Thermal energy storage(TES)is a key technology for renewable energy utilization and the improvement of the energy efficiency of heat processes.Sectors include industrial process heat and conventional and renewable pow...Thermal energy storage(TES)is a key technology for renewable energy utilization and the improvement of the energy efficiency of heat processes.Sectors include industrial process heat and conventional and renewable power generation.TES systems correct the mismatch between supply and demand of thermal energy.In the medium to high temperature range(100~1000℃),only limited storage technology is commercially available and a strong effort is needed to develop a range of storage technologies which are efficient and economical for the very specific requirements of the different application sectors.At the DLR's Institute of Technical Thermodynamics,the complete spectrum of high temperature storage technologies,from various types of sensible over latent heat to thermochemical heat storages are being developed.Different concepts are proposed depending on the heat transfer fluid(synthetic oil,water/steam,molten salt,air)and the required temperature range.The aim is the development of cost effective,efficient and reliable thermal storage systems.Research focuses on characterization of storage materials,enhancement of internal heat transfer,design of innovative storage concepts and modelling of storage components and systems.Demonstration of the storage technology takes place from laboratory scale to field testing(5 kW^1 MW).The paper gives an overview on DLR's current developments.展开更多
This study introduces antifragility as a transformative lens for disaster risk governance,shifting emphasis from restoration to disruption-induced improvement of systems.We distill six principles for operationalizing ...This study introduces antifragility as a transformative lens for disaster risk governance,shifting emphasis from restoration to disruption-induced improvement of systems.We distill six principles for operationalizing antifragility in disaster risk reduction contexts and delineate ethical,systemic,and learning-based implications for future resilience.Together,these elements reframe disaster risk governance as dynamic,adaptive,and self-reinforcing amid compounding climate risks.展开更多
A key component of future lunar missions is the concept of in-situ resource utilization(ISRU),which involves the use of local resources to support human missions and reduce dependence on Earth-based supplies.This pape...A key component of future lunar missions is the concept of in-situ resource utilization(ISRU),which involves the use of local resources to support human missions and reduce dependence on Earth-based supplies.This paper investigates the thermal processing capability of lunar regolith without the addition of binders,with a focus on large-scale applications for the construction of lunar habitats and infrastructure.The study used a simulant of lunar regolith found on the Schr?dinger Basin in the South Pole region.This regolith simulant consists of20 wt%basalt and 80 wt%anorthosite.Experiments were conducted using a high power CO_(2)laser to sinter and melt the regolith in a 80 mm diameter laser spot to evaluate the effectiveness of direct large area thermal processing.Results indicated that sintering begins at approximately 1180℃and reaches full melt at temperatures above 1360℃.Sintering experiments with this material revealed the formation of dense samples up to 11 mm thick,while melting experiments successfully produced larger samples by overlapping molten layers and additive manufacturing up to 50 mm thick.The energy efficiency of the sintering and melting processes was compared.The melting process was about 10 times more energy efficient than sintering in terms of material consolidation,demonstrating the promising potential of laser melting technologies of anorthosite-rich regolith for the production of structural elements.展开更多
In order to increase the sustainability of future lunar missions,techniques for in-situ resource utilization(ISRU)must be developed.In this context,the local melting of lunar dust(regolith)by laser radiation for the p...In order to increase the sustainability of future lunar missions,techniques for in-situ resource utilization(ISRU)must be developed.In this context,the local melting of lunar dust(regolith)by laser radiation for the production of parts and larger structures was investigated in detail.With different experimental setups in normal and microgravity,laser spots with diameters from 5 mm to 100 mm were realized to melt the regolith simulant EAC-1A and an 80%/20%mixture of TUBS-T and TUBS-M,which are used as a substitute for the actual lunar soil.In the experiments performed,the critical parameters are the size of the laser spot,the velocity of the laser spot on the surface of the powder bed,the gravity and the wettability of the powder bed by the melt.The stability of the melt pool as a function of these parameters was investigated and it was found that the formation of a stable melt pool is determined by gravity for large melt pool sizes in the range of 50 mm and by surface tension for small melt pool sizes in the range of a few mm.展开更多
The development of magnesium batteries strongly relies on the use of a Mg metal anode and its benefits of high volumetric capacity,reduction potential,low cost and improved safety,however,to date,it still lacks suffic...The development of magnesium batteries strongly relies on the use of a Mg metal anode and its benefits of high volumetric capacity,reduction potential,low cost and improved safety,however,to date,it still lacks sufficient cycling stability and reversibility.Along with the electrolyte selection,the interfacial processes can be affected by the anode itself applying electrode engineering strategies.In this study,six different Mg anode approaches–namely bare Mg metal,Mg foil with an organic and inorganic artificial solid electrolyte interphase,Mg alloy,Mg pellet and a tape-casted Mg slurry–are selected to be investigated by means of electrochemical impedance spectroscopy in Mg|Mg and Mg|S cells.While a plating/stripping overpotential asymmetry was observed and assigned to the desolvation during Mg plating,the impedance spectra of stripping and plating hardly differ for all applied anodes.In contrast,the sulfur species significantly influence the impedance response by altering the surface layer composition.By systematic process assignment of the gained spectra in Mg|Mg and Mg|S cells,specific equivalent circuit models for different anodes and cell conditions are derived.Overall,the study aims to give valuable insights into the interfacial processes of Mg anodes to support their further development toward long-lasting Mg batteries.展开更多
Background:Due to its high relevance in sports and rehabilitation,the exploration of interventions to further optimize flexibility becomes paramount.While stretching might be the most common way to enhance range of mo...Background:Due to its high relevance in sports and rehabilitation,the exploration of interventions to further optimize flexibility becomes paramount.While stretching might be the most common way to enhance range of motion,these increases could be optimized by imposing an additional activation of the muscle,such as mechanical vibratory stimulation.While several original articles provide promising findings,contradictory results on flexibility and underlying mechanisms(e.g.,stiffness),reasonable effect size(ES)pooling remains scarce.With this work we systematically reviewed the available literature to explore the possibility of potentiating flexibility,stiffness,and passive torque adaptations by superimposing mechanical vibration stimulation.Methods:A systematic search of 4 databases(Web of Science,MEDLINE,Scopus,and Cochrane Public Library)was conducted until December2023 to identify studies comparing mechanical vibratory interventions with passive controls or the same intervention without vibration(sham)on range of motion and passive muscle stiffness in acute(immediate effects after single session)and chronic conditions(multiple sessions over a period of time).ES pooling was conducted using robust variance estimation via R to account for multiple study outcomes.Potential moderators of effects were analyzed using meta regression.Results:Overall,65 studies(acute:1162 participants,chronic:788 participants)were included.There was moderate certainty of evidence for acute flexibility(ES=0.71,p<0.001)and stiffness(ES=-0.89,p=0.006)effects of mechanical vibration treatments vs.passive controls without meaningful results against the sham condition(flexibility:ES=0.20,p<0.001;stiffness:ES=-0.19,p=0.076).Similarly,moderate certainty of evidence was found for chronic vibration effects on flexibility(control:ES=0.64,p=0.043;sham:ES=0.65,p<0.001).Lack of studies and large outcome heterogeneity prevented ES pooling for underlying mechanisms.Conclusion:Vibration improved flexibility in acute and chronic interventions compared to the stand-alone intervention,which can possibly be attributed to an accumulated mechanical stimulus through vibration.However,studies on biological mechanisms are needed to explain flexibility and stiffness effects in response to specific vibration modalities and timing.展开更多
The transformation of the energy supply needs further development of energy storage technologies in order to integrate the fluctuating renewable energy. The conversion of renewable wind power into green methane offers...The transformation of the energy supply needs further development of energy storage technologies in order to integrate the fluctuating renewable energy. The conversion of renewable wind power into green methane offers a technical approach with the necessary storage and transport capacities. Thus, the concept of Power-to-Gas which is illustrated here by the coupling of wind energy with a High Temperature Steam Electrolyser (HTSE) and a methanation unit enabling the production of green fuel like hydrogen and methane is presented is this paper. In fact, hydrogen can be used as energy carrier as well for the production of green fuels, like methane which is simpler to store and to transport and which can be thus used as storage medium for the stabilization of the electrical power supply as well as fuel for transport and heat sector. Its production using high temperature electrolysis is able to reduce the carbon dioxide emissions if performed with renewable resources. This is the case if the electricity needed for the HTSE comes from a wind turbine and the CO2 needed for the methanation step comes from biogas. For such a plant, the location and the boundary conditions have a great importance. Thus, this study considers the coupling of a HTSE with a wind turbine and a methanation reactor, and focuses about the site selection, depending of the geographical and economic considerations. The study is limited first to the European area. Schleswig-Holstein is found as a very good location for this plant. It is one of the regions with the largest wind reserves in Germany. This region has also available a lot of biogas and meets all the other necessary requirements.展开更多
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite...Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.展开更多
Background Ageing,immobilization,sepsis or cachexia reduce muscle mass and function.The age-related loss,i.e.sarcopenia,contributes to frailty and results in a loss of mobility and autonomy in aging and disease.Affect...Background Ageing,immobilization,sepsis or cachexia reduce muscle mass and function.The age-related loss,i.e.sarcopenia,contributes to frailty and results in a loss of mobility and autonomy in aging and disease.Affected individuals are often socially isolated,have a greater risk of metabolic disorders and psychosomatic problems.As a result,quality of life and life expectancy are affected.Immobilization and lack of adequate stimuli to the skeletal muscle seem to play a central part in these problems.To overcome them,resistance training(i.e.,weightlifting)is an effective intervention.Statement of the problem Despite the efficacy of resistance training for increasing muscle mass and function,this treatment is underused in clinical practice.We argue that this is due to a lack of a generally applicable methodology.Methods and framework To address this and related problems,we have formed the Network of Expertise for Immobilization-induced Muscle Disorders(KNIMS)to develop a potential algorithm for treating sarcopenia and other immobilization-related muscle disorders.An important aspect of the proposed method is that it is defined as a formal algorithm that consists of two stages.Stage A aims to recover bed-ridden patients’ability to stand by applying vibration-tilt table technology.Stage B aims at rehabilitating compromised gait,using a combination of squats,lunges and single leg raises.It is anticipated that this algorithm-based approach will enhance the ability for standardization and documentation,whilst reducing resource efforts at the same time,which will be equally useful to clinical practice and to clinical research.展开更多
The behavior of a chemical tanker(CT)in extreme waves was discussed in detail,that is,in terms of rigid body heave and pitch motions,vertical bending moments(VBMs)amidships,green water,and slamming impacts through the...The behavior of a chemical tanker(CT)in extreme waves was discussed in detail,that is,in terms of rigid body heave and pitch motions,vertical bending moments(VBMs)amidships,green water,and slamming impacts through the analysis of the experimental data from model tests.Regular wave tests conducted for two wave steepness showed that the increase in wave steepness caused the increase in the asymmetry between hogging and sagging moments and the contribution of green water on deck to the decrease in vertical wave bending moments.Random uncertainty analysis of statistical values in irregular wave tests with various seeds revealed slight experimental uncertainties on motions and VBMs and slightly higher errors in slamming pressure peaks.With the increase in forward speed,experimental uncertainty on slamming pressures at the bow increased.Breather solutions of the nonlinear Schrödinger equation applied to generate tailored extreme waves of certain critical wavelengths showed a good performance in terms of ship response,and it was further verified for the CT.展开更多
Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM t...Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM techniques(i.e.,laser powder bed fusion and laser-directed energy deposition)will be reviewed,covering the aspects of processes,materials and post-processing.The impacts of process parameters and strategies for optimizing parameters will be elucidated.Various types of Ti alloys processed by LAM,includingα-Ti,(α+β)-Ti,andβ-Ti alloys,will be overviewed in terms of micro structures and benchmarking properties.Furthermore,the post-processing methods for improving the performance of L AM-processed Ti alloys,including conventional and novel heat treatment,hot isostatic pressing,and surface processing(e.g.,ultrasonic and laser shot peening),will be systematically reviewed and discussed.The review summarizes the process windows,properties,and performance envelopes and benchmarks the research achievements in LAM of Ti alloys.The outlooks of further trends in LAM of Ti alloys are also highlighted at the end of the review.This comprehensive review could serve as a valuable resource for researchers and practitioners,promoting further advancements in LAM-built Ti alloys and their applications.展开更多
Objectives Understanding differences between real-world walking speed(RWS)and laboratory-measured walking speed(LWS)is crucial for comprehensive mobility assessments,especially in context of prolonged immobilization.T...Objectives Understanding differences between real-world walking speed(RWS)and laboratory-measured walking speed(LWS)is crucial for comprehensive mobility assessments,especially in context of prolonged immobilization.This study aimed to investigate disparities in walking speed following a 60-day bed-rest period.Methods In 11 male participants,RWS was continuously monitored using a tri-axial accelerometer worn on the waist,while LWS was assessed via a 10-m walk test at preferred speed,on three different study days after immobilization.Statistical analyses included Bland–Altman and Pearson’s correlation to evaluate agreement between RWS and LWS,alongside paired-sample t-tests and univariate linear regression models to assess significance of differences and temporal effects on gait speed.Results Results of Bland-Altman analysis showed no agreement between RWS and LWS(mean difference 0.77 m/s)and nonsignificant correlation(r=0.19,p-value=0.3).Paired-sample t-tests indicated significantly lower RWS compared to LWS for all study days(p-value<0.001).Univariate linear regression models demonstrated a significant effect of test day on RWS(p-value<0.001)but not on LWS(p-value=0.23).Conclusions These findings emphasize the importance of integrating both assessments to capture comprehensive mobility changes following prolonged periods of inactivity.Particularly significant is that RWS is constantly lower than LWS,with the former being more representative as it reflects what normally participants would do when not under observation.Lastly,understanding discrepancies between RWS and LWS would allow for more appropriate rehabilitation programs to speed up recovery while simultaneously keeping the rehabilitation safe and tailored.展开更多
Objectives Assessing physical activity and cardiometabolic risk in masters athletes as an example of very high physical activity at old age.Methods Forty-three men were studied in full factorial design,either as sprin...Objectives Assessing physical activity and cardiometabolic risk in masters athletes as an example of very high physical activity at old age.Methods Forty-three men were studied in full factorial design,either as sprint or jump-trained masters athletes(MA,n=10,age 60–75 years),as young sprint or jump-trained athletes(YA,n=10,age 20–35 years),older control participants(OC,n=11,age 60–75 years)or as young control participants(AC,n=12,age 20–35 years).We performed bio-electrical impedance analysis and assessed serum markers of lipids and glucose metabolism and C-reactive protein,structured training hours,and habitual activity via mobile actimetry.Results Body fat was greater in OC than in MA(23.9[SD 4.2]%vs.14.0[SD 5.7]%,p<0.001),and also greater than in YA and YC(both p<0.001).Weekly training hours were comparable between MA and YA(7.9[SD3.3]hours vs.11.1[SD 4.8]hours,p=0.69).Habitual walking distance was greater in MA than in OC(7,387[SD 4,923]m/day vs.4,110[SD 1,772]m/day,p=0.039),and so was habitual running distance(667[SD690]m/day vs.132[427]m/day,p<0.001).HOMA-index was greater in OC than in MA(2.07[SD 1.39]vs.0.80[SD 0.41],p=0.0039),and so was C-reactive protein(1.35[SD 1.74]mg/l vs.0.58[SD 0.27]mg/ml,p=0.018),whereas serum lipids showed only moderate or no effect(all p between 0.036 and 0.07).Conclusions Improved body composition and physical activity levels in MA are associated with lower cardiometabolic risk,which seems more pronounced for insulin sensitivity and inflammaging than for lipid metabolism.展开更多
Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-c...Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-cost electricity with abundant but intermittent solar energy.In order to significantly reduce the levelized cost of electricity(LCOE)of the present commercial CSP plants,the next generation CSP technology with higher process temperature and energy efficiency is being developed.The TES system in the next generation CSP plants works with new TES materials at higher temperatures(>565℃)compared to that with the commercial nitrate salt mixtures.This paper reviews recent progressin research and development of the next generation CSP and TES technology.Emphasis is given on theadvanced'TES technology based on molten chloride salt mixtures such as MgCl_(2)/NaCl/KCl which hassimilar thermo-physical properties as the commercial nitrate salt mixtures,higher thermal stability(>800℃),and lower costs(<0.35USD·kg^(-1)).Recent progress in the selection/optimization of chloridesalts,determination of molten chloride salt properties,and corrosion control of construction materials(eg.,alloys)in molten chlorides is reviewed.展开更多
Robustness of transportation networks is one of the major challenges of the 21 st century.This paper investigates the resilience of global air transportation from a complex network point of view,with focus on attackin...Robustness of transportation networks is one of the major challenges of the 21 st century.This paper investigates the resilience of global air transportation from a complex network point of view,with focus on attacking strategies in the airport network,i.e.,to remove airports from the system and see what could affect the air traffic system from a passenger's perspective.Specifically,we identify commonalities and differences between several robustness measures and attacking strategies,proposing a novel notion of functional robustness:unaffected passengers with rerouting.We apply twelve attacking strategies to the worldwide airport network with three weights,and evaluate three robustness measures.We find that degree and Bonacich based attacks harm passenger weighted network most.Our evaluation is geared toward a unified view on air transportation network attack and serves as a foundation on how to develop effective mitigation strategies.展开更多
The analysis centers of the Multi-GNSS Pilot Project of the International GNSS Service provide orbit and clock products for the global navigation satellite systems(GNSSs)Global Positioning System(GPS),GLONASS,Galileo,...The analysis centers of the Multi-GNSS Pilot Project of the International GNSS Service provide orbit and clock products for the global navigation satellite systems(GNSSs)Global Positioning System(GPS),GLONASS,Galileo,and BeiDou,as well as for the Japanese regional Quasi-Zenith Satellite System(QZSS).Due to improved solar radiation pressure modeling and other more sophisticated models,the consistency of these products has improved in recent years.The current orbit consistency between different analysis centers is on the level of a few centimeters for GPS,around one decimeter for GLONASS and Galileo,a few decimeters for BeiDou-2,and several decimeters for QZSS.The clock consistency is about 2 cm for GPS,5 cm for GLONASS and Galileo,and 10 cm for BeiDou-2.In terms of carrier phase modeling error for precise point positioning,the various products exhibit consistencies of 2–3 cm for GPS,6–14 cm for GLONASS,3–10 cm for Galileo,and 10–17 cm for BeiDou-2.展开更多
Current global urbanisation processes are leading to new forms of massive urban constellations. The conceptualisations and classifications of these, however, are often ambiguous, overlap or lag behind in scientific li...Current global urbanisation processes are leading to new forms of massive urban constellations. The conceptualisations and classifications of these, however, are often ambiguous, overlap or lag behind in scientific literature. This article examines whether there is a common denominator to define and delimitate–and ultimately map–these new dimensions of cityscapes. In an extensive literature review we analysed and juxtaposed some of the most common concepts such as megacity, megaregion or megalopolis. We observed that many concepts are abstract or unspecific, and for those concepts for which physical parameters exist, the parameters are neither properly defined nor used in standardised ways. While understandably concepts originate from various disciplines, the authors identify a need for more precise definition and use of parameters. We conclude that often, spatial patterns of large urban areas resemble each other considerably but the definitions vary so widely that these differences may surpass any inconsistencies in the spatial delimitation process. In other words, today we have tools such as earth observation data and Geographic Information Systems to parameterise if clear definitions are provided. This appears not to be the case. The limiting factor when delineating large urban areas seems to be a commonly agreed ontology.展开更多
基金funded through the basic DLR funding of the Helmholtz AssociationSpecific support for several projects was given by the German Federal Ministry of Economics and Technology and the German Federal Ministry for the Environment,Nature Conservation and Nuclear SafetyThe CellFlux project is funded by E.ON AG as part of the International Research Initiative.Responsibility for the content of this publication lieswith the authors
文摘Thermal energy storage(TES)is a key technology for renewable energy utilization and the improvement of the energy efficiency of heat processes.Sectors include industrial process heat and conventional and renewable power generation.TES systems correct the mismatch between supply and demand of thermal energy.In the medium to high temperature range(100~1000℃),only limited storage technology is commercially available and a strong effort is needed to develop a range of storage technologies which are efficient and economical for the very specific requirements of the different application sectors.At the DLR's Institute of Technical Thermodynamics,the complete spectrum of high temperature storage technologies,from various types of sensible over latent heat to thermochemical heat storages are being developed.Different concepts are proposed depending on the heat transfer fluid(synthetic oil,water/steam,molten salt,air)and the required temperature range.The aim is the development of cost effective,efficient and reliable thermal storage systems.Research focuses on characterization of storage materials,enhancement of internal heat transfer,design of innovative storage concepts and modelling of storage components and systems.Demonstration of the storage technology takes place from laboratory scale to field testing(5 kW^1 MW).The paper gives an overview on DLR's current developments.
文摘This study introduces antifragility as a transformative lens for disaster risk governance,shifting emphasis from restoration to disruption-induced improvement of systems.We distill six principles for operationalizing antifragility in disaster risk reduction contexts and delineate ethical,systemic,and learning-based implications for future resilience.Together,these elements reframe disaster risk governance as dynamic,adaptive,and self-reinforcing amid compounding climate risks.
文摘A key component of future lunar missions is the concept of in-situ resource utilization(ISRU),which involves the use of local resources to support human missions and reduce dependence on Earth-based supplies.This paper investigates the thermal processing capability of lunar regolith without the addition of binders,with a focus on large-scale applications for the construction of lunar habitats and infrastructure.The study used a simulant of lunar regolith found on the Schr?dinger Basin in the South Pole region.This regolith simulant consists of20 wt%basalt and 80 wt%anorthosite.Experiments were conducted using a high power CO_(2)laser to sinter and melt the regolith in a 80 mm diameter laser spot to evaluate the effectiveness of direct large area thermal processing.Results indicated that sintering begins at approximately 1180℃and reaches full melt at temperatures above 1360℃.Sintering experiments with this material revealed the formation of dense samples up to 11 mm thick,while melting experiments successfully produced larger samples by overlapping molten layers and additive manufacturing up to 50 mm thick.The energy efficiency of the sintering and melting processes was compared.The melting process was about 10 times more energy efficient than sintering in terms of material consolidation,demonstrating the promising potential of laser melting technologies of anorthosite-rich regolith for the production of structural elements.
基金supported by 40th DLR Parabolic Flight Campaign and within the project"Powder based Additive Manufacturing at reduced Gravitation"(Grant No.FKZ:50WM2068)European Space Agency,OSIP Off-Earth Manufacturing and Construction Campaign(Grant No.4000134280/21/NL/GLC/mk)。
文摘In order to increase the sustainability of future lunar missions,techniques for in-situ resource utilization(ISRU)must be developed.In this context,the local melting of lunar dust(regolith)by laser radiation for the production of parts and larger structures was investigated in detail.With different experimental setups in normal and microgravity,laser spots with diameters from 5 mm to 100 mm were realized to melt the regolith simulant EAC-1A and an 80%/20%mixture of TUBS-T and TUBS-M,which are used as a substitute for the actual lunar soil.In the experiments performed,the critical parameters are the size of the laser spot,the velocity of the laser spot on the surface of the powder bed,the gravity and the wettability of the powder bed by the melt.The stability of the melt pool as a function of these parameters was investigated and it was found that the formation of a stable melt pool is determined by gravity for large melt pool sizes in the range of 50 mm and by surface tension for small melt pool sizes in the range of a few mm.
基金financially supported by the Federal Ministry for Education and Research of Germany(Bundesminis-terium für Bildung und Forschung,BMBF)and the European Commission within the projects“MagSiMal”(03XP0208)“E-MAGIC”(824066),respectively。
文摘The development of magnesium batteries strongly relies on the use of a Mg metal anode and its benefits of high volumetric capacity,reduction potential,low cost and improved safety,however,to date,it still lacks sufficient cycling stability and reversibility.Along with the electrolyte selection,the interfacial processes can be affected by the anode itself applying electrode engineering strategies.In this study,six different Mg anode approaches–namely bare Mg metal,Mg foil with an organic and inorganic artificial solid electrolyte interphase,Mg alloy,Mg pellet and a tape-casted Mg slurry–are selected to be investigated by means of electrochemical impedance spectroscopy in Mg|Mg and Mg|S cells.While a plating/stripping overpotential asymmetry was observed and assigned to the desolvation during Mg plating,the impedance spectra of stripping and plating hardly differ for all applied anodes.In contrast,the sulfur species significantly influence the impedance response by altering the surface layer composition.By systematic process assignment of the gained spectra in Mg|Mg and Mg|S cells,specific equivalent circuit models for different anodes and cell conditions are derived.Overall,the study aims to give valuable insights into the interfacial processes of Mg anodes to support their further development toward long-lasting Mg batteries.
文摘Background:Due to its high relevance in sports and rehabilitation,the exploration of interventions to further optimize flexibility becomes paramount.While stretching might be the most common way to enhance range of motion,these increases could be optimized by imposing an additional activation of the muscle,such as mechanical vibratory stimulation.While several original articles provide promising findings,contradictory results on flexibility and underlying mechanisms(e.g.,stiffness),reasonable effect size(ES)pooling remains scarce.With this work we systematically reviewed the available literature to explore the possibility of potentiating flexibility,stiffness,and passive torque adaptations by superimposing mechanical vibration stimulation.Methods:A systematic search of 4 databases(Web of Science,MEDLINE,Scopus,and Cochrane Public Library)was conducted until December2023 to identify studies comparing mechanical vibratory interventions with passive controls or the same intervention without vibration(sham)on range of motion and passive muscle stiffness in acute(immediate effects after single session)and chronic conditions(multiple sessions over a period of time).ES pooling was conducted using robust variance estimation via R to account for multiple study outcomes.Potential moderators of effects were analyzed using meta regression.Results:Overall,65 studies(acute:1162 participants,chronic:788 participants)were included.There was moderate certainty of evidence for acute flexibility(ES=0.71,p<0.001)and stiffness(ES=-0.89,p=0.006)effects of mechanical vibration treatments vs.passive controls without meaningful results against the sham condition(flexibility:ES=0.20,p<0.001;stiffness:ES=-0.19,p=0.076).Similarly,moderate certainty of evidence was found for chronic vibration effects on flexibility(control:ES=0.64,p=0.043;sham:ES=0.65,p<0.001).Lack of studies and large outcome heterogeneity prevented ES pooling for underlying mechanisms.Conclusion:Vibration improved flexibility in acute and chronic interventions compared to the stand-alone intervention,which can possibly be attributed to an accumulated mechanical stimulus through vibration.However,studies on biological mechanisms are needed to explain flexibility and stiffness effects in response to specific vibration modalities and timing.
文摘The transformation of the energy supply needs further development of energy storage technologies in order to integrate the fluctuating renewable energy. The conversion of renewable wind power into green methane offers a technical approach with the necessary storage and transport capacities. Thus, the concept of Power-to-Gas which is illustrated here by the coupling of wind energy with a High Temperature Steam Electrolyser (HTSE) and a methanation unit enabling the production of green fuel like hydrogen and methane is presented is this paper. In fact, hydrogen can be used as energy carrier as well for the production of green fuels, like methane which is simpler to store and to transport and which can be thus used as storage medium for the stabilization of the electrical power supply as well as fuel for transport and heat sector. Its production using high temperature electrolysis is able to reduce the carbon dioxide emissions if performed with renewable resources. This is the case if the electricity needed for the HTSE comes from a wind turbine and the CO2 needed for the methanation step comes from biogas. For such a plant, the location and the boundary conditions have a great importance. Thus, this study considers the coupling of a HTSE with a wind turbine and a methanation reactor, and focuses about the site selection, depending of the geographical and economic considerations. The study is limited first to the European area. Schleswig-Holstein is found as a very good location for this plant. It is one of the regions with the largest wind reserves in Germany. This region has also available a lot of biogas and meets all the other necessary requirements.
基金financially supported by the Young Individual Research Grants(Grant No:M22K3c0097)Singapore RIE 2025 plan and Singapore Aerospace Programme Cycle 16(Grant No:M2215a0073)led by C Tan+2 种基金supported by the Singapore A*STAR Career Development Funds(Grant No:C210812047)the National Natural Science Foundation of China(52174361 and 52374385)the support by US NSF DMR-2104933。
文摘Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.
文摘Background Ageing,immobilization,sepsis or cachexia reduce muscle mass and function.The age-related loss,i.e.sarcopenia,contributes to frailty and results in a loss of mobility and autonomy in aging and disease.Affected individuals are often socially isolated,have a greater risk of metabolic disorders and psychosomatic problems.As a result,quality of life and life expectancy are affected.Immobilization and lack of adequate stimuli to the skeletal muscle seem to play a central part in these problems.To overcome them,resistance training(i.e.,weightlifting)is an effective intervention.Statement of the problem Despite the efficacy of resistance training for increasing muscle mass and function,this treatment is underused in clinical practice.We argue that this is due to a lack of a generally applicable methodology.Methods and framework To address this and related problems,we have formed the Network of Expertise for Immobilization-induced Muscle Disorders(KNIMS)to develop a potential algorithm for treating sarcopenia and other immobilization-related muscle disorders.An important aspect of the proposed method is that it is defined as a formal algorithm that consists of two stages.Stage A aims to recover bed-ridden patients’ability to stand by applying vibration-tilt table technology.Stage B aims at rehabilitating compromised gait,using a combination of squats,lunges and single leg raises.It is anticipated that this algorithm-based approach will enhance the ability for standardization and documentation,whilst reducing resource efforts at the same time,which will be equally useful to clinical practice and to clinical research.
文摘The behavior of a chemical tanker(CT)in extreme waves was discussed in detail,that is,in terms of rigid body heave and pitch motions,vertical bending moments(VBMs)amidships,green water,and slamming impacts through the analysis of the experimental data from model tests.Regular wave tests conducted for two wave steepness showed that the increase in wave steepness caused the increase in the asymmetry between hogging and sagging moments and the contribution of green water on deck to the decrease in vertical wave bending moments.Random uncertainty analysis of statistical values in irregular wave tests with various seeds revealed slight experimental uncertainties on motions and VBMs and slightly higher errors in slamming pressure peaks.With the increase in forward speed,experimental uncertainty on slamming pressures at the bow increased.Breather solutions of the nonlinear Schrödinger equation applied to generate tailored extreme waves of certain critical wavelengths showed a good performance in terms of ship response,and it was further verified for the CT.
基金financially supported by the 2022 MTC Young Individual Research Grants under Singapore Research,Innovation and Enterprise(RIE)2025 Plan(No.M22K3c0097)the Natural Science Foundation of US(No.DMR-2104933)the sponsorship of the China Scholarship Council(No.202106130051)。
文摘Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM techniques(i.e.,laser powder bed fusion and laser-directed energy deposition)will be reviewed,covering the aspects of processes,materials and post-processing.The impacts of process parameters and strategies for optimizing parameters will be elucidated.Various types of Ti alloys processed by LAM,includingα-Ti,(α+β)-Ti,andβ-Ti alloys,will be overviewed in terms of micro structures and benchmarking properties.Furthermore,the post-processing methods for improving the performance of L AM-processed Ti alloys,including conventional and novel heat treatment,hot isostatic pressing,and surface processing(e.g.,ultrasonic and laser shot peening),will be systematically reviewed and discussed.The review summarizes the process windows,properties,and performance envelopes and benchmarks the research achievements in LAM of Ti alloys.The outlooks of further trends in LAM of Ti alloys are also highlighted at the end of the review.This comprehensive review could serve as a valuable resource for researchers and practitioners,promoting further advancements in LAM-built Ti alloys and their applications.
文摘Objectives Understanding differences between real-world walking speed(RWS)and laboratory-measured walking speed(LWS)is crucial for comprehensive mobility assessments,especially in context of prolonged immobilization.This study aimed to investigate disparities in walking speed following a 60-day bed-rest period.Methods In 11 male participants,RWS was continuously monitored using a tri-axial accelerometer worn on the waist,while LWS was assessed via a 10-m walk test at preferred speed,on three different study days after immobilization.Statistical analyses included Bland–Altman and Pearson’s correlation to evaluate agreement between RWS and LWS,alongside paired-sample t-tests and univariate linear regression models to assess significance of differences and temporal effects on gait speed.Results Results of Bland-Altman analysis showed no agreement between RWS and LWS(mean difference 0.77 m/s)and nonsignificant correlation(r=0.19,p-value=0.3).Paired-sample t-tests indicated significantly lower RWS compared to LWS for all study days(p-value<0.001).Univariate linear regression models demonstrated a significant effect of test day on RWS(p-value<0.001)but not on LWS(p-value=0.23).Conclusions These findings emphasize the importance of integrating both assessments to capture comprehensive mobility changes following prolonged periods of inactivity.Particularly significant is that RWS is constantly lower than LWS,with the former being more representative as it reflects what normally participants would do when not under observation.Lastly,understanding discrepancies between RWS and LWS would allow for more appropriate rehabilitation programs to speed up recovery while simultaneously keeping the rehabilitation safe and tailored.
文摘Objectives Assessing physical activity and cardiometabolic risk in masters athletes as an example of very high physical activity at old age.Methods Forty-three men were studied in full factorial design,either as sprint or jump-trained masters athletes(MA,n=10,age 60–75 years),as young sprint or jump-trained athletes(YA,n=10,age 20–35 years),older control participants(OC,n=11,age 60–75 years)or as young control participants(AC,n=12,age 20–35 years).We performed bio-electrical impedance analysis and assessed serum markers of lipids and glucose metabolism and C-reactive protein,structured training hours,and habitual activity via mobile actimetry.Results Body fat was greater in OC than in MA(23.9[SD 4.2]%vs.14.0[SD 5.7]%,p<0.001),and also greater than in YA and YC(both p<0.001).Weekly training hours were comparable between MA and YA(7.9[SD3.3]hours vs.11.1[SD 4.8]hours,p=0.69).Habitual walking distance was greater in MA than in OC(7,387[SD 4,923]m/day vs.4,110[SD 1,772]m/day,p=0.039),and so was habitual running distance(667[SD690]m/day vs.132[427]m/day,p<0.001).HOMA-index was greater in OC than in MA(2.07[SD 1.39]vs.0.80[SD 0.41],p=0.0039),and so was C-reactive protein(1.35[SD 1.74]mg/l vs.0.58[SD 0.27]mg/ml,p=0.018),whereas serum lipids showed only moderate or no effect(all p between 0.036 and 0.07).Conclusions Improved body composition and physical activity levels in MA are associated with lower cardiometabolic risk,which seems more pronounced for insulin sensitivity and inflammaging than for lipid metabolism.
文摘Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-cost electricity with abundant but intermittent solar energy.In order to significantly reduce the levelized cost of electricity(LCOE)of the present commercial CSP plants,the next generation CSP technology with higher process temperature and energy efficiency is being developed.The TES system in the next generation CSP plants works with new TES materials at higher temperatures(>565℃)compared to that with the commercial nitrate salt mixtures.This paper reviews recent progressin research and development of the next generation CSP and TES technology.Emphasis is given on theadvanced'TES technology based on molten chloride salt mixtures such as MgCl_(2)/NaCl/KCl which hassimilar thermo-physical properties as the commercial nitrate salt mixtures,higher thermal stability(>800℃),and lower costs(<0.35USD·kg^(-1)).Recent progress in the selection/optimization of chloridesalts,determination of molten chloride salt properties,and corrosion control of construction materials(eg.,alloys)in molten chlorides is reviewed.
基金supported by the National Natural Science Foundation of China(Nos.61650110516,61601013 and 61521091)
文摘Robustness of transportation networks is one of the major challenges of the 21 st century.This paper investigates the resilience of global air transportation from a complex network point of view,with focus on attacking strategies in the airport network,i.e.,to remove airports from the system and see what could affect the air traffic system from a passenger's perspective.Specifically,we identify commonalities and differences between several robustness measures and attacking strategies,proposing a novel notion of functional robustness:unaffected passengers with rerouting.We apply twelve attacking strategies to the worldwide airport network with three weights,and evaluate three robustness measures.We find that degree and Bonacich based attacks harm passenger weighted network most.Our evaluation is geared toward a unified view on air transportation network attack and serves as a foundation on how to develop effective mitigation strategies.
基金We would like to acknowledge the efforts of the MGEX station operators,data,and analysis centers,as well as the ILRS for providing SLR normal points.
文摘The analysis centers of the Multi-GNSS Pilot Project of the International GNSS Service provide orbit and clock products for the global navigation satellite systems(GNSSs)Global Positioning System(GPS),GLONASS,Galileo,and BeiDou,as well as for the Japanese regional Quasi-Zenith Satellite System(QZSS).Due to improved solar radiation pressure modeling and other more sophisticated models,the consistency of these products has improved in recent years.The current orbit consistency between different analysis centers is on the level of a few centimeters for GPS,around one decimeter for GLONASS and Galileo,a few decimeters for BeiDou-2,and several decimeters for QZSS.The clock consistency is about 2 cm for GPS,5 cm for GLONASS and Galileo,and 10 cm for BeiDou-2.In terms of carrier phase modeling error for precise point positioning,the various products exhibit consistencies of 2–3 cm for GPS,6–14 cm for GLONASS,3–10 cm for Galileo,and 10–17 cm for BeiDou-2.
文摘Current global urbanisation processes are leading to new forms of massive urban constellations. The conceptualisations and classifications of these, however, are often ambiguous, overlap or lag behind in scientific literature. This article examines whether there is a common denominator to define and delimitate–and ultimately map–these new dimensions of cityscapes. In an extensive literature review we analysed and juxtaposed some of the most common concepts such as megacity, megaregion or megalopolis. We observed that many concepts are abstract or unspecific, and for those concepts for which physical parameters exist, the parameters are neither properly defined nor used in standardised ways. While understandably concepts originate from various disciplines, the authors identify a need for more precise definition and use of parameters. We conclude that often, spatial patterns of large urban areas resemble each other considerably but the definitions vary so widely that these differences may surpass any inconsistencies in the spatial delimitation process. In other words, today we have tools such as earth observation data and Geographic Information Systems to parameterise if clear definitions are provided. This appears not to be the case. The limiting factor when delineating large urban areas seems to be a commonly agreed ontology.