Natural Science Foundation of China(Nos.12022501,12105329,12475127)the Guangdong Major Project of Basic and Applied Basic Research(No.2021B0301030006)the Research Program of Heavy Ion Science and Technology Key Laboratory,Institute of Modern Physics,Chinese Academy of Sciences(Nos.HIST2024KS04,HIST2024CO04)Longyuan Youth Innovation and Entrepreneurship Talent Project of Gansu Province(No.2024GZT04)State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2023KFY01)the Major Science and Technology Projects in Gansu Province(No.24GD13GA005)。
文摘A state-of-the-art detector array with a digital data acquisition system has been developed for charged-particle decay studies,includingβ-delayed protons,αdecay,and direct proton emissions from exotic proton-rich nuclei.The digital data acquisition system enables precise synchronization and processing of complex signals from various detectors,such as plastic scintillators,silicon detectors,and germaniumγdetectors.The system's performance was evaluated using theβdecay of^(32)Ar and its neighboring nuclei,produced via projectile fragmentation at the first Radioactive Ion Beam Line in Lanzhou(RIBLL1).Key measurements,including the half-life,charged-particle spectrum,andγ-ray spectrum,were obtained and compared with previous results for validation.Using the implantation–decay method,the isotopes of interest were implanted into two doublesided silicon strip detectors,where their subsequent decays were measured and correlated with preceding implantations using both position and time information.This detection system has potential for further applications,including the study ofβ-delayed charged-particle decay and direct proton emissions from even more exotic proton-rich nuclei.
基金supported by National Natural Science Foundation of China (Nos.50537020,50528707)
文摘This paper presents the interactions between two cold atmospheric plasma jets. By changing the experimental conditions including the gas flow rate, the applied voltage, the power supply frequency and the inter-electrode distance d, three different interaction modes, attraction, repulsion and combination, were observed. It is shown that the interaction modes of the two jets are principally affected by the electrodes, the gas flow rate, the plasma jets and the power supply frequency.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11635003,11025524,and 11161130520)the National Basic Research Program of China(Grant No.2010CB832903)the European Commission’s 7th Framework Programme(Fp7-PEOPLE-2010-IRSES)(Grant Agreement Project No.269131)
文摘We present a systematic investigation of the impact of changing the geometry structure of the SPC/E water model by performing a series of molecular dynamic simulations at 1 bar (1 bar = 105 Pa) and 298.15 K. The geometric modification includes altering the H-O-H angle range from 90° to 115° and modifying the O-H length range from 0.90 A to 1.10 A in the SPC/E model. The former is achieved by keeping the dipole moment constant by modifying the O-H length, while in the latter only the O-H length is changed. With the larger bond length and angle, we find that the liquid shows a strong quadrupole interaction and high tetrahedral structure order parameter, resulting in the enhancement of the network structure of the liquid. When the bond length or angle is reduced, the hydrogen bond lifetime and self-diffusion constant decrease due to the weakening of the intermolecular interaction. We find that modifying the water molecular bond length leading to the variation of the intermolecular interaction strength is more intensive than changing the bond angle. Through calculating the average reduced density gradient and thermal fluctuation index, it is found that the scope of vdW interaction with neighbouring water molecules is inversely proportional to the change of the bond length and angle. The effect is mainly due to a significant change of the hydrogen bond network. To study the effect of water models as a solvent whose geometry has been modified, the solutions of ions in different solvent environments are examined by introducing NaCI. During the dissolving process, NaCI ions are ideally dissolved in SPC/E water and bond with natural water more easily than with other solvent models.