High-speed permanent magnet synchronous motors(PMSMs)have recently been widely applied in various applications.However,due to the increased rotor speed and operating frequency increase,the winding AC losses rise subst...High-speed permanent magnet synchronous motors(PMSMs)have recently been widely applied in various applications.However,due to the increased rotor speed and operating frequency increase,the winding AC losses rise substantially,posing risks to the safety operation.Accurate modeling of the AC losses has therefore become critical at the motor initial design stage.This paper reviews the main modeling methods for AC copper losses in PMSMs,including analytical methods,finite element methods,and hybrid modeling methods.The advantages and disadvantages of each method are analyzed in detail,and key issues in the modeling process are discussed.Finally,future research directions in AC copper loss modeling are explored,providing new insights for motor design and performance optimization.展开更多
In this study,a novel energy-efficient single-phase induction motor with three stator windings is proposed as shown in Fig 1.The winding A constitutes the first branch.The series connection of the capacitor C and the ...In this study,a novel energy-efficient single-phase induction motor with three stator windings is proposed as shown in Fig 1.The winding A constitutes the first branch.The series connection of the capacitor C and the winding B constitute the second branch,and the series connection of the capacitor C2 and the winding C constitute the third one.The above three branches are connected in parallel as shown in Fig.2.展开更多
The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator wi...The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator with double windings. The method is based on 2D time-dependent magnetic field coupled with electric circuit. An application example of a 12-phase self-excited induction generator (SEIG) was provided to demonstrate the effectiveness of the presented approach. Some of the calculated results show good coincidence with the experiment values.展开更多
The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the ef...The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the effect of high strength sealing on the ventilation and heat dissipation performance of the end is not enough.In this paper,based on the actual structural parameters and periodic symmetry simplification,the three-dimensional coupled calculation model of fluid field and temperature field is established.After solving the fluid and thermal equations,the influence of the length of rotor support block,the height of rotor support block,and the number of rotor support block on the fluid flow and temperature distribution in the rotor end region of generator-motor is studied using the finite volume method.The rheological characteristics of the air in the rotor domain,such as velocity and inter-winding flow,are analyzed.The law of temperature variation with local structure in the computational domain is studied.The variation law of cooling medium performance inside the large variable speed power generator motor is revealed.展开更多
For years, capacitive effects have been the subject of research [1] and [2]. The capacitive effects are discrete capacitors that appear between active conductors of power lines and between them with the ground plane, ...For years, capacitive effects have been the subject of research [1] and [2]. The capacitive effects are discrete capacitors that appear between active conductors of power lines and between them with the ground plane, generating capacitive reactive power to the network [1] and [2]. Indeed, it must be noted that these effects affect the windings of the transformer when the coupling is in star or triangle. This study is conducted to show that capacitive effects affect transformer windings differently when coupling is in stars or triangles. The results obtained are interesting and can be exploited in electrical transmission networks to ensure a long lifespan of transformers.展开更多
End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windin...End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements. Due to the complex structure and unknown boundary conditions, the conventionally calculation of stator end windings has been very difficult and time consuming up to now. This paper describes the development of a full parameterized modeling tool, which allows a quick calculation of natural frequencies during the design phase of the generator. To keep the computing time low, it is important to find a way to get exact calculation results without detailed modeling of all pans. Additionally, special attention was paid to the active part, which has been replaced by spring-damper elements, and the determination of their stiffness via experimental modal analysis combined with finite element calculations.展开更多
1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successful...1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successfully created in China and was known afterwards as a turbine generator with watercooled stator and rotor windings (Abbrev, TGWSR). The teachers from Zhejiang University came to Shanghai between展开更多
Switched reluctance motors(SRM)with full-pitch windings and segmental rotors are particularly suitable for the drive systems in aerospace environments because of low wind(oil)resistance and iron losses at high speed.I...Switched reluctance motors(SRM)with full-pitch windings and segmental rotors are particularly suitable for the drive systems in aerospace environments because of low wind(oil)resistance and iron losses at high speed.In this paper,the authors have been studying electromagnetic design of this motor.展开更多
The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for so...The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for some traction application so as to enhance torque density,improve efficiency,decrease vibration and weaken noise,etc.In this paper,based on the complex process craft and the electromagnetic performance,a comprehensive and systematical overview on the rectangular wire windings AC electrical machine is introduced.According to the process craft,the different type of the rectangular wire windings,the different inserting direction of the rectangular wire windings and the insulation structure have been compared and analyzed.Furthermore,the detailed rectangular wire windings connection is researched and the general design guideline has been concluded.Especially,the performance of rectangular wire windings AC machine has been presented,with emphasis on the measure of improving the bigger AC copper losses at the high speed condition due to the distinguished proximity and skin effects.Finally,the future trend of the rectangular wire windings AC electrical machine is prospected.展开更多
This paper, based on the harmonic analysis and the harmonic e-quivalent circuit of the induction motor, clearly discusses the damping effectof harmonic current in the rotor and incorporates the slot-mouth factor to th...This paper, based on the harmonic analysis and the harmonic e-quivalent circuit of the induction motor, clearly discusses the damping effectof harmonic current in the rotor and incorporates the slot-mouth factor to thewinding factor. The practical computi展开更多
Presents the study on the dynamic buckling of the inner windings of large capacity transformers under short circuit conditions by a finite element method and the findings as follows: 1) No radial dynamic buckling of i...Presents the study on the dynamic buckling of the inner windings of large capacity transformers under short circuit conditions by a finite element method and the findings as follows: 1) No radial dynamic buckling of inner windings occurs under short circuit conditions when the windings are well supported at all the radial supports; 2) The windings buckle under short circuit conditions when the windings are not supported at one radial support (for instance, 25°) but well supported at all other radial supports; 3) When the windings are not well supported at one radial support, the ability of the windings to resist radial dynamic buckling can be greatly enhanced provided some measures are taken to provide necessary radial supporting.展开更多
Rotor winding turn-to-turn short circuit is a common electrical fault in steam turbines. When turn-to-turn short circuit fault happens to rotor winding of the generator, the generator terminal parameters will change. ...Rotor winding turn-to-turn short circuit is a common electrical fault in steam turbines. When turn-to-turn short circuit fault happens to rotor winding of the generator, the generator terminal parameters will change. According to these parameters, the conditions of the rotor winding can be reflected. However, it is hard to express the relations between fault information and generator terminal parameters in accurate mathematical formula. The satisfactory results in fault diagnosis can be obtained by the application of neural network. In general, the information about the severity level of the generator faults can be acquired directly when the faulty samples are found in the training samples of neural network. However, the faulty samples are difficult to acquire in practice. In this paper, the relations among active power, reactive power and excitation current are discovered by analyzing the generator mmf with terminal voltage constant. Depending on these relations, a novel diagnosis method of generator rotor winding turn-to-turn short circuit fault is proposed by using ANN method to obtain the fault samples directly, without destructive tests.展开更多
Insertion loss (IL) is one of the important parameters of asymmetrical digital subscriber loop (ADSL) transformers. In different frequency bands, the factors that affect insertion loss are different. Windings main...Insertion loss (IL) is one of the important parameters of asymmetrical digital subscriber loop (ADSL) transformers. In different frequency bands, the factors that affect insertion loss are different. Windings mainly affect insertion loss in mid and high frequency bands. The effects of winding ways, winding wire diameter and winding turns on insertion loss were discussed. The presented experiment shows that the insertion loss of an ADSL transformer could be under 0.4 dB in mid frequency band when the winding is 30 turns, in which the ADSL transformer satisfies the requirement of total harmonic distortion (THD). Our experiments also show that the sandwich winding structure is better than the side by side winding structure and the twisted-pair winding structure, and the increase of winding diameter is one means to reduce insertion losses of an ADSL transformer in mid frequency band.展开更多
The short circuit is a severe fault that occurs in the stator windings. Therefore, it is very important to diagnose this type of failure in its beginning before it causes unscheduled stop and the machine loss. In this...The short circuit is a severe fault that occurs in the stator windings. Therefore, it is very important to diagnose this type of failure in its beginning before it causes unscheduled stop and the machine loss. In this context, the Support Vector Machine (SVM) is a tool of considerable importance for standard classification. From some training data, it can diagnose whether or not there is a short circuit beginning, and which is important for predictive maintenance. This work proposes a technique for early detection of a short circuit between the turns aiming at its implementation in a real plant. The paper shows simulation and experimental results, and validates the proposed technique.展开更多
Computer programs have definitely become indispensable for designing power transformer. Among several applications, computer programs are mostly used for electric field calculation and thus electrical insulation conce...Computer programs have definitely become indispensable for designing power transformer. Among several applications, computer programs are mostly used for electric field calculation and thus electrical insulation concerns. In consequence, studies based on analytical approach to basic studies of correlated problems have become even more important because they form the very basis of knowledge that is necessary to every transformer designer in view of taking all the advantages of computational analyses. On the other hand, one of the most important basic studies consists in the evaluation of voltage surge distribution along transformer windings for which the method of separation of variables has been extensively used thanks to some simplifying assumptions. With this aim, authors have developed and previously published works that show the applicability of an alternative and useful analytical method that is the method of the residues, which requires no simplification to be assumed. In this work, another important step is taken towards proofing the total applicability of this promising method that is through a practical problem. A comparison to the numerical method TLM (transmission line method) is also performed and concordance with TLM and experimental data confirms the proposal of the method of residues can be also applicable to several others problems of electromagnetism.展开更多
The inductances in d-q axis have an important influence on the behavior of PMSM (PM (permanent-magnet) synchronous machines). Their calculation is fundamental not only to evaluate the performance such as torque an...The inductances in d-q axis have an important influence on the behavior of PMSM (PM (permanent-magnet) synchronous machines). Their calculation is fundamental not only to evaluate the performance such as torque and field weakening capability but also to design the control system to maximize performance and power factor. This paper presents a study of inductance in the d-q axis for buried (i.e., IPMSM (interior) PM Synchronous Machines). This study is achieved using 2-D (two-dimensional) FEM (finite-element method) and Park's transformation.展开更多
In this paper a fully parametrized finite element simulation model of the stator bar end is created using the COMSOL Multiphysics.The model allows conducting the comparison of different corona protection structures’d...In this paper a fully parametrized finite element simulation model of the stator bar end is created using the COMSOL Multiphysics.The model allows conducting the comparison of different corona protection structures’design,various materials properties,and finally optimizing the corona protection system.Several samples of SiC based nonlinear conductivity materials for corona protection were fabricated in laboratory and then investigated.The conductivity dependencies on electric field(0.05 to 1 kV/mm)and temperature(20 to 155℃)were measured.By comparing the heat-resistant grades of the corona protection material and the insulating material,the maximum working temperature of the corona protection material corresponds to the heat-resistant grade F of the insulating material.As the temperature increases,the nonlinear characteristics of the corona protection material in the experiment decrease dramatically,reducing the heat-resistant grade of the corona protection material.The decrease in the nonlinear characteristics of the corona protection material at the maximum operating temperature causes the maximum electric field strength at the end of the HV rotating machines end corona protection(ECP)exceeding the corona discharge electric field strength,resulting in corona phenomenon.展开更多
Inter-turn short circuit of field windings is a common electrical fault of generators.Simulation is an important method of investigating the fault and providing data support for fault monitoring.However,huge numbers o...Inter-turn short circuit of field windings is a common electrical fault of generators.Simulation is an important method of investigating the fault and providing data support for fault monitoring.However,huge numbers of pole pairs and damper loops in large hydro-generators would lead to lengthy calculation time,hindering scientific research and engineering application.To deal with this problem,we analyze a theoretical basis for a damper winding simplified model and then propose an equivalent treatment method.Through the analysis of steady-state current harmonic characteristics of generators with different stator winding configurations during the fault,the simplified models suitable for steady-state calculation are derived from two aspects,namely,additional rotor harmonic current frequency characteristics and the relationship of the amplitude as well as the phase of each branch current of the stator.The calculation and experimental results of the two simplified models are then compared to verify the models' correctness.A calculation example of the Three Gorges left bank VGS generator shows few deviations between the calculation results of the simplified model and the original model.Moreover,the calculation time using the simplified model is 1/1500 that using the original model,which provides a more effective tool for on-line fault monitoring.Finally,the sensitivity-verification application of the fault-monitoring scheme based on the stator steady-state unbalanced current RMS is depicted.The result shows that the scheme can monitor two-turn short circuits of field windings in the Three Gorges generator and provide high sensitivity.展开更多
As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding...As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 52025073 and 52377055。
文摘High-speed permanent magnet synchronous motors(PMSMs)have recently been widely applied in various applications.However,due to the increased rotor speed and operating frequency increase,the winding AC losses rise substantially,posing risks to the safety operation.Accurate modeling of the AC losses has therefore become critical at the motor initial design stage.This paper reviews the main modeling methods for AC copper losses in PMSMs,including analytical methods,finite element methods,and hybrid modeling methods.The advantages and disadvantages of each method are analyzed in detail,and key issues in the modeling process are discussed.Finally,future research directions in AC copper loss modeling are explored,providing new insights for motor design and performance optimization.
文摘In this study,a novel energy-efficient single-phase induction motor with three stator windings is proposed as shown in Fig 1.The winding A constitutes the first branch.The series connection of the capacitor C and the winding B constitute the second branch,and the series connection of the capacitor C2 and the winding C constitute the third one.The above three branches are connected in parallel as shown in Fig.2.
文摘The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator with double windings. The method is based on 2D time-dependent magnetic field coupled with electric circuit. An application example of a 12-phase self-excited induction generator (SEIG) was provided to demonstrate the effectiveness of the presented approach. Some of the calculated results show good coincidence with the experiment values.
基金This research was funded by Dongfang Electric Machinery Co., Ltd.
文摘The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the effect of high strength sealing on the ventilation and heat dissipation performance of the end is not enough.In this paper,based on the actual structural parameters and periodic symmetry simplification,the three-dimensional coupled calculation model of fluid field and temperature field is established.After solving the fluid and thermal equations,the influence of the length of rotor support block,the height of rotor support block,and the number of rotor support block on the fluid flow and temperature distribution in the rotor end region of generator-motor is studied using the finite volume method.The rheological characteristics of the air in the rotor domain,such as velocity and inter-winding flow,are analyzed.The law of temperature variation with local structure in the computational domain is studied.The variation law of cooling medium performance inside the large variable speed power generator motor is revealed.
文摘For years, capacitive effects have been the subject of research [1] and [2]. The capacitive effects are discrete capacitors that appear between active conductors of power lines and between them with the ground plane, generating capacitive reactive power to the network [1] and [2]. Indeed, it must be noted that these effects affect the windings of the transformer when the coupling is in star or triangle. This study is conducted to show that capacitive effects affect transformer windings differently when coupling is in stars or triangles. The results obtained are interesting and can be exploited in electrical transmission networks to ensure a long lifespan of transformers.
文摘End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements. Due to the complex structure and unknown boundary conditions, the conventionally calculation of stator end windings has been very difficult and time consuming up to now. This paper describes the development of a full parameterized modeling tool, which allows a quick calculation of natural frequencies during the design phase of the generator. To keep the computing time low, it is important to find a way to get exact calculation results without detailed modeling of all pans. Additionally, special attention was paid to the active part, which has been replaced by spring-damper elements, and the determination of their stiffness via experimental modal analysis combined with finite element calculations.
文摘1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successfully created in China and was known afterwards as a turbine generator with watercooled stator and rotor windings (Abbrev, TGWSR). The teachers from Zhejiang University came to Shanghai between
文摘Switched reluctance motors(SRM)with full-pitch windings and segmental rotors are particularly suitable for the drive systems in aerospace environments because of low wind(oil)resistance and iron losses at high speed.In this paper,the authors have been studying electromagnetic design of this motor.
基金This work was supported by the National Nature Science Foundation of China(NSFC)under Project 51607079.
文摘The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for some traction application so as to enhance torque density,improve efficiency,decrease vibration and weaken noise,etc.In this paper,based on the complex process craft and the electromagnetic performance,a comprehensive and systematical overview on the rectangular wire windings AC electrical machine is introduced.According to the process craft,the different type of the rectangular wire windings,the different inserting direction of the rectangular wire windings and the insulation structure have been compared and analyzed.Furthermore,the detailed rectangular wire windings connection is researched and the general design guideline has been concluded.Especially,the performance of rectangular wire windings AC machine has been presented,with emphasis on the measure of improving the bigger AC copper losses at the high speed condition due to the distinguished proximity and skin effects.Finally,the future trend of the rectangular wire windings AC electrical machine is prospected.
文摘This paper, based on the harmonic analysis and the harmonic e-quivalent circuit of the induction motor, clearly discusses the damping effectof harmonic current in the rotor and incorporates the slot-mouth factor to thewinding factor. The practical computi
文摘Presents the study on the dynamic buckling of the inner windings of large capacity transformers under short circuit conditions by a finite element method and the findings as follows: 1) No radial dynamic buckling of inner windings occurs under short circuit conditions when the windings are well supported at all the radial supports; 2) The windings buckle under short circuit conditions when the windings are not supported at one radial support (for instance, 25°) but well supported at all other radial supports; 3) When the windings are not well supported at one radial support, the ability of the windings to resist radial dynamic buckling can be greatly enhanced provided some measures are taken to provide necessary radial supporting.
文摘Rotor winding turn-to-turn short circuit is a common electrical fault in steam turbines. When turn-to-turn short circuit fault happens to rotor winding of the generator, the generator terminal parameters will change. According to these parameters, the conditions of the rotor winding can be reflected. However, it is hard to express the relations between fault information and generator terminal parameters in accurate mathematical formula. The satisfactory results in fault diagnosis can be obtained by the application of neural network. In general, the information about the severity level of the generator faults can be acquired directly when the faulty samples are found in the training samples of neural network. However, the faulty samples are difficult to acquire in practice. In this paper, the relations among active power, reactive power and excitation current are discovered by analyzing the generator mmf with terminal voltage constant. Depending on these relations, a novel diagnosis method of generator rotor winding turn-to-turn short circuit fault is proposed by using ANN method to obtain the fault samples directly, without destructive tests.
文摘Insertion loss (IL) is one of the important parameters of asymmetrical digital subscriber loop (ADSL) transformers. In different frequency bands, the factors that affect insertion loss are different. Windings mainly affect insertion loss in mid and high frequency bands. The effects of winding ways, winding wire diameter and winding turns on insertion loss were discussed. The presented experiment shows that the insertion loss of an ADSL transformer could be under 0.4 dB in mid frequency band when the winding is 30 turns, in which the ADSL transformer satisfies the requirement of total harmonic distortion (THD). Our experiments also show that the sandwich winding structure is better than the side by side winding structure and the twisted-pair winding structure, and the increase of winding diameter is one means to reduce insertion losses of an ADSL transformer in mid frequency band.
基金Fapemig(APQ-00589-11)for the support given to this work.
文摘The short circuit is a severe fault that occurs in the stator windings. Therefore, it is very important to diagnose this type of failure in its beginning before it causes unscheduled stop and the machine loss. In this context, the Support Vector Machine (SVM) is a tool of considerable importance for standard classification. From some training data, it can diagnose whether or not there is a short circuit beginning, and which is important for predictive maintenance. This work proposes a technique for early detection of a short circuit between the turns aiming at its implementation in a real plant. The paper shows simulation and experimental results, and validates the proposed technique.
文摘Computer programs have definitely become indispensable for designing power transformer. Among several applications, computer programs are mostly used for electric field calculation and thus electrical insulation concerns. In consequence, studies based on analytical approach to basic studies of correlated problems have become even more important because they form the very basis of knowledge that is necessary to every transformer designer in view of taking all the advantages of computational analyses. On the other hand, one of the most important basic studies consists in the evaluation of voltage surge distribution along transformer windings for which the method of separation of variables has been extensively used thanks to some simplifying assumptions. With this aim, authors have developed and previously published works that show the applicability of an alternative and useful analytical method that is the method of the residues, which requires no simplification to be assumed. In this work, another important step is taken towards proofing the total applicability of this promising method that is through a practical problem. A comparison to the numerical method TLM (transmission line method) is also performed and concordance with TLM and experimental data confirms the proposal of the method of residues can be also applicable to several others problems of electromagnetism.
文摘The inductances in d-q axis have an important influence on the behavior of PMSM (PM (permanent-magnet) synchronous machines). Their calculation is fundamental not only to evaluate the performance such as torque and field weakening capability but also to design the control system to maximize performance and power factor. This paper presents a study of inductance in the d-q axis for buried (i.e., IPMSM (interior) PM Synchronous Machines). This study is achieved using 2-D (two-dimensional) FEM (finite-element method) and Park's transformation.
文摘In this paper a fully parametrized finite element simulation model of the stator bar end is created using the COMSOL Multiphysics.The model allows conducting the comparison of different corona protection structures’design,various materials properties,and finally optimizing the corona protection system.Several samples of SiC based nonlinear conductivity materials for corona protection were fabricated in laboratory and then investigated.The conductivity dependencies on electric field(0.05 to 1 kV/mm)and temperature(20 to 155℃)were measured.By comparing the heat-resistant grades of the corona protection material and the insulating material,the maximum working temperature of the corona protection material corresponds to the heat-resistant grade F of the insulating material.As the temperature increases,the nonlinear characteristics of the corona protection material in the experiment decrease dramatically,reducing the heat-resistant grade of the corona protection material.The decrease in the nonlinear characteristics of the corona protection material at the maximum operating temperature causes the maximum electric field strength at the end of the HV rotating machines end corona protection(ECP)exceeding the corona discharge electric field strength,resulting in corona phenomenon.
基金supported by the National Natural Science Foundation of China (Grant No. 50807027)the China Postdoctoral Science Foundation(Grant No. 2012M520155)the Fundamental Research Funds for the Central Universities (Grant No. 2013JBM081)
文摘Inter-turn short circuit of field windings is a common electrical fault of generators.Simulation is an important method of investigating the fault and providing data support for fault monitoring.However,huge numbers of pole pairs and damper loops in large hydro-generators would lead to lengthy calculation time,hindering scientific research and engineering application.To deal with this problem,we analyze a theoretical basis for a damper winding simplified model and then propose an equivalent treatment method.Through the analysis of steady-state current harmonic characteristics of generators with different stator winding configurations during the fault,the simplified models suitable for steady-state calculation are derived from two aspects,namely,additional rotor harmonic current frequency characteristics and the relationship of the amplitude as well as the phase of each branch current of the stator.The calculation and experimental results of the two simplified models are then compared to verify the models' correctness.A calculation example of the Three Gorges left bank VGS generator shows few deviations between the calculation results of the simplified model and the original model.Moreover,the calculation time using the simplified model is 1/1500 that using the original model,which provides a more effective tool for on-line fault monitoring.Finally,the sensitivity-verification application of the fault-monitoring scheme based on the stator steady-state unbalanced current RMS is depicted.The result shows that the scheme can monitor two-turn short circuits of field windings in the Three Gorges generator and provide high sensitivity.
文摘As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.