Titanium exhibits outstanding properties,particularly,high specific strength and resistance to both high and low temperatures,earning it a reputation as the metal of the future.However,because of the highly reactive n...Titanium exhibits outstanding properties,particularly,high specific strength and resistance to both high and low temperatures,earning it a reputation as the metal of the future.However,because of the highly reactive nature of titanium,metallic titanium production involves extensive procedures and high costs.Considering its advantages and limitations,the European Union has classified titanium metal as a critical raw material(CRM)of low category.The Kroll process is predominantly used to produce titanium;however,molten salt electrolysis(MSE)is currently being explored for producing metallic titanium at a low cost.Since 2000,electrolytic titanium production has undergone a wave of technological advancements.However,because of the intermediate and disproportionation reactions in the electrolytic titanium production process,the process efficiency and titanium purity according to industrial standards could not be achieved.Consequently,metallic titanium production has gradually diversified into employing technologies such as thermal reduction,MSE,and titanium alloy preparation.This study provides a comprehensive review of research advances in titanium metal preparation technologies over the past two decades,highlighting the challenges faced by the existing methods and proposing potential solutions.It offers useful insights into the development of low-cost titanium preparation technologies.展开更多
The continuous consumption of fossil fuels causes two important impediments including emission of large concentrations of CO2 resulting in global warming and alarming utilization of energy assets.The conversion of gre...The continuous consumption of fossil fuels causes two important impediments including emission of large concentrations of CO2 resulting in global warming and alarming utilization of energy assets.The conversion of greenhouse gas CO2 into solar fuels can be an expedient accomplishment for the solution of both problems,all together.CO2 reutilization into valuable fuels and chemicals is a great challenge of the current century.Owing to limitations in traditional approaches,there have been developed many novel technologies such as photochemical,biochemical,electrochemical,plasma-chemical and solar thermochemical.They are currently being used for CO2 capture,sequestration,and utilization to transform CO2 into valuable products such as syngas,methane,methanol,formic acid,as well as fossil fuel consumption reduction.This review summarizes different traditional and novel thermal technologies used in CO2 conversion with detailed information about their working principle,types,currently adopted methods,developments,conversion rates,products formed,catalysts and operating conditions.Moreover,a comparison of these novel technologies in terms of distinctive key features such as conversion rate,yield,use of earth metals,renewable energy,investment,and operating cost has been provided in order to have a useful review for future research direction.展开更多
In fulfillment of the national science-and-technology development agenda, the Department of Chemical Sciences of the National Natural Science Foundation of China (NSFC) convened the Strategic Symposium on the Fifteent...In fulfillment of the national science-and-technology development agenda, the Department of Chemical Sciences of the National Natural Science Foundation of China (NSFC) convened the Strategic Symposium on the Fifteenth FiveYear (20262030) Development Plan for Electrochemistry held in Xiamen on 29 August, 2025-the culminating year of the Fourteenth Five-Year (2021-2025) Development Plan. More than forty leading experts in the field of electrochemistry participated with spanning nine thematic fronts: Interfacial Electrocatalysis, Interfacial Electrochemistry for Energy Storage, Bioelectrochemistry, Electrochemistry of Hydrogen Energy, Electrochemical Micro-/Nano-Manufacturing, Operando Electrochemical Characterization, Electro-Thermal Coupling Catalysis, Theoretical and Computational Electrochemistry,and Electrochemical Synthesis. The forum assembled China's foremost electrochemical expertise to blueprint high-quality disciplinary growth for the coming five-year period, thereby serving overarching national strategic needs and sharpening the international competitiveness of Chinese electrochemistry.This paper is presented to highlight the strategic needs and priority areas for the next five years (2026-2030) based on this symposium. The development status of basic research and applied basic research in China's electrochemistry field is systematically reviewed. The in-depth analyses of the existing problems and key challenges in the research and development of electrochemistry related fields are outlined, and the frontier research areas and development trends in the next 5-10 years by integrating national major strategic needs are discussed, which will further promote the academic community to reach a clearer consensus. The proposed strategic roadmap is intended to accelerate a sharpened community consensus, propel the discipline toward high-quality advancement, and furnish a critical reference for building China into a world-leading science and technology power.展开更多
In this article the affiliation of Jin-Ke Shen,Nai-Teng Wu,Li-Yuan Wang,Gang Jiang,Jin Li,Gui-Long Liu,Xian-Ming Liu were incorrectly given as:State Key Laboratory of Chemistry and Utilization of Carbon Based Energy R...In this article the affiliation of Jin-Ke Shen,Nai-Teng Wu,Li-Yuan Wang,Gang Jiang,Jin Li,Gui-Long Liu,Xian-Ming Liu were incorrectly given as:State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources,School of Chemical Engineering and Technology,Xinjiang University,Urumqi 830046,China.展开更多
For the efficient electrolytic extraction of Er from spent nuclear fuel,a series of electrochemical methods was used to research the electrochemical behavior of Er(Ⅲ)in the LiCl—KCl system on inert(Mo)electrode and ...For the efficient electrolytic extraction of Er from spent nuclear fuel,a series of electrochemical methods was used to research the electrochemical behavior of Er(Ⅲ)in the LiCl—KCl system on inert(Mo)electrode and on reactive(Ni)electrodes.On the inert Mo electrode,the reduction of Er(Ⅲ)to Er(0)is a onestep with three-electron and quasi-reversible reaction process.Meanwhile,the apparent generation Gibbs free energy and activity coefficients of Er(Ⅲ)on the inert electrode were determined.Thereafter,the electrochemical reduction of Er(Ⅲ)on the Ni electrode was emphatically investigated.Er(Ⅲ)is reduced at a corrected potential owing to the formation of Ni-Er alloys.In addition,thermodynamic parameters such as partial excess Gibbs free energy change of Er in Ni,activity and apparent generation Gibbs free energy of the Ni-Er alloys were determined by the electromotive force method.Finally,different Ni-Er alloys were produced using potentiostatic electrolysis on the Ni cathode by controlling different potentials,Moreover,electrolytic extraction was carried out on the Ni cathode at the potential of-2.0 V,and the separation efficiency of Er reaches 99.72%,which proves the practicability of separating Er from LiCl-KCl eutectic on the reactive Ni cathode.展开更多
Aqueous zinc ion batteries(ZIBs)feature high theoretical capacity,low cost,and high safety,but they suffer from moderate reversibility arising from electrolyte decomposition,Zn corrosion/passivation,and dendrite growt...Aqueous zinc ion batteries(ZIBs)feature high theoretical capacity,low cost,and high safety,but they suffer from moderate reversibility arising from electrolyte decomposition,Zn corrosion/passivation,and dendrite growth.To address this issue,an effective strategy is to construct a functional solid electrolyte interface(SEI)in situ.However,this is substantially challenging owing to the severe hydrogen evolution reaction(HER)and a lack of substances that can be decomposed to form SEI in the aqueous electrolytes.Herein,we propose the fabrication of a stable SEI in situ via a synergistic electrochemical reductionchemical precipitation approach.By chemically capturing the hydroxide ions(OH-)from HER,fatty acid methyl ester ethoxylate(FMEE),as an aqueous electrolyte additive,undergoes ester group hydrolysis following by a combination with Zn^(2+)to form insoluble fatty acid-zinc,enabling intelligent growth of a SEI on the Zn anode surface.As a result,the enhanced Zn anode exhibits a prolonged cycling life of up to 2700 h at 1 m A/cm^(2)and 1 m Ah/cm^(2).The Zn-V_(2)O_(5)full cell with the designed electrolyte demonstrates excellent rate capability and significantly improved cycling stability.This study presents a simple and practical strategy for in-situ formation of SEI in aqueous electrolytes,advancing the development of high-performance aqueous batteries.展开更多
The electrochemical conversion of carbon dioxide into valuable products is pivotal for maintaining the global carbon cycle and mitigating global warming.This review explores the advancements in electrochemical CO_(2) ...The electrochemical conversion of carbon dioxide into valuable products is pivotal for maintaining the global carbon cycle and mitigating global warming.This review explores the advancements in electrochemical CO_(2) conversion,particularly focusing on producing methanol,ethanol,and n-propanol using various catalysts such as metals,metal oxides,metal alloys,and metal organic frameworks.Additionally,it covers the photoelectrochemical(PEC)conversion of CO_(2) into alcohols.The primary objective is to identify efficient electrocatalysts for ethanol,methanol,and n-propanol production,prioritizing selectivity,stability,Faradaic efficiency(FE),and current density.Notable catalysts include PtxZn nanoalloys,which exhibit an FE of~81.4% for methanol production,and trimetallic Pt/Pb/Zn nanoalloys,aimed at reducing Pt costs while enhancing catalyst stability and durability.Metal oxide catalysts like thin film Cu_(2)O/CuO on nickel foam and Cu_(2)O/ZnO achieve FE values of~38% and~16.6% for methanol production,respectively.Copper-based metal-organic frameworks,such as Cu@Cu_(2)O,demonstrate an FE of~45% for methanol production.Similarly,Ag_(0.14)/Cu_(0.86) and Cu-Zn alloys exhibit FEs of~63% and~46.6%,respectively,for ethanol production.Notably,n-propanol production via Pd–Cu alloy and graphene/ZnO/Cu_(2)O yields FEs of~13.7% and~23%,respectively.Furthermore,the review discusses recent advancements in PEC reactor design,photoelectrodes,reaction mechanisms,and catalyst durability.By evaluating the efficiency of these devices in liquid fuel production,the review addresses challenges and prospects in CO_(2) conversion for obtaining various valuable products.展开更多
La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation pr...La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation properties.However,the cycling stability is not currently satisfactory enough which plagues its application.Herein,a strategy of partially substituting La with the Y element is proposed to boost the capacity durability of La-Mg-Ni-based alloys.Furthermore,phase structure regulation is implemented simultaneously to obtain the A5 B19-type alloy with good crystal stability specifically.It is found that Y promotes the phase formation of the Pr5 Co19-type phase after annealing at 985℃.The alloy containing Y contributes to the superior rate capability resulting from the promoted hydrogen diffusion rate.Notably,Y substitution enables strengthening the anti-pulverization ability of the alloy in terms of increasing the volume match between[A_(2)B_(4)]and[AB5]subunits,and effectively enhances the anti-corrosion ability of the alloy due to high electronegativity,realizing improved long-term cycling stability of the alloy from 74.2%to 78.5%after cycling 300 times.The work is expected to shed light on the composition and structure design of the La-Mg-Ni-based hydrogen storage alloy for Ni-MH batteries.展开更多
All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid...All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid electrolyte plays a vital role in the performance of working ASSLBs,which is challenging to investigate quantitatively by experimental approach.This work proposed a quantitative model based on the finite element method for electrochemical impedance spectroscopy simulation of different solid-solid contact states in ASSLBs.With the assistance of an equivalent circuit model and distribution of relaxation times,it is discovered that as the number of voids and the sharpness of cracks increase,the contact resistance Rcgrows and ultimately dominates the battery impedance.Through accurate fitting,inverse proportional relations between contact resistance Rcand(1-porosity)as well as crack angle was disclosed.This contribution affords a fresh insight into clarifying solid-solid contact states in ASSLBs.展开更多
The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separat...The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.展开更多
Pyridine-based agrochemical products have become the most commercially successful in the 21st century.About half of the agrochemicals with pyridine scaffold were released,registered or invented only in the current mil...Pyridine-based agrochemical products have become the most commercially successful in the 21st century.About half of the agrochemicals with pyridine scaffold were released,registered or invented only in the current millennium.Some of them have a unique structure and previously unknown modes of action.The literature provides examples of the use of the pyridine ring in pesticides for reducing the dosage of the active ingredient,hence to take care of the environment due to their increased efficacy,overcoming the pest resistance,and also makes it possible to create patentable structures by dodging the parent patent,which sometimes leads to a change in the spectrum of activity of the compounds.The newest 13 substances registered by the ISO from January 2021 to June 2024,and not reviewed previously are considered.展开更多
A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anod...A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anode dissolution kinetics.A Mg-air battery prepared using this anode exhibits a cell voltage of 1.626 V at 0.5 mA/cm^(2),reasonable anodic efficiency of 58.17%,and good specific energy of 1730.96 mW·h/g at 10 mA/cm^(2).This performance is attributed to the effective reactive anode surface,the suppressed chunk effect,and weak self-corrosion owing to the homogeneous basal texture.展开更多
Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic...Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic coor-dination polymer[Cd(bcbpy)I_(2)]·2H_(2)O(1)was constructed.Complex 1 displays a 1D chain structure and exhibits thermochromic behavior.Under different temperature stimulation,the complex(ground)slowly changed from green to yellow-green,and with the increase of temperature,the color of complex 1 gradually deepened,and finally became orange-yellow.Therefore,complex 1 was prepared as a thermochromic film.In addition,we also performed electrochemical tests on complex 1,which showed that the complex is a semiconductor material.CCDC:2391802.展开更多
A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.The...A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.Then,an electrochemical sensor modified with Co-MOF on a glassy carbon electrode(Co-MOF@GCE)was constructed for detecting Cd^(2+)and Pb^(2+)in aqueous solutions.The sensor exhibited a linear range of 1.0-16.0µmol·L^(-1)with a detection limit(LOD)of 4.609 nmol·L^(-1)for Cd^(2+),and 0.5-10.0µmol·L^(-1)with an LOD of 1.307 nmol·L^(-1)for Pb^(2+).Simultaneous detection of both ions within 0.5-7.0µmol·L^(-1)achieved LOD values of 0.47 nmol·L^(-1)(Cd^(2+))and 0.008 nmol·L^(-1)(Pb^(2+)),respectively.Analysis of real water samples(tap water,mineral water,and river water)yielded recoveries of 95%-105%,validating practical applicability.Density functional theory(DFT)calculations reveal that synergistic interactions between cobalt centers and N/O atoms enhance adsorption and electron-transfer efficiency.CCDC:2160744.展开更多
Electrochemical sensors,with their outstanding sensitivity,excellent selectivity,ease of operation,and lower manufacturing costs,have found widespread applications in fields such as disease diagnosis,environmental mon...Electrochemical sensors,with their outstanding sensitivity,excellent selectivity,ease of operation,and lower manufacturing costs,have found widespread applications in fields such as disease diagnosis,environmental monitoring,and food safety.In the development of sensing materials,metal-organic frameworks(MOFs)have become a research hotspot due to their high specific surface area,tunable pore structures,and high designability.Recently,conductive metal-organic frameworks(CMOFs)have brought innovative opportunities to the field of electrochemical sensing,attributing to their remarkable capabilities in catalysis,electron transport,and signal amplification.This review summarizes the significant progress of CMOFs in the field of electrochemical sensing.Firstly,the design and synthesis strategies for CMOFs used in electrochemical sensing are explored,including enhancing the electrochemical properties of MOFs through precise design of different metal nodes and ligands or via post-synthetic modification techniques,covering Cu-based CMOFs,Ni-based CMOFs,Fe-based CMOFs,and CMOF composites.Furthermore,this article elaborately discusses the breakthrough achievements of electrochemical sensors based on CMOFs in applications such as the determination of inorganic ions,detection of organic pollutants,and recognition of gases and biomolecules,and introduces the principles of electrochemical sensing methods and the role of CMOFs in enhancing the performance of electrochemical sensors.Finally,this review analyzes the main challenges currently faced by CMOFs in the field of electrochemical sensors and offers perspectives on their future development.These challenges mainly include stability,selectivity,production costs,and the realization of their large-scale application.CMOFs provide new ideas and material platforms for the development of electrochemical sensors.As researchers deepen their understanding of their properties and technological advances continue,the application prospects of CMOF-based electrochemical sensors will be even broader.展开更多
In this work,a portable sensor based on ionic liquids-carboxylated carbon nanotubes/screen-printed carbon electrodes(IL-COOH-CNTs/SPCE)was constructed and coupled with machine learning for sensitive sulfamethoxazole(S...In this work,a portable sensor based on ionic liquids-carboxylated carbon nanotubes/screen-printed carbon electrodes(IL-COOH-CNTs/SPCE)was constructed and coupled with machine learning for sensitive sulfamethoxazole(SMZ)detection.The IL-COOH-CNTs/SPCE exhibited low impedance,a large effective surface area,and excellent stability.The sensor displayed a wide linear range from 1.04 to 233.00μmol/L,with a limit of detection(LOD)of 0.009μmol/L and a limit of quantification(LOQ)of 0.030μmol/L.The sensor coupled with least square support vector machine(LSSVM)achieved superior predictive performance than when coupled with artificial neural network(ANN).Furthermore,the recoveries for spiked food samples using this method showed no significant difference from those obtained using highperformance liquid chromatography(HPLC),confirming the high accuracy and practicality of the developed method.In summary,the IL-COOH-CNTs/SPCE sensor provides a reliable,portable,and efficient alternative for SMZ detection in aquatic and livestock products.展开更多
Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illust...Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illustrated the morphological fates of waste leaf-derived graphitic carbon(WLGC)produced from waste ginkgo leaves via pyrolysis temperature regulation and used as bifunctional cathode catalyst for simultaneous H_(2)O_(2) electrochemical generation and organic pollutant degradation,discovering S/N-self-doping shown to facilitate a synergistic effect on reactive oxygen species(ROS)generation.Under the optimum temperature of 800℃,the WLGC exhibited a H_(2)O_(2) selectivity of 94.2%and tetracycline removal of 99.3%within 60 min.Density functional theory calculations and in-situ Fourier transformed infrared spectroscopy verified that graphitic N was the critical site for H_(2)O_(2) generation.While pyridinic N and thiophene S were the main active sites responsible for OH generation,N vacancies were the active sites to produce ^(1)O_(2) from O_(2).The performance of the novel cathode for tetracycline degradation remains well under a wide pH range(3–11),maintaining excellent stability in 10 cycles.It is also industrially applicable,achieving satisfactory performance treating in real water matrices.This system facilitates both radical and non-radical degradation,offering valuable advances in the preparation of cost-effective and sustainable electrocatalysts and hold strong potentials in metal-free EAOPs for organic pollutant degradation.展开更多
Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))bat...Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.展开更多
With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage techno...With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage technologies is particularly urgent.Electrochemical energy storage technologies have been widely used in multiple fields,especially supercapacitors and rechargeable batteries,as vital elements of storing renewable energy.In recent years,two-dimensional material MXene has shown great potential in energy and multiple application fields thanks to its excellent electrical properties,large specific surface area,and tunability.Based on the layered materials of MXene,researchers have successfully achieved the dual functions of energy storage and conversion by adjusting the surface terminals at the Fermi level.It is worth noting that compared with other two-dimensional materials,MXene has more active sites on the basal plane,showing excellent catalytic performance.In contrast,other two-dimensional materials have catalytic activity only at the edge sites.This article comprehensively overviews the synthesis process,structural characteristics,modification methods for MXene-based polymer materials,and their applications in electrochemical energy storage.It also briefly discusses the potential of MXene-polymer materials in electromagnetic shielding technology and sensors and looks forward to future research directions.展开更多
In response to the increasing demand of ethylene,electrochemical ethane nonoxidative dehydrogenation(EENDH)to ethylene by protonic ceramic electrolysis cells(PCECs)is developed.However,existing anode materials exhibit...In response to the increasing demand of ethylene,electrochemical ethane nonoxidative dehydrogenation(EENDH)to ethylene by protonic ceramic electrolysis cells(PCECs)is developed.However,existing anode materials exhibit poor proton conductivity and limited catalytic activity.Herein,a novel Sr_(1.95)Fe_(1.4)Co_(0.1)Mo_(0.4)Zr_(0.1)O_(6-δ)(SFCMZ)anode is prepared as PCECs anode for EENDH.Zr doping increases the oxygen vacancies and enhances the proton conductivity of SFCMZ.Moreover,an alloy-oxide heterostructure(Co Fe@SFCMZ)is formed through in-situ exsolution of Co Fe alloy nanoparticles under reduction conditions,generating abundant oxygen vacancies and improving its catalytic activity.Co Fe@SFCMZ cell achieves an electrolysis current density of 0.87 A/cm^(2) at 700℃ under 1.6 V,with an ethane conversion rate of 34.22%and corresponding ethylene selectivity of 93.4%.These results demonstrate that Co Fe@SFCMZ anode exhibits excellent electrocatalytic activity,suggesting promising applications for EENDH.展开更多
基金financial support from the Yunnan Province Key Industries Science and Technology Special Project for Colleges and UniversitiesChina(No.FWCY-QYCT2024006)+6 种基金National Natural Science Foundation of China(Nos.52104351 and 52364051)Science and Technology Major Project of Yunnan Province,China(No.202202AG050007)the Yunnan Fundamental Research ProjectsChina(No.202401AT070314)the Key Technology Research and Development Program of Shandong Province,China(No.2023CXGC010903)Central Guidance Local Scientific and Technological Development Funds,China(No.202407AB110022)Yunnan Province Xingdian Talent Support Plan Project,China。
文摘Titanium exhibits outstanding properties,particularly,high specific strength and resistance to both high and low temperatures,earning it a reputation as the metal of the future.However,because of the highly reactive nature of titanium,metallic titanium production involves extensive procedures and high costs.Considering its advantages and limitations,the European Union has classified titanium metal as a critical raw material(CRM)of low category.The Kroll process is predominantly used to produce titanium;however,molten salt electrolysis(MSE)is currently being explored for producing metallic titanium at a low cost.Since 2000,electrolytic titanium production has undergone a wave of technological advancements.However,because of the intermediate and disproportionation reactions in the electrolytic titanium production process,the process efficiency and titanium purity according to industrial standards could not be achieved.Consequently,metallic titanium production has gradually diversified into employing technologies such as thermal reduction,MSE,and titanium alloy preparation.This study provides a comprehensive review of research advances in titanium metal preparation technologies over the past two decades,highlighting the challenges faced by the existing methods and proposing potential solutions.It offers useful insights into the development of low-cost titanium preparation technologies.
基金supported by the National Natural Science Foundation of China(5152260151950410590)+1 种基金China Postdoctoral Science Foundation Fund(2019M651284)Fundamental Research Funds for the Central Universities(HIT.NSRIF.2020054)。
文摘The continuous consumption of fossil fuels causes two important impediments including emission of large concentrations of CO2 resulting in global warming and alarming utilization of energy assets.The conversion of greenhouse gas CO2 into solar fuels can be an expedient accomplishment for the solution of both problems,all together.CO2 reutilization into valuable fuels and chemicals is a great challenge of the current century.Owing to limitations in traditional approaches,there have been developed many novel technologies such as photochemical,biochemical,electrochemical,plasma-chemical and solar thermochemical.They are currently being used for CO2 capture,sequestration,and utilization to transform CO2 into valuable products such as syngas,methane,methanol,formic acid,as well as fossil fuel consumption reduction.This review summarizes different traditional and novel thermal technologies used in CO2 conversion with detailed information about their working principle,types,currently adopted methods,developments,conversion rates,products formed,catalysts and operating conditions.Moreover,a comparison of these novel technologies in terms of distinctive key features such as conversion rate,yield,use of earth metals,renewable energy,investment,and operating cost has been provided in order to have a useful review for future research direction.
文摘In fulfillment of the national science-and-technology development agenda, the Department of Chemical Sciences of the National Natural Science Foundation of China (NSFC) convened the Strategic Symposium on the Fifteenth FiveYear (20262030) Development Plan for Electrochemistry held in Xiamen on 29 August, 2025-the culminating year of the Fourteenth Five-Year (2021-2025) Development Plan. More than forty leading experts in the field of electrochemistry participated with spanning nine thematic fronts: Interfacial Electrocatalysis, Interfacial Electrochemistry for Energy Storage, Bioelectrochemistry, Electrochemistry of Hydrogen Energy, Electrochemical Micro-/Nano-Manufacturing, Operando Electrochemical Characterization, Electro-Thermal Coupling Catalysis, Theoretical and Computational Electrochemistry,and Electrochemical Synthesis. The forum assembled China's foremost electrochemical expertise to blueprint high-quality disciplinary growth for the coming five-year period, thereby serving overarching national strategic needs and sharpening the international competitiveness of Chinese electrochemistry.This paper is presented to highlight the strategic needs and priority areas for the next five years (2026-2030) based on this symposium. The development status of basic research and applied basic research in China's electrochemistry field is systematically reviewed. The in-depth analyses of the existing problems and key challenges in the research and development of electrochemistry related fields are outlined, and the frontier research areas and development trends in the next 5-10 years by integrating national major strategic needs are discussed, which will further promote the academic community to reach a clearer consensus. The proposed strategic roadmap is intended to accelerate a sharpened community consensus, propel the discipline toward high-quality advancement, and furnish a critical reference for building China into a world-leading science and technology power.
文摘In this article the affiliation of Jin-Ke Shen,Nai-Teng Wu,Li-Yuan Wang,Gang Jiang,Jin Li,Gui-Long Liu,Xian-Ming Liu were incorrectly given as:State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources,School of Chemical Engineering and Technology,Xinjiang University,Urumqi 830046,China.
基金Project supported by Ph.D.Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(3072023GIP1005)。
文摘For the efficient electrolytic extraction of Er from spent nuclear fuel,a series of electrochemical methods was used to research the electrochemical behavior of Er(Ⅲ)in the LiCl—KCl system on inert(Mo)electrode and on reactive(Ni)electrodes.On the inert Mo electrode,the reduction of Er(Ⅲ)to Er(0)is a onestep with three-electron and quasi-reversible reaction process.Meanwhile,the apparent generation Gibbs free energy and activity coefficients of Er(Ⅲ)on the inert electrode were determined.Thereafter,the electrochemical reduction of Er(Ⅲ)on the Ni electrode was emphatically investigated.Er(Ⅲ)is reduced at a corrected potential owing to the formation of Ni-Er alloys.In addition,thermodynamic parameters such as partial excess Gibbs free energy change of Er in Ni,activity and apparent generation Gibbs free energy of the Ni-Er alloys were determined by the electromotive force method.Finally,different Ni-Er alloys were produced using potentiostatic electrolysis on the Ni cathode by controlling different potentials,Moreover,electrolytic extraction was carried out on the Ni cathode at the potential of-2.0 V,and the separation efficiency of Er reaches 99.72%,which proves the practicability of separating Er from LiCl-KCl eutectic on the reactive Ni cathode.
基金supported by the National Natural Science Foundation of China(No.22309211)the Guangdong Basic and Applied Basic Research Foundation(No.2024A1515010158)+1 种基金the Guangzhou Science and Technology Programme(No.SL2023A04J01514)the Lanzhou Chengguan District Science and Technology Plan Project(No.2022-rc-4)。
文摘Aqueous zinc ion batteries(ZIBs)feature high theoretical capacity,low cost,and high safety,but they suffer from moderate reversibility arising from electrolyte decomposition,Zn corrosion/passivation,and dendrite growth.To address this issue,an effective strategy is to construct a functional solid electrolyte interface(SEI)in situ.However,this is substantially challenging owing to the severe hydrogen evolution reaction(HER)and a lack of substances that can be decomposed to form SEI in the aqueous electrolytes.Herein,we propose the fabrication of a stable SEI in situ via a synergistic electrochemical reductionchemical precipitation approach.By chemically capturing the hydroxide ions(OH-)from HER,fatty acid methyl ester ethoxylate(FMEE),as an aqueous electrolyte additive,undergoes ester group hydrolysis following by a combination with Zn^(2+)to form insoluble fatty acid-zinc,enabling intelligent growth of a SEI on the Zn anode surface.As a result,the enhanced Zn anode exhibits a prolonged cycling life of up to 2700 h at 1 m A/cm^(2)and 1 m Ah/cm^(2).The Zn-V_(2)O_(5)full cell with the designed electrolyte demonstrates excellent rate capability and significantly improved cycling stability.This study presents a simple and practical strategy for in-situ formation of SEI in aqueous electrolytes,advancing the development of high-performance aqueous batteries.
基金the financial support from National Science Centre Poland(NCN)based on the decision number UMO-2021/43/D/ST5/00824financial support of research project supported by the program“Excellence Initiative-Research University”for the AGH University of Krakow.
文摘The electrochemical conversion of carbon dioxide into valuable products is pivotal for maintaining the global carbon cycle and mitigating global warming.This review explores the advancements in electrochemical CO_(2) conversion,particularly focusing on producing methanol,ethanol,and n-propanol using various catalysts such as metals,metal oxides,metal alloys,and metal organic frameworks.Additionally,it covers the photoelectrochemical(PEC)conversion of CO_(2) into alcohols.The primary objective is to identify efficient electrocatalysts for ethanol,methanol,and n-propanol production,prioritizing selectivity,stability,Faradaic efficiency(FE),and current density.Notable catalysts include PtxZn nanoalloys,which exhibit an FE of~81.4% for methanol production,and trimetallic Pt/Pb/Zn nanoalloys,aimed at reducing Pt costs while enhancing catalyst stability and durability.Metal oxide catalysts like thin film Cu_(2)O/CuO on nickel foam and Cu_(2)O/ZnO achieve FE values of~38% and~16.6% for methanol production,respectively.Copper-based metal-organic frameworks,such as Cu@Cu_(2)O,demonstrate an FE of~45% for methanol production.Similarly,Ag_(0.14)/Cu_(0.86) and Cu-Zn alloys exhibit FEs of~63% and~46.6%,respectively,for ethanol production.Notably,n-propanol production via Pd–Cu alloy and graphene/ZnO/Cu_(2)O yields FEs of~13.7% and~23%,respectively.Furthermore,the review discusses recent advancements in PEC reactor design,photoelectrodes,reaction mechanisms,and catalyst durability.By evaluating the efficiency of these devices in liquid fuel production,the review addresses challenges and prospects in CO_(2) conversion for obtaining various valuable products.
基金the financial support by the National Nat-ural Science Foundation of China(Nos.52201282,52071281,52371239)the China Postdoctoral Science Foundation(No.2023M742945)+4 种基金Hebei Provincial Postdoctoral Science Foundation(No.B2023003023)the Science Research Project of Hebei Education Department(No.BJK2022033)the Natural Science Foundation of Hebei Province(No.C2022203003)the Inner Mongolia Science and Technology Major Project(No.2020ZD0012)the Baotou Science and Technology Planning Project(No.XM2022BT09).
文摘La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation properties.However,the cycling stability is not currently satisfactory enough which plagues its application.Herein,a strategy of partially substituting La with the Y element is proposed to boost the capacity durability of La-Mg-Ni-based alloys.Furthermore,phase structure regulation is implemented simultaneously to obtain the A5 B19-type alloy with good crystal stability specifically.It is found that Y promotes the phase formation of the Pr5 Co19-type phase after annealing at 985℃.The alloy containing Y contributes to the superior rate capability resulting from the promoted hydrogen diffusion rate.Notably,Y substitution enables strengthening the anti-pulverization ability of the alloy in terms of increasing the volume match between[A_(2)B_(4)]and[AB5]subunits,and effectively enhances the anti-corrosion ability of the alloy due to high electronegativity,realizing improved long-term cycling stability of the alloy from 74.2%to 78.5%after cycling 300 times.The work is expected to shed light on the composition and structure design of the La-Mg-Ni-based hydrogen storage alloy for Ni-MH batteries.
基金supported by the Beijing Natural Science Foundation(Z200011,L233004)the National Key Research and Development Program(2021YFB2500300)+3 种基金the National Natural Science Foundation of China(52394170,52394171,22109011,22393900,and 22108151)the Tsinghua-Jiangyin Innovation Special Fund(TJISF)(2022JYTH0101)the S&T Program of Hebei(22344402D)the Tsinghua University Initiative Scientific Research Program.
文摘All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid electrolyte plays a vital role in the performance of working ASSLBs,which is challenging to investigate quantitatively by experimental approach.This work proposed a quantitative model based on the finite element method for electrochemical impedance spectroscopy simulation of different solid-solid contact states in ASSLBs.With the assistance of an equivalent circuit model and distribution of relaxation times,it is discovered that as the number of voids and the sharpness of cracks increase,the contact resistance Rcgrows and ultimately dominates the battery impedance.Through accurate fitting,inverse proportional relations between contact resistance Rcand(1-porosity)as well as crack angle was disclosed.This contribution affords a fresh insight into clarifying solid-solid contact states in ASSLBs.
基金the Center of Lithium Battery Membrane Materials jointly established by School of Chemistry and Chemical Engineering of Huazhong University of Science and Technology and Shenzhen Senior Technology Material Co.Ltd.,the National Natural Science Foundation of China(52020105012,52303084)the Young Scientists Fund of Natural Science Foundation of Hubei Province(2023AFB220)for the support of this work.
文摘The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.
文摘Pyridine-based agrochemical products have become the most commercially successful in the 21st century.About half of the agrochemicals with pyridine scaffold were released,registered or invented only in the current millennium.Some of them have a unique structure and previously unknown modes of action.The literature provides examples of the use of the pyridine ring in pesticides for reducing the dosage of the active ingredient,hence to take care of the environment due to their increased efficacy,overcoming the pest resistance,and also makes it possible to create patentable structures by dodging the parent patent,which sometimes leads to a change in the spectrum of activity of the compounds.The newest 13 substances registered by the ISO from January 2021 to June 2024,and not reviewed previously are considered.
基金partially supported by the National Natural Science Foundation of China(No.51901153)Shanxi Scholarship Council of China(No.2019032)+1 种基金the Natural Science Foundation of Shanxi,China(No.202103021224049)the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China(No.2022SX-TD025)。
文摘A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anode dissolution kinetics.A Mg-air battery prepared using this anode exhibits a cell voltage of 1.626 V at 0.5 mA/cm^(2),reasonable anodic efficiency of 58.17%,and good specific energy of 1730.96 mW·h/g at 10 mA/cm^(2).This performance is attributed to the effective reactive anode surface,the suppressed chunk effect,and weak self-corrosion owing to the homogeneous basal texture.
文摘Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic coor-dination polymer[Cd(bcbpy)I_(2)]·2H_(2)O(1)was constructed.Complex 1 displays a 1D chain structure and exhibits thermochromic behavior.Under different temperature stimulation,the complex(ground)slowly changed from green to yellow-green,and with the increase of temperature,the color of complex 1 gradually deepened,and finally became orange-yellow.Therefore,complex 1 was prepared as a thermochromic film.In addition,we also performed electrochemical tests on complex 1,which showed that the complex is a semiconductor material.CCDC:2391802.
文摘A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.Then,an electrochemical sensor modified with Co-MOF on a glassy carbon electrode(Co-MOF@GCE)was constructed for detecting Cd^(2+)and Pb^(2+)in aqueous solutions.The sensor exhibited a linear range of 1.0-16.0µmol·L^(-1)with a detection limit(LOD)of 4.609 nmol·L^(-1)for Cd^(2+),and 0.5-10.0µmol·L^(-1)with an LOD of 1.307 nmol·L^(-1)for Pb^(2+).Simultaneous detection of both ions within 0.5-7.0µmol·L^(-1)achieved LOD values of 0.47 nmol·L^(-1)(Cd^(2+))and 0.008 nmol·L^(-1)(Pb^(2+)),respectively.Analysis of real water samples(tap water,mineral water,and river water)yielded recoveries of 95%-105%,validating practical applicability.Density functional theory(DFT)calculations reveal that synergistic interactions between cobalt centers and N/O atoms enhance adsorption and electron-transfer efficiency.CCDC:2160744.
基金financially supported by the National Natural Science Foundation of China(Nos.22204089,52201281,and22234006)Natural Science Foundation of Shandong Province(No.ZR2023MB016)。
文摘Electrochemical sensors,with their outstanding sensitivity,excellent selectivity,ease of operation,and lower manufacturing costs,have found widespread applications in fields such as disease diagnosis,environmental monitoring,and food safety.In the development of sensing materials,metal-organic frameworks(MOFs)have become a research hotspot due to their high specific surface area,tunable pore structures,and high designability.Recently,conductive metal-organic frameworks(CMOFs)have brought innovative opportunities to the field of electrochemical sensing,attributing to their remarkable capabilities in catalysis,electron transport,and signal amplification.This review summarizes the significant progress of CMOFs in the field of electrochemical sensing.Firstly,the design and synthesis strategies for CMOFs used in electrochemical sensing are explored,including enhancing the electrochemical properties of MOFs through precise design of different metal nodes and ligands or via post-synthetic modification techniques,covering Cu-based CMOFs,Ni-based CMOFs,Fe-based CMOFs,and CMOF composites.Furthermore,this article elaborately discusses the breakthrough achievements of electrochemical sensors based on CMOFs in applications such as the determination of inorganic ions,detection of organic pollutants,and recognition of gases and biomolecules,and introduces the principles of electrochemical sensing methods and the role of CMOFs in enhancing the performance of electrochemical sensors.Finally,this review analyzes the main challenges currently faced by CMOFs in the field of electrochemical sensors and offers perspectives on their future development.These challenges mainly include stability,selectivity,production costs,and the realization of their large-scale application.CMOFs provide new ideas and material platforms for the development of electrochemical sensors.As researchers deepen their understanding of their properties and technological advances continue,the application prospects of CMOF-based electrochemical sensors will be even broader.
文摘In this work,a portable sensor based on ionic liquids-carboxylated carbon nanotubes/screen-printed carbon electrodes(IL-COOH-CNTs/SPCE)was constructed and coupled with machine learning for sensitive sulfamethoxazole(SMZ)detection.The IL-COOH-CNTs/SPCE exhibited low impedance,a large effective surface area,and excellent stability.The sensor displayed a wide linear range from 1.04 to 233.00μmol/L,with a limit of detection(LOD)of 0.009μmol/L and a limit of quantification(LOQ)of 0.030μmol/L.The sensor coupled with least square support vector machine(LSSVM)achieved superior predictive performance than when coupled with artificial neural network(ANN).Furthermore,the recoveries for spiked food samples using this method showed no significant difference from those obtained using highperformance liquid chromatography(HPLC),confirming the high accuracy and practicality of the developed method.In summary,the IL-COOH-CNTs/SPCE sensor provides a reliable,portable,and efficient alternative for SMZ detection in aquatic and livestock products.
基金financially supported by National Key R&D Program International Cooperation Project(2023YFE0108100)Natural Science Foundation of China(No.52170085)+2 种基金Key Project of Natural Science Foundation of Tianjin(No.21JCZDJC00320)Tianjin Post-graduate Students Research and Innovation Project(2021YJSB013)Fundamental Research Funds for the Central Universities,Nankai University.
文摘Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illustrated the morphological fates of waste leaf-derived graphitic carbon(WLGC)produced from waste ginkgo leaves via pyrolysis temperature regulation and used as bifunctional cathode catalyst for simultaneous H_(2)O_(2) electrochemical generation and organic pollutant degradation,discovering S/N-self-doping shown to facilitate a synergistic effect on reactive oxygen species(ROS)generation.Under the optimum temperature of 800℃,the WLGC exhibited a H_(2)O_(2) selectivity of 94.2%and tetracycline removal of 99.3%within 60 min.Density functional theory calculations and in-situ Fourier transformed infrared spectroscopy verified that graphitic N was the critical site for H_(2)O_(2) generation.While pyridinic N and thiophene S were the main active sites responsible for OH generation,N vacancies were the active sites to produce ^(1)O_(2) from O_(2).The performance of the novel cathode for tetracycline degradation remains well under a wide pH range(3–11),maintaining excellent stability in 10 cycles.It is also industrially applicable,achieving satisfactory performance treating in real water matrices.This system facilitates both radical and non-radical degradation,offering valuable advances in the preparation of cost-effective and sustainable electrocatalysts and hold strong potentials in metal-free EAOPs for organic pollutant degradation.
文摘Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.
基金supported by the Natural Science Basic Research Plan in the Shaanxi Province of China(No.2023-JC-ZD-25)Shaanxi Province(Qin ChuangYuan)“Scientist+Engineer”Team Building(No.2022KXJ-040)+1 种基金Shaanxi Provincial Department of Education Key Scientific Research Project(No.22JY024)Science and Technology Guidance Project Plan of China National Textile and Apparel Council(No.2022038,2023018).
文摘With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage technologies is particularly urgent.Electrochemical energy storage technologies have been widely used in multiple fields,especially supercapacitors and rechargeable batteries,as vital elements of storing renewable energy.In recent years,two-dimensional material MXene has shown great potential in energy and multiple application fields thanks to its excellent electrical properties,large specific surface area,and tunability.Based on the layered materials of MXene,researchers have successfully achieved the dual functions of energy storage and conversion by adjusting the surface terminals at the Fermi level.It is worth noting that compared with other two-dimensional materials,MXene has more active sites on the basal plane,showing excellent catalytic performance.In contrast,other two-dimensional materials have catalytic activity only at the edge sites.This article comprehensively overviews the synthesis process,structural characteristics,modification methods for MXene-based polymer materials,and their applications in electrochemical energy storage.It also briefly discusses the potential of MXene-polymer materials in electromagnetic shielding technology and sensors and looks forward to future research directions.
基金financially supported by the National Natural Science Foundation of China(Nos.52272190 and 22178023)the National Key R&D Program of China(No.2021YFB4001401)。
文摘In response to the increasing demand of ethylene,electrochemical ethane nonoxidative dehydrogenation(EENDH)to ethylene by protonic ceramic electrolysis cells(PCECs)is developed.However,existing anode materials exhibit poor proton conductivity and limited catalytic activity.Herein,a novel Sr_(1.95)Fe_(1.4)Co_(0.1)Mo_(0.4)Zr_(0.1)O_(6-δ)(SFCMZ)anode is prepared as PCECs anode for EENDH.Zr doping increases the oxygen vacancies and enhances the proton conductivity of SFCMZ.Moreover,an alloy-oxide heterostructure(Co Fe@SFCMZ)is formed through in-situ exsolution of Co Fe alloy nanoparticles under reduction conditions,generating abundant oxygen vacancies and improving its catalytic activity.Co Fe@SFCMZ cell achieves an electrolysis current density of 0.87 A/cm^(2) at 700℃ under 1.6 V,with an ethane conversion rate of 34.22%and corresponding ethylene selectivity of 93.4%.These results demonstrate that Co Fe@SFCMZ anode exhibits excellent electrocatalytic activity,suggesting promising applications for EENDH.