In low-permeability geothermal reservoirs,hydro-shearing of pre-existing natural fractures plays a crucial role in improving connectivity between injection and production wells,thereby enhancing heat extraction effici...In low-permeability geothermal reservoirs,hydro-shearing of pre-existing natural fractures plays a crucial role in improving connectivity between injection and production wells,thereby enhancing heat extraction efficiency.This process increases fracture conductivity through dilation caused by injectioninduced slip;however,it also carries the risk of inducing seismic events,posing significant challenges for geothermal operations.This study employs a coupled hydro-mechanical numerical model based on the boundary element method to simulate hydro-shearing under two distinct fluid injection scenarios:(1)monotonic injection and(2)cyclic injection regulated by a traffic light system(TLS).The model assesses the effectiveness of these injection regimes in enhancing fracture conductivity while mitigating seismic hazards.Results indicate that monotonic injection frequently triggers a cascade of seismic events,disrupting pressure and stress distributions on nearby faults and resulting in complex seismic and aseismic interactions.In contrast,TLS-regulated cyclic injection,when carefully managed,promotes stable slip behavior and improves fracture conductivity.This approach proves particularly effective over extended durations during the simultaneous stimulation of two parallel faults.However,in multi-stage stimulation scenariosdwhere natural fractures are stimulated sequentiallydTLS-based cyclic injection,while more efficient at enhancing conductivity,may increase seismicity risk with prolonged application,thereby limiting its safe operational window.展开更多
The presence of clay coatings on the surfaces of quartz grains can play a pivotal role in determining the porosity and permeability of sandstone reservoirs,thus directly impacting their reservoir quality.This study em...The presence of clay coatings on the surfaces of quartz grains can play a pivotal role in determining the porosity and permeability of sandstone reservoirs,thus directly impacting their reservoir quality.This study employs a multiphase-field model of syntaxial quartz cementation to explore the effects of clay coatings on quartz cement volumes,porosity,permeability,and their interrelations in sandstone formations.To generate various patterns of clay coatings on quartz grains within three-dimensional(3D)digital sandstone grain packs,a pre-processing toolchain is developed.Through numerical simulation experiments involving syntaxial overgrowth cementation on both single crystals and multigrain packs,the main coating parameters controlling quartz cement volume are elucidated.Such parameters include the growth of exposed pyramidal faces,lateral encasement,coating coverage,and coating pattern,etc.The coating pattern has a remarkable impact on cementation,with the layered coatings corresponding to fast cement growth rates.The coating coverage is positively correlated with the porosity and permeability of sandstone.The cement growth rate of quartz crystals is the lowest in the vertical orientation,and in the middle to late stages of evolution,it is faster in the diagonal orientation than in the horizontal orientation.Through comparing the simulated results of dynamic evolution process with the actual features,it is found that the simulated coating patterns after 20 d and 40 d show clear similarities with natural samples,proving the validity of the proposed three-dimensional numerical modeling of coatings.The methodology and findings presented contribute to improved reservoir characterization and predictive modeling of sandstone formations.展开更多
Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their se...Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their service life is essential for the overall functionality of geotechnical infrastructure.Distributed Brillouin sensing(DBS)is increasingly applied in geotechnical projects due to its ability to acquire spatially continuous strain and temperature distributions over distances of up to 150 km using a single optical fibre.However,limited by the complex operations of distributed optic fibre sensing(DFOS)sensors in curved structures,previous reports about exploiting DBS in geotechnical structural health monitoring(SHM)have mostly been focused on flat surfaces.The lack of suitable DFOS installation methods matched to the spatial characteristics of continuous monitoring is one of the major factors that hinder the further application of this technique in curved structures.This review paper starts with a brief introduction of the fundamental working principle of DBS and the inherent limitations of DBS being used on monitoring curved surfaces.Subsequently,the state-of-the-art installation methods of optical fibres in curved structures are reviewed and compared to address the most suitable scenario of each method and their advantages and disadvantages.The installation challenges of optical fibres that can highly affect measurement accuracy are also discussed in the paper.展开更多
It is never an easy task for China to feed 1.4 billion people with only 7%of the world's arable land.With nearly 30%of the world's nitrogen(N)fertilizer applied,China achieves high crop yields while facing N p...It is never an easy task for China to feed 1.4 billion people with only 7%of the world's arable land.With nearly 30%of the world's nitrogen(N)fertilizer applied,China achieves high crop yields while facing N pollution result-ing from excessive N input.Here,we calculate the farmland N budget on the national and regional scales.The N use efficiency(NUE)in China increased by 28.0%during 2005-2018.This improvement is due to the reduction in fertilization and the improvement of crop management.The fragmented farmland is changing to large-scale farmland with the increase in cultivated land area per rural population and the development of agricultural mech-anization.This opportunity brings more possibilities for precision farmland management,thus further improving NUE.The goal of an NUE of 0.6 may be achieved in the 2040s based on the current development trend.This striking N use shift in China has important implications for other developing countries.展开更多
The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a...The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.展开更多
This paper introduces the use of point cloud processing for extracting 3D rock structure and the 3DEC-related reconstruction of slope failure,based on a case study of the 2019 Pinglu rockfall.The basic processing proc...This paper introduces the use of point cloud processing for extracting 3D rock structure and the 3DEC-related reconstruction of slope failure,based on a case study of the 2019 Pinglu rockfall.The basic processing procedure involves:(1)computing the point normal for HSV-rendering of point cloud;(2)automatically clustering the discontinuity sets;(3)extracting the set-based point clouds;(4)estimating of set-based mean orientation,spacing,and persistence;(5)identifying the block-forming arrays of discontinuity sets for the assessment of stability.The effectiveness of our rock structure processing has been proved by 3D distinct element back analysis.The results show that Sf M modelling and rock structure computing provides enormous cost,time and safety incentives in standard engineering practice.展开更多
This study assesses the chemical quality of water resources in the Lower Senegal River valley, based on 35 samples collected in November 2022. Major ion concentrations in surface water and groundwater were analyzed us...This study assesses the chemical quality of water resources in the Lower Senegal River valley, based on 35 samples collected in November 2022. Major ion concentrations in surface water and groundwater were analyzed using classical geochemical interpretation diagrams (Piper, GIBBS, etc.) and multivariate geostatistical analyses, including hierarchical cluster analysis (HCA) and principal component analysis (PCA). The results revealed three types of facies: Ca-Mg-HCO3-type facies, characteristic of poorly mineralized waters such as surface waters and groundwater from dune formations and the alluvial plain close to the hydraulic axis;Na-Cl type facies associated with well waters located in the alluvial plain that tap Inchirian or Nouakchottian shallow reservoirs and Maastrichtian deep borehole waters;and mixed Ca-Cl and Na-HCO3 type facies observed in certain floodplain and dune reservoirs. The results showed a strong correlation between sodium, chlorides, bromides, and electrical conductivity, indicating a significant contribution of these ions to groundwater mineralization. The various sources of water mineralization include mixing processes between surface water or rainwater, or calcite or dolomite dissolution processes (for weakly mineralized waters), basic exchanges or inverse basic exchanges between the aquifer and the water table (for moderately mineralized waters), and evaporation processes, halite dissolution, and paleosalinity during periods of marine transgression and regression (for highly mineralized waters). The study also highlighted the high vulnerability of the alluvial aquifer to pollution from intensive irrigated agriculture, as significant quantities of sulfates and nitrates were measured in some samples. These results also highlight the importance of water quality management in the Lower Senegal Valley, particularly as concerns the protection of the alluvial aquifer against pollution from irrigated agriculture.展开更多
Precision agriculture(PA)is an agricultural management strategy based on observation,measurement and response to the variability of inter/intra-champ cultures.It includes advances in terms of data collection,analysis ...Precision agriculture(PA)is an agricultural management strategy based on observation,measurement and response to the variability of inter/intra-champ cultures.It includes advances in terms of data collection,analysis and management,as well as technological developments in terms of data storage and recovery,precise positioning,yield monitoring and remote sensing.The latter offers an unprecedented spatial,spectral and temporal resolution,but can also provide detailed information on the height of the vegetation and various observations.Today,the success of new agricultural technologies means that many agricultural tasks have become automated and that scientists have conducted more studies and research based on smart algorithms that automatically learn the decision rules from data.The use of Deep Learning(DL)and in particular the development and application of some of its algorithms called Convolutional Neural Networks(CNNs)are considered to be a particular success.In this work,we have applied and tested the performance of a network of convolutional neural network to automatically detect and map olive trees from Phantom4 drone imagery.The workflow involved the acquisition of images and the generation of ortho-mosaic with Pix4D software,as well as the use of a geographic information system.The results obtained with a training dataset of 4500 images of 24∗24 pixels are very satisfying:95%Precision,a 99%Recall and an F-score of 97%.展开更多
Recent monitoring techniques employ multiple sources of information for the characterization of the phenomenon to be studied, being the coupling and adjustment of multi-source data one of the first challenges to consi...Recent monitoring techniques employ multiple sources of information for the characterization of the phenomenon to be studied, being the coupling and adjustment of multi-source data one of the first challenges to consider and solve. The authors propose a new framework of the multi-source and multi-temporal data-oriented fusion for the characterization of landslide events. The main objective is to generate 3D virtual models(in the form of dense point clouds) and feed them back with the characteristic of soil and subsoil information. The scheme consists of three main steps. The first one is on-site data collection(geological characterization, geophysical measurements, GPS measurements, and UAV/drone mapping). The second step is generation of a high-resolution 3D virtual model(~1-inch spatial resolution) from the frames acquired through the UAV using the structure of motion(SfM) processing;the developed virtual model is optimized with GPS measurements to minimize geolocation error and eliminate distortions. The last step is assembling of the acquired data in the field and densified point cloud considering the different nature of the data, re-escalating procedure and the information stacking layer.展开更多
Besides obvious benefits,the Three Gorges Dam's construction resulted in new pollution scenarios with the potentials to threaten the Three Gorges Reservoir(TGR) ecosystem.In order to record organic contamination,to...Besides obvious benefits,the Three Gorges Dam's construction resulted in new pollution scenarios with the potentials to threaten the Three Gorges Reservoir(TGR) ecosystem.In order to record organic contamination,to find links to ecotoxicological impacts and to serve as reference for ensuing monitoring,several sites in the TGR area were screened applying the triad approach with additional lines-of-evidence as a holistic assessment method.Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011 and 2012 to determine organic pollution levels,mutagenic potentials and genotoxic impacts.Two regional hot-spots near the cities of Chongqing and Kaixian were identified and further investigated in 2013.Only polycyclic aromatic hydrocarbons(PAHs) could be detected in sediments in 2011(165-1653 ng/g),emphasizing their roles as key pollutants of the area.Their ubiquity was confirmed at Chongqing(150-433 ng/g) and Kaixian(127-590 ng/g) in2013.Concentrations were comparable to other major Chinese and German rivers.However,the immense sediment influx suggested a deposition of 216-636 kg PAH/day(0.2-0.6 mg PAH/(m2·day)),indicating an ecotoxicological risk.PAH source analysis highlighted primary impacts of combustion sources on the more industrialized upper TGR section,whereas petrogenic sources dominated the mid-low section.Furthermore,sediment extracts from several sites exhibited significant activities of frameshift promutagens in the Ames fluctuation assay.Additionally,significant genotoxic impairments in erythrocytes of P.vachellii were detected(Chongqing/Kaixian),demonstrating the relevance of genotoxicity as animportant mode of action in the TGR's fish.PAHs,their derivatives and non-target compounds are considered as main causative agents.展开更多
The typical climatic and environmental conditions in Central Asia are major natural factors causing local rock masses to face considerable risks of damage due to constant freeze-thaw cycles. In addition, these are exa...The typical climatic and environmental conditions in Central Asia are major natural factors causing local rock masses to face considerable risks of damage due to constant freeze-thaw cycles. In addition, these are exacerbated by the dense acidic environments in certain industrialized areas, such as Northern Sinkiang, China. To provide local engineering design with workable solutions, it is crucial to analyze the mechanical performance of rock masses and its mechanisms under the coupling action of corrosive acid and freeze-thaw cycles. In this study, granite samples from the northern Tien Shan Mountains near Urumchi, Xinjiang Province, as well as two kinds of sandstone samples for comparison, were subjected to different soaking conditions, including nitric acid soaking at various pH values. One or both of the freeze-thaw cycle tests and uniaxial compression test were then executed. Speculations regarding the mechanism of the performance of granite rock masses under the action of corrosive acid and freeze-thaw cycles were developed based on the results of these tests. X-ray diffraction and scanning electron microscopy were implemented to demonstrate the feasibility of the speculated mechanism. In this paper, the identification of the white crumb-like substance as SiO_(2) gel were confirmed.展开更多
An analysis of drill cores and well logs shows that the main micro-facies of the third member sand bodies of the Qingshankou Formation in Qian'an are subaqueous distributary channel facies, sheet sand facies and suba...An analysis of drill cores and well logs shows that the main micro-facies of the third member sand bodies of the Qingshankou Formation in Qian'an are subaqueous distributary channel facies, sheet sand facies and subaqueous fan facies (olistostrome). Maps showing the distribution of these micro-facies together with inter-channel bay and prodelta mocro-facies are presented for different time-slices (lower, middle and upper parts of the Qingshankou Formation). These maps reveal the instability and change of sediment transport in the Baokang sedimentary system during the depositional period. Sediment transport was from the west in the early stage, from the south in the middle stage and from the northwest in the late stage. Values of thickness, porosity and permeability of the sand bodies in the third member of the Qingshankou Formation show that they have low to medium porosity and low permeability, and are characterized by serious reservoir heterogeneity. The joints between micro-facies and subaqueous fan micro-facies are characterized by the highest heterogeneity, the sheet sand and distal sand bar subfacies come next, and the heterogeneity of the subaqueous distributary channel sand bodies is relatively weak.展开更多
The present work was conducted in the basin of Laayoun-Dakhla (South Morocco) to: 1) identify the recharge and flow characteristics of the Lower Cretaceous aquifer (LC);and 2) provide information about the mineralizat...The present work was conducted in the basin of Laayoun-Dakhla (South Morocco) to: 1) identify the recharge and flow characteristics of the Lower Cretaceous aquifer (LC);and 2) provide information about the mineralization of aquifer’s water. Isotopic and hydrochemical compositions combined with the geological and hydrogeological settings were used for this purpose. The principal changes in chemical composition of LC groundwater result from mixing with water of deeper circulation. Closer analysis of available chemical data reveals the importance of dissolution/precipitation processes in evolution of groundwater chemistry. Piezometric levels, as well as chemical and isotopic composition of groundwaters, confirm hydraulic connection between the LC and the others aquifers. Overlap of some major characteristics (δ18O, δ2H, Cl-) in this aquifer suggests that mixing processes considerably influence the hydrochemical evolution of water. The surface electrical resistivity does not indicate any freshwater-saltwater interface in the coastal aquifer and the relationship between 18O and Cl allows us to reject the hypothesis of a seawater intrusion.展开更多
Ground penetrating radar, electromagnetic terrain conductivity, and electric tomography have proven to be effective tools if they are combined together to investigate archeological sites. We have conducted a geophysic...Ground penetrating radar, electromagnetic terrain conductivity, and electric tomography have proven to be effective tools if they are combined together to investigate archeological sites. We have conducted a geophysical survey at the Akhmim archaeological site, the main objective of our survey is to locate additional buried structures for further excavation. Geophysical data were acquired in the area using the GEM-300 multi-frequency terrain conductivity profiler, the SIR 2000 ground penetrating radar, and the Syscal R2 resistivity meter systems. The results of the integrated interpretation show a number of buried features and a strong linear zone about 1 m wide that coincides with the suspected trend of a buried wall. There appears to be two parallel ridges of strong reflections on either side, indicating two parallel walls extended East-West and a room is identified at the bottom left comer of the site. Moreover, the interpretation results of some selected GPR and dipoledipole resistivity profiles adjacent to the open-air museum suggest the existence of a second statue of Ramses Ⅱ to the right of the previously discovered statue which could still be buried in the sand.展开更多
In this work,the evolutions of stresses in both phases of the Al/SiCp composite subjected to thermal cycling during in situ compression test were measured using Time of Flight neutron diffraction.It was confirmed that...In this work,the evolutions of stresses in both phases of the Al/SiCp composite subjected to thermal cycling during in situ compression test were measured using Time of Flight neutron diffraction.It was confirmed that inter-phase stresses in the studied composite can be caused by differences in the coefficient of thermal expansion for the reinforcement and matrix,leading to a different variation of phase volumes during sample heating or cooling.The results of the diffraction experiment during thermal cycling were well predicted by the Thermo-Mechanical Self-Consistent model.The experimental study of elastic-plastic deformation was carried out in situ on a unique diffractometer EPSILON-MDS(JINR in Dubna,Russia)with nine detector banks measuring interplanar spacings simultaneously in 9 orientations of scattering vector.For the first time,the performed analysis of experimental data allowed to study the evolution of full stress tensor in both phases of the composite and to consider the decomposition of this tensor into deviatoric and hydrostatic components.It was found that the novel Developed Thermo-Mechanical SelfConsistent model correctly predicted stress evolution during compressive loading,taking into account the relaxation of thermal origin hydrostatic stresses.The comparison of this model with experimental data at the macroscopic level and the level of phases showed that strengthening of the Al/SiCp composite is caused by stress transfer from the plastically deformed A12124 matrix to the elastic SiCp reinforcement,while thermal stresses relaxation does not significantly affect the overall composite properties.展开更多
Sea urchin spines were chosen as a model system for biomimetic ceramics obtained using starch-blended slip casting. Porous alumina ceramics with cap-shaped layers with different alternating porosities were found to ha...Sea urchin spines were chosen as a model system for biomimetic ceramics obtained using starch-blended slip casting. Porous alumina ceramics with cap-shaped layers with different alternating porosities were found to have superior fracture behavior under bulk compression compared to ceramics with uniform porosity.They fail in a cascading manner,absorbing high amounts of energy during extended compression paths.The porosity variation in an otherwise single phase material mimicks the architectural microstructure design of sea urchin spines of Heterocentrotus mammillatus,which are promising model materials for impact protection.展开更多
基金the financial support of the Helmholtz Association's Initiative and Networking Fund for the Helmholtz Young Investigator Group ARES(Contract number VHNG-1516).
文摘In low-permeability geothermal reservoirs,hydro-shearing of pre-existing natural fractures plays a crucial role in improving connectivity between injection and production wells,thereby enhancing heat extraction efficiency.This process increases fracture conductivity through dilation caused by injectioninduced slip;however,it also carries the risk of inducing seismic events,posing significant challenges for geothermal operations.This study employs a coupled hydro-mechanical numerical model based on the boundary element method to simulate hydro-shearing under two distinct fluid injection scenarios:(1)monotonic injection and(2)cyclic injection regulated by a traffic light system(TLS).The model assesses the effectiveness of these injection regimes in enhancing fracture conductivity while mitigating seismic hazards.Results indicate that monotonic injection frequently triggers a cascade of seismic events,disrupting pressure and stress distributions on nearby faults and resulting in complex seismic and aseismic interactions.In contrast,TLS-regulated cyclic injection,when carefully managed,promotes stable slip behavior and improves fracture conductivity.This approach proves particularly effective over extended durations during the simultaneous stimulation of two parallel faults.However,in multi-stage stimulation scenariosdwhere natural fractures are stimulated sequentiallydTLS-based cyclic injection,while more efficient at enhancing conductivity,may increase seismicity risk with prolonged application,thereby limiting its safe operational window.
基金the Helmholtz association for funding the main parts of the modeling and simulation research work under the program“MTET:38.04.04”。
文摘The presence of clay coatings on the surfaces of quartz grains can play a pivotal role in determining the porosity and permeability of sandstone reservoirs,thus directly impacting their reservoir quality.This study employs a multiphase-field model of syntaxial quartz cementation to explore the effects of clay coatings on quartz cement volumes,porosity,permeability,and their interrelations in sandstone formations.To generate various patterns of clay coatings on quartz grains within three-dimensional(3D)digital sandstone grain packs,a pre-processing toolchain is developed.Through numerical simulation experiments involving syntaxial overgrowth cementation on both single crystals and multigrain packs,the main coating parameters controlling quartz cement volume are elucidated.Such parameters include the growth of exposed pyramidal faces,lateral encasement,coating coverage,and coating pattern,etc.The coating pattern has a remarkable impact on cementation,with the layered coatings corresponding to fast cement growth rates.The coating coverage is positively correlated with the porosity and permeability of sandstone.The cement growth rate of quartz crystals is the lowest in the vertical orientation,and in the middle to late stages of evolution,it is faster in the diagonal orientation than in the horizontal orientation.Through comparing the simulated results of dynamic evolution process with the actual features,it is found that the simulated coating patterns after 20 d and 40 d show clear similarities with natural samples,proving the validity of the proposed three-dimensional numerical modeling of coatings.The methodology and findings presented contribute to improved reservoir characterization and predictive modeling of sandstone formations.
基金support provided by Science Foundation Ireland Frontiers for the Future Programme,21/FFP-P/10090.
文摘Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their service life is essential for the overall functionality of geotechnical infrastructure.Distributed Brillouin sensing(DBS)is increasingly applied in geotechnical projects due to its ability to acquire spatially continuous strain and temperature distributions over distances of up to 150 km using a single optical fibre.However,limited by the complex operations of distributed optic fibre sensing(DFOS)sensors in curved structures,previous reports about exploiting DBS in geotechnical structural health monitoring(SHM)have mostly been focused on flat surfaces.The lack of suitable DFOS installation methods matched to the spatial characteristics of continuous monitoring is one of the major factors that hinder the further application of this technique in curved structures.This review paper starts with a brief introduction of the fundamental working principle of DBS and the inherent limitations of DBS being used on monitoring curved surfaces.Subsequently,the state-of-the-art installation methods of optical fibres in curved structures are reviewed and compared to address the most suitable scenario of each method and their advantages and disadvantages.The installation challenges of optical fibres that can highly affect measurement accuracy are also discussed in the paper.
基金supported by the National Natural Science Foun-dation of China(Grants No.U21A2025 and 41907151)the National Key Research and Development Program of China(Grant No.2022YFD1700700).
文摘It is never an easy task for China to feed 1.4 billion people with only 7%of the world's arable land.With nearly 30%of the world's nitrogen(N)fertilizer applied,China achieves high crop yields while facing N pollution result-ing from excessive N input.Here,we calculate the farmland N budget on the national and regional scales.The N use efficiency(NUE)in China increased by 28.0%during 2005-2018.This improvement is due to the reduction in fertilization and the improvement of crop management.The fragmented farmland is changing to large-scale farmland with the increase in cultivated land area per rural population and the development of agricultural mech-anization.This opportunity brings more possibilities for precision farmland management,thus further improving NUE.The goal of an NUE of 0.6 may be achieved in the 2040s based on the current development trend.This striking N use shift in China has important implications for other developing countries.
文摘The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.
基金supported by the National Innovation Research Group Science Fund(No.41521002)the National Key Research and Development Program of China(No.2018YFC1505202)。
文摘This paper introduces the use of point cloud processing for extracting 3D rock structure and the 3DEC-related reconstruction of slope failure,based on a case study of the 2019 Pinglu rockfall.The basic processing procedure involves:(1)computing the point normal for HSV-rendering of point cloud;(2)automatically clustering the discontinuity sets;(3)extracting the set-based point clouds;(4)estimating of set-based mean orientation,spacing,and persistence;(5)identifying the block-forming arrays of discontinuity sets for the assessment of stability.The effectiveness of our rock structure processing has been proved by 3D distinct element back analysis.The results show that Sf M modelling and rock structure computing provides enormous cost,time and safety incentives in standard engineering practice.
文摘This study assesses the chemical quality of water resources in the Lower Senegal River valley, based on 35 samples collected in November 2022. Major ion concentrations in surface water and groundwater were analyzed using classical geochemical interpretation diagrams (Piper, GIBBS, etc.) and multivariate geostatistical analyses, including hierarchical cluster analysis (HCA) and principal component analysis (PCA). The results revealed three types of facies: Ca-Mg-HCO3-type facies, characteristic of poorly mineralized waters such as surface waters and groundwater from dune formations and the alluvial plain close to the hydraulic axis;Na-Cl type facies associated with well waters located in the alluvial plain that tap Inchirian or Nouakchottian shallow reservoirs and Maastrichtian deep borehole waters;and mixed Ca-Cl and Na-HCO3 type facies observed in certain floodplain and dune reservoirs. The results showed a strong correlation between sodium, chlorides, bromides, and electrical conductivity, indicating a significant contribution of these ions to groundwater mineralization. The various sources of water mineralization include mixing processes between surface water or rainwater, or calcite or dolomite dissolution processes (for weakly mineralized waters), basic exchanges or inverse basic exchanges between the aquifer and the water table (for moderately mineralized waters), and evaporation processes, halite dissolution, and paleosalinity during periods of marine transgression and regression (for highly mineralized waters). The study also highlighted the high vulnerability of the alluvial aquifer to pollution from intensive irrigated agriculture, as significant quantities of sulfates and nitrates were measured in some samples. These results also highlight the importance of water quality management in the Lower Senegal Valley, particularly as concerns the protection of the alluvial aquifer against pollution from irrigated agriculture.
文摘Precision agriculture(PA)is an agricultural management strategy based on observation,measurement and response to the variability of inter/intra-champ cultures.It includes advances in terms of data collection,analysis and management,as well as technological developments in terms of data storage and recovery,precise positioning,yield monitoring and remote sensing.The latter offers an unprecedented spatial,spectral and temporal resolution,but can also provide detailed information on the height of the vegetation and various observations.Today,the success of new agricultural technologies means that many agricultural tasks have become automated and that scientists have conducted more studies and research based on smart algorithms that automatically learn the decision rules from data.The use of Deep Learning(DL)and in particular the development and application of some of its algorithms called Convolutional Neural Networks(CNNs)are considered to be a particular success.In this work,we have applied and tested the performance of a network of convolutional neural network to automatically detect and map olive trees from Phantom4 drone imagery.The workflow involved the acquisition of images and the generation of ortho-mosaic with Pix4D software,as well as the use of a geographic information system.The results obtained with a training dataset of 4500 images of 24∗24 pixels are very satisfying:95%Precision,a 99%Recall and an F-score of 97%.
基金supported by the CONACYT Academic Fellowship(No.308896)
文摘Recent monitoring techniques employ multiple sources of information for the characterization of the phenomenon to be studied, being the coupling and adjustment of multi-source data one of the first challenges to consider and solve. The authors propose a new framework of the multi-source and multi-temporal data-oriented fusion for the characterization of landslide events. The main objective is to generate 3D virtual models(in the form of dense point clouds) and feed them back with the characteristic of soil and subsoil information. The scheme consists of three main steps. The first one is on-site data collection(geological characterization, geophysical measurements, GPS measurements, and UAV/drone mapping). The second step is generation of a high-resolution 3D virtual model(~1-inch spatial resolution) from the frames acquired through the UAV using the structure of motion(SfM) processing;the developed virtual model is optimized with GPS measurements to minimize geolocation error and eliminate distortions. The last step is assembling of the acquired data in the field and densified point cloud considering the different nature of the data, re-escalating procedure and the information stacking layer.
基金the Tongji University, Shanghai, and the Chongqing University, Chongqing, as part of the MICROTOX project ("Transformation, Bioaccumulation and Toxicity of Organic Micropollutants in the Yangtze Three Gorges Reservoir" No. FKZ 02WT1141)+5 种基金the Sino-German joint environmental research program "Yangtze-Hydro - Sustainable Management of the Newly Created Ecosystem at the Three Gorges Dam" (No. FKZ 02WT Bergmann et al. (2011) www.yangtzeproject.de)part of the research cluster "Pollutants/Water/Sediment-Impacts of Transformation and Transportation Processes on the Yangtze Water Quality"supported by a cooperation project with Chinese colleagues also sponsored by the Federal Ministry of Education and Research, Germany (No. DLR FKZ 01DO12007)the Chinese 111 Program
文摘Besides obvious benefits,the Three Gorges Dam's construction resulted in new pollution scenarios with the potentials to threaten the Three Gorges Reservoir(TGR) ecosystem.In order to record organic contamination,to find links to ecotoxicological impacts and to serve as reference for ensuing monitoring,several sites in the TGR area were screened applying the triad approach with additional lines-of-evidence as a holistic assessment method.Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011 and 2012 to determine organic pollution levels,mutagenic potentials and genotoxic impacts.Two regional hot-spots near the cities of Chongqing and Kaixian were identified and further investigated in 2013.Only polycyclic aromatic hydrocarbons(PAHs) could be detected in sediments in 2011(165-1653 ng/g),emphasizing their roles as key pollutants of the area.Their ubiquity was confirmed at Chongqing(150-433 ng/g) and Kaixian(127-590 ng/g) in2013.Concentrations were comparable to other major Chinese and German rivers.However,the immense sediment influx suggested a deposition of 216-636 kg PAH/day(0.2-0.6 mg PAH/(m2·day)),indicating an ecotoxicological risk.PAH source analysis highlighted primary impacts of combustion sources on the more industrialized upper TGR section,whereas petrogenic sources dominated the mid-low section.Furthermore,sediment extracts from several sites exhibited significant activities of frameshift promutagens in the Ames fluctuation assay.Additionally,significant genotoxic impairments in erythrocytes of P.vachellii were detected(Chongqing/Kaixian),demonstrating the relevance of genotoxicity as animportant mode of action in the TGR's fish.PAHs,their derivatives and non-target compounds are considered as main causative agents.
基金Financial support from the Project of Shanghai Soft Science Research Plans(No.18692106100)the China Scholarship Council is gratefully acknowledged.
文摘The typical climatic and environmental conditions in Central Asia are major natural factors causing local rock masses to face considerable risks of damage due to constant freeze-thaw cycles. In addition, these are exacerbated by the dense acidic environments in certain industrialized areas, such as Northern Sinkiang, China. To provide local engineering design with workable solutions, it is crucial to analyze the mechanical performance of rock masses and its mechanisms under the coupling action of corrosive acid and freeze-thaw cycles. In this study, granite samples from the northern Tien Shan Mountains near Urumchi, Xinjiang Province, as well as two kinds of sandstone samples for comparison, were subjected to different soaking conditions, including nitric acid soaking at various pH values. One or both of the freeze-thaw cycle tests and uniaxial compression test were then executed. Speculations regarding the mechanism of the performance of granite rock masses under the action of corrosive acid and freeze-thaw cycles were developed based on the results of these tests. X-ray diffraction and scanning electron microscopy were implemented to demonstrate the feasibility of the speculated mechanism. In this paper, the identification of the white crumb-like substance as SiO_(2) gel were confirmed.
文摘An analysis of drill cores and well logs shows that the main micro-facies of the third member sand bodies of the Qingshankou Formation in Qian'an are subaqueous distributary channel facies, sheet sand facies and subaqueous fan facies (olistostrome). Maps showing the distribution of these micro-facies together with inter-channel bay and prodelta mocro-facies are presented for different time-slices (lower, middle and upper parts of the Qingshankou Formation). These maps reveal the instability and change of sediment transport in the Baokang sedimentary system during the depositional period. Sediment transport was from the west in the early stage, from the south in the middle stage and from the northwest in the late stage. Values of thickness, porosity and permeability of the sand bodies in the third member of the Qingshankou Formation show that they have low to medium porosity and low permeability, and are characterized by serious reservoir heterogeneity. The joints between micro-facies and subaqueous fan micro-facies are characterized by the highest heterogeneity, the sheet sand and distal sand bar subfacies come next, and the heterogeneity of the subaqueous distributary channel sand bodies is relatively weak.
文摘The present work was conducted in the basin of Laayoun-Dakhla (South Morocco) to: 1) identify the recharge and flow characteristics of the Lower Cretaceous aquifer (LC);and 2) provide information about the mineralization of aquifer’s water. Isotopic and hydrochemical compositions combined with the geological and hydrogeological settings were used for this purpose. The principal changes in chemical composition of LC groundwater result from mixing with water of deeper circulation. Closer analysis of available chemical data reveals the importance of dissolution/precipitation processes in evolution of groundwater chemistry. Piezometric levels, as well as chemical and isotopic composition of groundwaters, confirm hydraulic connection between the LC and the others aquifers. Overlap of some major characteristics (δ18O, δ2H, Cl-) in this aquifer suggests that mixing processes considerably influence the hydrochemical evolution of water. The surface electrical resistivity does not indicate any freshwater-saltwater interface in the coastal aquifer and the relationship between 18O and Cl allows us to reject the hypothesis of a seawater intrusion.
文摘Ground penetrating radar, electromagnetic terrain conductivity, and electric tomography have proven to be effective tools if they are combined together to investigate archeological sites. We have conducted a geophysical survey at the Akhmim archaeological site, the main objective of our survey is to locate additional buried structures for further excavation. Geophysical data were acquired in the area using the GEM-300 multi-frequency terrain conductivity profiler, the SIR 2000 ground penetrating radar, and the Syscal R2 resistivity meter systems. The results of the integrated interpretation show a number of buried features and a strong linear zone about 1 m wide that coincides with the suspected trend of a buried wall. There appears to be two parallel ridges of strong reflections on either side, indicating two parallel walls extended East-West and a room is identified at the bottom left comer of the site. Moreover, the interpretation results of some selected GPR and dipoledipole resistivity profiles adjacent to the open-air museum suggest the existence of a second statue of Ramses Ⅱ to the right of the previously discovered statue which could still be buried in the sand.
基金supported by grants from the National Science Centre,Poland(NCN)No.UMO-2017/25/B/ST8/00134 and UMO2015/19/D/ST8/00818supported by the Polish-JINR Programme 2017(item 24)supported by the Federal Ministry for Education and Research in Germany。
文摘In this work,the evolutions of stresses in both phases of the Al/SiCp composite subjected to thermal cycling during in situ compression test were measured using Time of Flight neutron diffraction.It was confirmed that inter-phase stresses in the studied composite can be caused by differences in the coefficient of thermal expansion for the reinforcement and matrix,leading to a different variation of phase volumes during sample heating or cooling.The results of the diffraction experiment during thermal cycling were well predicted by the Thermo-Mechanical Self-Consistent model.The experimental study of elastic-plastic deformation was carried out in situ on a unique diffractometer EPSILON-MDS(JINR in Dubna,Russia)with nine detector banks measuring interplanar spacings simultaneously in 9 orientations of scattering vector.For the first time,the performed analysis of experimental data allowed to study the evolution of full stress tensor in both phases of the composite and to consider the decomposition of this tensor into deviatoric and hydrostatic components.It was found that the novel Developed Thermo-Mechanical SelfConsistent model correctly predicted stress evolution during compressive loading,taking into account the relaxation of thermal origin hydrostatic stresses.The comparison of this model with experimental data at the macroscopic level and the level of phases showed that strengthening of the Al/SiCp composite is caused by stress transfer from the plastically deformed A12124 matrix to the elastic SiCp reinforcement,while thermal stresses relaxation does not significantly affect the overall composite properties.
基金funded by European sources within the ERASMUS-SOCRATES program
文摘Sea urchin spines were chosen as a model system for biomimetic ceramics obtained using starch-blended slip casting. Porous alumina ceramics with cap-shaped layers with different alternating porosities were found to have superior fracture behavior under bulk compression compared to ceramics with uniform porosity.They fail in a cascading manner,absorbing high amounts of energy during extended compression paths.The porosity variation in an otherwise single phase material mimicks the architectural microstructure design of sea urchin spines of Heterocentrotus mammillatus,which are promising model materials for impact protection.