Wheat rusts continue to cause significant losses worldwide despite major efforts given to their genetic control. This is due to frequent evolution and selection of virulence in pathogen overcoming the deployed race-sp...Wheat rusts continue to cause significant losses worldwide despite major efforts given to their genetic control. This is due to frequent evolution and selection of virulence in pathogen overcoming the deployed race-specific resistance genes. Although the life of effective race-specific resistance genes can be prolonged by using gene combinations, an alternative approach being implemented at CIMMYT is to deploy varieties that posses adult plant resistance (APR) based on combinations of minor, slow rusting genes. When present alone, the APR genes do not confer adequate resistance especially under high disease pressure; however, combinations of 4 or 5 minor genes usually result in "near-immunity" or a high level of resistance. Although only a few APR genes are catalogued, various APR QTLs are now known and could lead to further characterization of additional genes. Four characterized genes have pleiotropic effects in conferring partial APR to all 3 rusts and powdery mildew, thus simplifying the task of breeding wheat varieties that are resistant to multiple diseases. Significant progress was made recently in developing high-yielding wheat germplasm that possesses high levels of APR to all three rusts by implementing a Mexico- Kenya shuttle breeding scheme. Parents with APR to Ug99 were hybridized with high-yielding parents that had adequate to high levels of APR to leaf rust and yellow rust. Segregating populations and advanced lines from these crosses were selected under high rust pressures in Mexico (leaf rust and yellow rust) and Kenya (Ug99 stem rust and yellow rust) to identify high- yielding progenies that possess high to adequate APR to all three rusts. International distribution of these high-yielding wheats is underway through CIMMYT intemational yield trials and screening nurseries. It is expected that several wheat varieties with APR to three rusts will be released and grown in various countries in the near-future that will allow determining the durability of resistance.展开更多
Black point is a black discoloration of the grain embryo that reduces the grain quality and commodity grade.Identifying the underlying genetic loci can facilitate the improvement of black point resistance in wheat.Her...Black point is a black discoloration of the grain embryo that reduces the grain quality and commodity grade.Identifying the underlying genetic loci can facilitate the improvement of black point resistance in wheat.Here,262 recombinant inbred lines(RILs)from the cross of Zhongmai 578/Jimai 22 were evaluated for their black point reactions in fve environments.A high-density genetic linkage map of the RIL population was constructed with the wheat 50K single nucleotide polymorphism(SNP)array.Six stable QTLs for black point resistance were detected,QBp.caas-2A,QBp.caas-2B1,QBp.caas-2B2,QBp.caas-2D,QBp.caas-3A,and QBp.caas-5B,which explained 2.1-28.8%of the phenotypic variances.The resistance alleles of QBp.caas-2B1 and QBp.caas-2B2 were contributed by Zhongmai 578 while the others were from Jimai 22.QBp.caas-2B2,QBp.caas-2D and QBp.caas-3A overlapped with previously reported loci,whereas QBp.caas-2A,QBp.caas-2B1 and QBp.caas-5B are likely to be new.Five kompetitive allele-specifc PCR(KASP)markers,Kasp_2A_BP,Kasp_2B1_BP,Kasp_2B2_BP,Kasp_3A_BP,and Kasp_5B_BP,were validated in a natural population of 165 cultivars.The fndings of this study provide useful QTLs and molecular markers for the improvement of black point resistance in wheat through marker-assisted breeding.展开更多
Leaf rust,caused by the fungus Puccinia triticina,is one of the most destructive diseases affecting global wheat production.Developing disease-resistant wheat varieties is the most cost-effective and environmentally f...Leaf rust,caused by the fungus Puccinia triticina,is one of the most destructive diseases affecting global wheat production.Developing disease-resistant wheat varieties is the most cost-effective and environmentally friendly approach to managing this disease.We phenotyped a collection of 559 wheat accessions from five continents for resistance to leaf rust in field trials at three locations in China(Zhoukou,Henan;Wuhan,Hubei;and Xinxiang,Henan)during the 2020–2021,2021–2022,and 2022–2023 cropping seasons,followed by best-linear-unbiased-estimation analysis across environments.These accessions were genotyped using the MGISEQ-2000 re-sequencing platform,and a genome-wide association analysis was subsequently performed.Twenty-four stable leaf rust resistance loci across 15 chromosomes were identified.Among these,11 loci may represent new sources of resistance.Notably,Lr.hzau-2BS.1 and Lr.hzau-7AL were consistently detected across all three environments and BLUE.Lr.hzau-2BS.1 has the highest frequency in European wheat accessions,whereas Lr.hzau-7AL is most prevalent in South American accessions.Gene-expression analysis identified 101 candidate genes associated with these loci.Closely linked Kompetitive Allele Specific PCR(KASP)markers,2B-209172 and 7A-348992,were developed for Lr.hzau-2BS.1 and Lr.hzau-7AL,respectively.Chinese wheat varieties Mianmai 45 and Liaomai 16,which carry resistance alleles at both loci and exhibit<5%leaf rust severity,represent valuable sources of leaf rust resistance for wheat breeding programs.These newly identified resistance loci and their KASP markers provide valuable resource for their exploitation in wheat breeding.展开更多
High molecular weight glutenin subunits(HMW-GS),major components of seed storage proteins in wheat,have large effects on processing quality.GLU-1 genes encode HMW-GS and their expression is mainly controlled at the tr...High molecular weight glutenin subunits(HMW-GS),major components of seed storage proteins in wheat,have large effects on processing quality.GLU-1 genes encode HMW-GS and their expression is mainly controlled at the transcriptional level by interactions between cis-regulatory elements and transcription factors.We previously identified an Aux/IAA transcription factor TaIAA10-6D that bound to a conserved cis-regulatory module CCRM1-1,the most essential conserved cis-regulatory module in GLU-1.Here,we confirmed the binding of TaIAA10-6D to CCRM1-1 using yeast one hybrid and dualluciferase reporter assays.The enhanced expression of TaIAA10-6D suppressed glutenin accumulation and increased gliadin content.Dynamic transcriptome analyses revealed that TaIAA10-6D overexpression down-regulated glutenin and gliadin genes during an early stage of grain filling,but up-regulated gliadin genes during a late stage probably by endoplasmic reticulum stress,accounting for its effect on the tradeoff between glutenin and gliadin.Rheological property and processing quality assays showed that TaIAA10-6D overproduction reduced stabilization time and bread quality,but enhanced cookie quality.Overexpression of TaIAA10-6D also reduced plant height,leaf size,kernel number and grain yield.We identified two major haplotypes of TaIAA10-6D,Hap I and Hap II,and developed a breeding-friendly diagnostic marker.Hap I conferred higher expression of TaIAA10-6D and concomitantly reduced plant height and kernel number,but had little effect on grain yield,contributing to lodging resistance without yield penalty.Hap I was subjected to positive selection in breeding.The findings provide a useful gene for wheat improvement and broaden insights into the regulatory machinery underpinning auxin-mediated quality formation,plant morphogenesis and yield gain.展开更多
Fusarium ear rot(FER)caused by Fusarium species severely reduces grain yield and quality of maize.Genome prediction(GP),a promising tool for quantitative trait breeding in plants and animals,uses molecular markers for...Fusarium ear rot(FER)caused by Fusarium species severely reduces grain yield and quality of maize.Genome prediction(GP),a promising tool for quantitative trait breeding in plants and animals,uses molecular markers for capturing quantitative trait loci and predicting the genetic value of candidates for selection.In the present study,different subsets of markers and statistical methods for GP accuracy were tested in diverse inbred populations for FER resistance using a five-fold cross-validation approach.The prediction accuracy increased with an increase in the number of random markers;however,an increase in number beyond 10K did not increase the prediction accuracy.The prediction accuracy of selected markers was higher than that of random markers,and 500–1000 selected markers had the highest prediction accuracy,beyond which it slowly decreased.Although there was no difference among statistical methods when using selected markers at high prediction accuracy,significant differences were observed when using random markers.On this basis,a liquid chip named FER0.4K(liquid chip for genomic prediction of FER)containing 381 SNPs was developed for low-cost,high-throughput genotyping,with a prediction of approximately 0.82.The statistical method of genome prediction was compiled into a web-based,easy-to-use statistical analysis software using the‘‘shiny”package in R.In summary,this study provides a foundation for FER resistance breeding in maize and offers new insights into the genetic improvement of other complex quantitative traits in plants.展开更多
Non-destructive time-series assessment of chlorophyll content in flag-leaf(FLC)accurately mimics the senescence rate and the identification of genetic loci associated with senescence provides valuable knowledge to imp...Non-destructive time-series assessment of chlorophyll content in flag-leaf(FLC)accurately mimics the senescence rate and the identification of genetic loci associated with senescence provides valuable knowledge to improve yield stability under stressed environments.In this study,we employed both unmanned aerial vehicles(UAVs)equipped with red–green–blue(RGB)camera and ground-based SPAD-502 instrument to conduct temporal phenotyping of senescence.A total of 262 recombinant inbred lines derived from the cross of Zhongmai 578/Jimai 22 were evaluated for senescence-related traits across three environments,spanning from heading to 35 d post-anthesis.The manual senescence rate(MSR)was quantified using the FLC and the active accumulated temperature,and UAV derived vegetation index were utilized to assess the stay-green rate(USG)facilitating the identification of senescent and stay-green lines.Results indicated that higher senescence rates significantly impacted grain yield,primarily by influencing thousand-kernel weight,and plant height.Quantitative trait loci(QTL)mapping for FLC,USG,and MSR using the 50K SNP array identified 38 stable loci associated with RGB-based vegetation indices and senescence-related traits:among which 19 loci related to senescence traits from UAV and FLC were consistently detected across at least two growth stages,with nine loci likely representing novel QTL.This study highlights the potential of UAV-based high-throughput phenotyping and phenology in identifying critical loci associated with senescence rates in wheat,validating the relationship between senescence rates and yield-related traits in wheat,offering valuable opportunities for gene discovery and significant applications in breeding programs.展开更多
China and CIMMYT have collaborated on wheat improvement for over 40 years and significant progress has been achieved in five aspects in China.A standardized protocol for testing Chinese noodle quality has been establi...China and CIMMYT have collaborated on wheat improvement for over 40 years and significant progress has been achieved in five aspects in China.A standardized protocol for testing Chinese noodle quality has been established with three selection criteria, i.e.,gluten quality, starch viscosity and flour color are identified as being responsible for noodle quality.Genomic approaches have been used to develop and validate genespecific markers, leading to the establishment of a KASP platform, and seven cultivars have been released through application of molecular marker technology.Methodology for breeding adult-plant resistance to yellow rust, leaf rust and powdery mildew, based on the pleiotropic effect of minor genes has been established, resulting in release of six cultivars.More than 330 cultivars derived from CIMMYT germplasm have been released and are now grown over 9% of the Chinese wheat production area.Additionally, physiological approaches have been used to characterize yield potential and develop high-efficiency phenotyping platforms.CIMMYT has also provided valuable training for Chinese scientists.Development of climate-resilient cultivars with application of new technology will be the priority for future collaboration.展开更多
The International Maize and Wheat Improvement Center(CIMMYT) is the global leader in publiclyfunded maize and wheat research and in farming systems based on these crops.CIMMYT leads the Global Wheat Program(GWP), whic...The International Maize and Wheat Improvement Center(CIMMYT) is the global leader in publiclyfunded maize and wheat research and in farming systems based on these crops.CIMMYT leads the Global Wheat Program(GWP), which includes some of the largest wheat breeding programs in the world.The GWP has been successful in developing wheat germplasm that is used extensively worldwide.Wheat quality improvement is a central component of all the breeding efforts at CIMMYT and the Wheat Chemistry and Quality Laboratory represents an integral part of the breeding programs.Wheat quality is addressed at CIMMYT over the full range of this very wide and variable concept with milling,processing, end-use and nutritional quality targeted.Wheat progenitors and advanced lines developed by the breeders are assessed for diverse quality attributes, with the aim of identifying those that fulfill the requirements in terms of milling, processing, end-use and nutritional quality in different target regions.Significant research is conducted to make more efficient the integration of wheat quality traits in the breeding programs.The main topics being addressed are(1) methodologies to analyze grain quality traits,(2) genetic control and environmental effects on quality traits,(3) characterization of genetic resources for quality improvement, and(4) diversifying grain properties for novel uses.展开更多
基金financial resources from the Durable Rust Resistant Wheat Project led by Cornell University,USAsupported by the Bill & Melinda Gates Foundation+6 种基金ICAR-IndiaUSDA-ARS and USAID,USAGRDC AustraliaAgrovegetal-Spainthe Northwestern Mexican Farmer Association (Patronato) and CONFUPRO,MexicoSDC,SwitzerlandCIMMYT and INIFAP
文摘Wheat rusts continue to cause significant losses worldwide despite major efforts given to their genetic control. This is due to frequent evolution and selection of virulence in pathogen overcoming the deployed race-specific resistance genes. Although the life of effective race-specific resistance genes can be prolonged by using gene combinations, an alternative approach being implemented at CIMMYT is to deploy varieties that posses adult plant resistance (APR) based on combinations of minor, slow rusting genes. When present alone, the APR genes do not confer adequate resistance especially under high disease pressure; however, combinations of 4 or 5 minor genes usually result in "near-immunity" or a high level of resistance. Although only a few APR genes are catalogued, various APR QTLs are now known and could lead to further characterization of additional genes. Four characterized genes have pleiotropic effects in conferring partial APR to all 3 rusts and powdery mildew, thus simplifying the task of breeding wheat varieties that are resistant to multiple diseases. Significant progress was made recently in developing high-yielding wheat germplasm that possesses high levels of APR to all three rusts by implementing a Mexico- Kenya shuttle breeding scheme. Parents with APR to Ug99 were hybridized with high-yielding parents that had adequate to high levels of APR to leaf rust and yellow rust. Segregating populations and advanced lines from these crosses were selected under high rust pressures in Mexico (leaf rust and yellow rust) and Kenya (Ug99 stem rust and yellow rust) to identify high- yielding progenies that possess high to adequate APR to all three rusts. International distribution of these high-yielding wheats is underway through CIMMYT intemational yield trials and screening nurseries. It is expected that several wheat varieties with APR to three rusts will be released and grown in various countries in the near-future that will allow determining the durability of resistance.
基金funded by the National Natural Science Foundation of China(32272186)the Beijing Natural Science Foundation,China(6242031)+5 种基金the Basal Research Fund of the Chinese Academy of Agricultural Sciences(CAAS)(S2022QH04)the National Key R&D Program of China(2022YFD1201500)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(YESS,2020QNRC001)the Modern Cold and Drought Characteristic Agricultural Seed Industry Research Project-2025,Gansu Province,China(ZYGG-2025-8)the Nanfan Special Project,CAAS(YBXM2303)the Science and Technology Innovation Program of CAAS。
文摘Black point is a black discoloration of the grain embryo that reduces the grain quality and commodity grade.Identifying the underlying genetic loci can facilitate the improvement of black point resistance in wheat.Here,262 recombinant inbred lines(RILs)from the cross of Zhongmai 578/Jimai 22 were evaluated for their black point reactions in fve environments.A high-density genetic linkage map of the RIL population was constructed with the wheat 50K single nucleotide polymorphism(SNP)array.Six stable QTLs for black point resistance were detected,QBp.caas-2A,QBp.caas-2B1,QBp.caas-2B2,QBp.caas-2D,QBp.caas-3A,and QBp.caas-5B,which explained 2.1-28.8%of the phenotypic variances.The resistance alleles of QBp.caas-2B1 and QBp.caas-2B2 were contributed by Zhongmai 578 while the others were from Jimai 22.QBp.caas-2B2,QBp.caas-2D and QBp.caas-3A overlapped with previously reported loci,whereas QBp.caas-2A,QBp.caas-2B1 and QBp.caas-5B are likely to be new.Five kompetitive allele-specifc PCR(KASP)markers,Kasp_2A_BP,Kasp_2B1_BP,Kasp_2B2_BP,Kasp_3A_BP,and Kasp_5B_BP,were validated in a natural population of 165 cultivars.The fndings of this study provide useful QTLs and molecular markers for the improvement of black point resistance in wheat through marker-assisted breeding.
基金supported by the National Key Research and Development Program of China(2022YFD1201300,2022YFD1201500)Biological Breeding-National Science and Technology Major Project(2023ZD04025)+1 种基金National Natural Science Foundation of China(W2412009,32372173,32101779,32260485)the Hubei Hongshan Laboratory(2022hspy001,2021hskf008,and 2022hspy010).
文摘Leaf rust,caused by the fungus Puccinia triticina,is one of the most destructive diseases affecting global wheat production.Developing disease-resistant wheat varieties is the most cost-effective and environmentally friendly approach to managing this disease.We phenotyped a collection of 559 wheat accessions from five continents for resistance to leaf rust in field trials at three locations in China(Zhoukou,Henan;Wuhan,Hubei;and Xinxiang,Henan)during the 2020–2021,2021–2022,and 2022–2023 cropping seasons,followed by best-linear-unbiased-estimation analysis across environments.These accessions were genotyped using the MGISEQ-2000 re-sequencing platform,and a genome-wide association analysis was subsequently performed.Twenty-four stable leaf rust resistance loci across 15 chromosomes were identified.Among these,11 loci may represent new sources of resistance.Notably,Lr.hzau-2BS.1 and Lr.hzau-7AL were consistently detected across all three environments and BLUE.Lr.hzau-2BS.1 has the highest frequency in European wheat accessions,whereas Lr.hzau-7AL is most prevalent in South American accessions.Gene-expression analysis identified 101 candidate genes associated with these loci.Closely linked Kompetitive Allele Specific PCR(KASP)markers,2B-209172 and 7A-348992,were developed for Lr.hzau-2BS.1 and Lr.hzau-7AL,respectively.Chinese wheat varieties Mianmai 45 and Liaomai 16,which carry resistance alleles at both loci and exhibit<5%leaf rust severity,represent valuable sources of leaf rust resistance for wheat breeding programs.These newly identified resistance loci and their KASP markers provide valuable resource for their exploitation in wheat breeding.
基金supported by the STI 2030-Major Projects(2023ZD0406903)the National Natural and Science Foundation of China(32272182)+1 种基金the Postdoctoral Fellowship Program of CPSF(GZC20241955)the Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS).
文摘High molecular weight glutenin subunits(HMW-GS),major components of seed storage proteins in wheat,have large effects on processing quality.GLU-1 genes encode HMW-GS and their expression is mainly controlled at the transcriptional level by interactions between cis-regulatory elements and transcription factors.We previously identified an Aux/IAA transcription factor TaIAA10-6D that bound to a conserved cis-regulatory module CCRM1-1,the most essential conserved cis-regulatory module in GLU-1.Here,we confirmed the binding of TaIAA10-6D to CCRM1-1 using yeast one hybrid and dualluciferase reporter assays.The enhanced expression of TaIAA10-6D suppressed glutenin accumulation and increased gliadin content.Dynamic transcriptome analyses revealed that TaIAA10-6D overexpression down-regulated glutenin and gliadin genes during an early stage of grain filling,but up-regulated gliadin genes during a late stage probably by endoplasmic reticulum stress,accounting for its effect on the tradeoff between glutenin and gliadin.Rheological property and processing quality assays showed that TaIAA10-6D overproduction reduced stabilization time and bread quality,but enhanced cookie quality.Overexpression of TaIAA10-6D also reduced plant height,leaf size,kernel number and grain yield.We identified two major haplotypes of TaIAA10-6D,Hap I and Hap II,and developed a breeding-friendly diagnostic marker.Hap I conferred higher expression of TaIAA10-6D and concomitantly reduced plant height and kernel number,but had little effect on grain yield,contributing to lodging resistance without yield penalty.Hap I was subjected to positive selection in breeding.The findings provide a useful gene for wheat improvement and broaden insights into the regulatory machinery underpinning auxin-mediated quality formation,plant morphogenesis and yield gain.
基金supported by National Natural Science Foundation of Henan(212300410046)the Henan Innovative Talent Project(22HASTIT040)Key Project for Research and Practice on Higher Education Teaching Reform at Henan Agricultural University(2024XJGLX031)。
文摘Fusarium ear rot(FER)caused by Fusarium species severely reduces grain yield and quality of maize.Genome prediction(GP),a promising tool for quantitative trait breeding in plants and animals,uses molecular markers for capturing quantitative trait loci and predicting the genetic value of candidates for selection.In the present study,different subsets of markers and statistical methods for GP accuracy were tested in diverse inbred populations for FER resistance using a five-fold cross-validation approach.The prediction accuracy increased with an increase in the number of random markers;however,an increase in number beyond 10K did not increase the prediction accuracy.The prediction accuracy of selected markers was higher than that of random markers,and 500–1000 selected markers had the highest prediction accuracy,beyond which it slowly decreased.Although there was no difference among statistical methods when using selected markers at high prediction accuracy,significant differences were observed when using random markers.On this basis,a liquid chip named FER0.4K(liquid chip for genomic prediction of FER)containing 381 SNPs was developed for low-cost,high-throughput genotyping,with a prediction of approximately 0.82.The statistical method of genome prediction was compiled into a web-based,easy-to-use statistical analysis software using the‘‘shiny”package in R.In summary,this study provides a foundation for FER resistance breeding in maize and offers new insights into the genetic improvement of other complex quantitative traits in plants.
基金funded by the National Key Research and Development Program of China(2022ZD0115703)the National Natural Science Foundation of China(32372196)+1 种基金the Beijing Joint Research Program for Germplasm Innovation and New Variety Breeding(G20220628002)National Natural Science Foundation of China(32250410307)。
文摘Non-destructive time-series assessment of chlorophyll content in flag-leaf(FLC)accurately mimics the senescence rate and the identification of genetic loci associated with senescence provides valuable knowledge to improve yield stability under stressed environments.In this study,we employed both unmanned aerial vehicles(UAVs)equipped with red–green–blue(RGB)camera and ground-based SPAD-502 instrument to conduct temporal phenotyping of senescence.A total of 262 recombinant inbred lines derived from the cross of Zhongmai 578/Jimai 22 were evaluated for senescence-related traits across three environments,spanning from heading to 35 d post-anthesis.The manual senescence rate(MSR)was quantified using the FLC and the active accumulated temperature,and UAV derived vegetation index were utilized to assess the stay-green rate(USG)facilitating the identification of senescent and stay-green lines.Results indicated that higher senescence rates significantly impacted grain yield,primarily by influencing thousand-kernel weight,and plant height.Quantitative trait loci(QTL)mapping for FLC,USG,and MSR using the 50K SNP array identified 38 stable loci associated with RGB-based vegetation indices and senescence-related traits:among which 19 loci related to senescence traits from UAV and FLC were consistently detected across at least two growth stages,with nine loci likely representing novel QTL.This study highlights the potential of UAV-based high-throughput phenotyping and phenology in identifying critical loci associated with senescence rates in wheat,validating the relationship between senescence rates and yield-related traits in wheat,offering valuable opportunities for gene discovery and significant applications in breeding programs.
基金funded by the National Natural Science Foundation of China (31461143021, 31761143006)
文摘China and CIMMYT have collaborated on wheat improvement for over 40 years and significant progress has been achieved in five aspects in China.A standardized protocol for testing Chinese noodle quality has been established with three selection criteria, i.e.,gluten quality, starch viscosity and flour color are identified as being responsible for noodle quality.Genomic approaches have been used to develop and validate genespecific markers, leading to the establishment of a KASP platform, and seven cultivars have been released through application of molecular marker technology.Methodology for breeding adult-plant resistance to yellow rust, leaf rust and powdery mildew, based on the pleiotropic effect of minor genes has been established, resulting in release of six cultivars.More than 330 cultivars derived from CIMMYT germplasm have been released and are now grown over 9% of the Chinese wheat production area.Additionally, physiological approaches have been used to characterize yield potential and develop high-efficiency phenotyping platforms.CIMMYT has also provided valuable training for Chinese scientists.Development of climate-resilient cultivars with application of new technology will be the priority for future collaboration.
基金Funding for wheat quality improvement at CIMMYT is provided by CGIAR CRP WHEAT, Harvest Plus Challenge Program, Durable Genetic Gains in Wheat Project (Bill and Melinda Gates Foundation and DFID through a Grant to Cornell University), and Mas Agro Trigo (Sagarpa, Mexico)
文摘The International Maize and Wheat Improvement Center(CIMMYT) is the global leader in publiclyfunded maize and wheat research and in farming systems based on these crops.CIMMYT leads the Global Wheat Program(GWP), which includes some of the largest wheat breeding programs in the world.The GWP has been successful in developing wheat germplasm that is used extensively worldwide.Wheat quality improvement is a central component of all the breeding efforts at CIMMYT and the Wheat Chemistry and Quality Laboratory represents an integral part of the breeding programs.Wheat quality is addressed at CIMMYT over the full range of this very wide and variable concept with milling,processing, end-use and nutritional quality targeted.Wheat progenitors and advanced lines developed by the breeders are assessed for diverse quality attributes, with the aim of identifying those that fulfill the requirements in terms of milling, processing, end-use and nutritional quality in different target regions.Significant research is conducted to make more efficient the integration of wheat quality traits in the breeding programs.The main topics being addressed are(1) methodologies to analyze grain quality traits,(2) genetic control and environmental effects on quality traits,(3) characterization of genetic resources for quality improvement, and(4) diversifying grain properties for novel uses.