Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry ...Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry should use wide-angle camera as much as possible is done.Then,the limitation of the single lens camera to expand field angle and the combined wide-angle camera existing on the market not suitable for light load of low altitude UAV(Unmanned Aerial Vehicle)due to excessive weight are pointed out.The characteristics of combined wide-angle low altitude light camera with self-calibration and self-stabilization developed by the author are described,especially the principle of self-calibration for the combination of static error and dynamic error.Based on the practice of large scale mapping,a technical procedure in aerial photography by taking with wide-angle camera and large overlap simultaneously for improving the accuracy of low altitude photogrammetry is proposed.The typical engineering produced data is used to verity the above theoretical analysis.A technical route for increasing accuracy of low altitude photogrammetry with combined wide-angle camera is expounded.展开更多
Automobile accidents cost over a trillion-do llar every year and this figure will continue increasing without employing new technological solutions.Among these solutions,the automated lane-keeping system is one of the...Automobile accidents cost over a trillion-do llar every year and this figure will continue increasing without employing new technological solutions.Among these solutions,the automated lane-keeping system is one of the promising ones and such a system consists of two essential technologies:road detection and steering control.In this paper,novel lane keeping algorithms are proposed and are implemented using only a single off-the-shelf wide-angle camera as input.The implemented system is verified,through both simulation and experiments,and is found providing satisfactory performance for an automated lane-keeping system.When compared to the state-of-the-art lane-keeping systems,the implemented system can perform consistently across various ambient light conditions including the most challenging ones.展开更多
Metasurfaces composed of two-dimensional nanopillar arrays can manipulate light fields in desirable ways and exhibit the unique advantage of beam steering.Here,we experimentally demonstrate a metasurface-based wide-an...Metasurfaces composed of two-dimensional nanopillar arrays can manipulate light fields in desirable ways and exhibit the unique advantage of beam steering.Here,we experimentally demonstrate a metasurface-based wide-angle broadband all-dielectric blazed grating with an extreme incident angle of up to 80°,which is achieved by optimizing the wide-angle phase shifts and transmissivities of the unit cells.It exhibits a maximum diffraction efficiency of 72%and a high average efficiency of 64%over a wide range of incident angles from−80° to 45° at 1.55μm.Moreover,the proposed grating has a broad bandwidth of 200 nm(1.45-1.65μm),and average efficiencies of more than 50%can be achieved experimentally over the same incidence angles.Our results may pave the way for the creation of novel and efficient flat optical devices for wavefront control.展开更多
The emergent metagrating,with its unique and flexible beam shaping capabilities,offers new paths to efficient modulation of acoustic waves.In this work,an acoustic metagrating is demonstrated for high-efficiency and w...The emergent metagrating,with its unique and flexible beam shaping capabilities,offers new paths to efficient modulation of acoustic waves.In this work,an acoustic metagrating is demonstrated for high-efficiency and wide-angle anomalous refraction.It is shown that the normal reflection and transmission can be totally suppressed by properly modulating the amplitude and phase characteristics of the metagrating supercells for high-efficiency anomalous refraction.The anomalous refraction behavior is achieved in the wide range of incident angles from 28°to 78°,and the efficiency of-1st order diffraction is higher than 90%by finely designing the metagrating structure.The anomalous refraction behaviors are verified experimentally at incidence angle of 28°,45°,and 78°,respectively.The demonstrated metagrating is anticipated to possess efficient wide-angle composite wavefront engineering applications in such fields as communications.展开更多
Precise localisation and navigation are the two most important tasks for mobile robots.Visual simultaneous localisation and mapping(VSLAM)is useful in localisation systems of mobile robots.The wide-angle camera has a ...Precise localisation and navigation are the two most important tasks for mobile robots.Visual simultaneous localisation and mapping(VSLAM)is useful in localisation systems of mobile robots.The wide-angle camera has a broad field of vision and more abundant information on images,so it is widely used in mobile robots,including legged robots.However,wide-angle cameras are more complicated than ordinary cameras in the design of visual localisation systems,and higher requirements and challenges are put forward for VSLAM technologies based on wide-angle cameras.In order to resolve the problem of distortion in wide-angle images and improve the accuracy of localisation,a sampling VSLAM based on a wide-angle camera model for legged mobile robots is proposed.For the predictability of the periodic motion of a legged robot,in the method,the images are sampled periodically,image blocks with clear texture are selected and the image details are enhanced to extract the feature points on the image.Then,the feature points of the blocks are extracted and by using the feature points of the blocks in the images,the feature points on the images are extracted.Finally,the points on the incident light through the normalised plane are selected as the template points;the relationship between the template points and the images is established through the wide-angle camera model,and the pixel coordinates of the template points in the images and the descriptors are calculated.Moreover,many experiments are conducted on the TUM datasets with a quadruped robot.The experimental results show that the trajectory error and translation error measured by the proposed method are reduced compared with the VINS-MONO,ORB-SLAM3 and Periodic SLAM systems.展开更多
Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution...Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.展开更多
This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,an...This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,and a CMOS sensor.In view of the significant contrast between face and background in thermal infra⁃red images,this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,lightweight detector named YOLO-Fastest-IR.Four YOLO-Fastest-IR models(IR0 to IR3)with different scales are designed based on YOLO-Fastest.To train and evaluate these lightweight models,a multi-user low-resolution thermal face database(RGBT-MLTF)was collected,and the four networks were trained.Experiments demon⁃strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.The proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed,making it more suitable for deployment on mobile platforms or embedded devices.After obtaining the region of interest(ROI)in the infrared(IR)image,the RGB camera is guided by the thermal infrared face detection results to achieve fine positioning of the RGB face.Experimental results show that YOLO-Fastest-IR achieves a frame rate of 92.9 FPS on a Raspberry Pi 4B and successfully detects 97.4%of faces in the RGBT-MLTF test set.Ultimate⁃ly,an infrared temperature measurement system with low cost,strong robustness,and high real-time perfor⁃mance was integrated,achieving a temperature measurement accuracy of 0.3℃.展开更多
Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned a...Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned aerial vehicles.Localizing moving targets is crucial for analyzing their motion characteristics and dynamic properties.Reconstructing the trajectories of points from asynchronous cameras is a significant challenge.It encompasses two coupled sub-problems:Trajectory reconstruction and camera synchronization.Present methods typically address only one of these sub-problems individually.This paper proposes a 3D trajectory reconstruction method for point targets based on asynchronous cameras,simultaneously solving both sub-problems.Firstly,we extend the trajectory intersection method to asynchronous cameras to resolve the limitation of traditional triangulation that requires camera synchronization.Secondly,we develop models for camera temporal information and target motion,based on imaging mechanisms and target dynamics characteristics.The parameters are optimized simultaneously to achieve trajectory reconstruction without accurate time parameters.Thirdly,we optimize the camera rotations alongside the camera time information and target motion parameters,using tighter and more continuous constraints on moving points.The reconstruction accuracy is significantly improved,especially when the camera rotations are inaccurate.Finally,the simulated and real-world experimental results demonstrate the feasibility and accuracy of the proposed method.The real-world results indicate that the proposed algorithm achieved a localization error of 112.95 m at an observation distance range of 15-20 km.展开更多
Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calc...Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calculating the sky area visibility distribution via extinction measurement challenging.To address this issue,we propose the Photometry-Free Sky Area Visibility Estimation(PFSAVE)method.This method uses the standard magnitude of the faintest star observed within a given sky area to estimate visibility.By employing a pertransformation refitting optimization strategy,we achieve a high-precision coordinate transformation model with an accuracy of 0.42 pixels.Using the results of HEALPix segmentation is also introduced to achieve high spatial resolution.Comprehensive analysis based on real allsky images demonstrates that our method exhibits higher accuracy than the extinction-based method.Our method supports both manual and robotic dynamic scheduling,especially under partially cloudy conditions.展开更多
It is important to understand the development of joints and fractures in rock masses to ensure drilling stability and blasting effectiveness.Traditional manual observation techniques for identifying and extracting fra...It is important to understand the development of joints and fractures in rock masses to ensure drilling stability and blasting effectiveness.Traditional manual observation techniques for identifying and extracting fracture characteristics have been proven to be inefficient and prone to subjective interpretation.Moreover,conventional image processing algorithms and classical deep learning models often encounter difficulties in accurately identifying fracture areas,resulting in unclear contours.This study proposes an intelligent method for detecting internal fractures in mine rock masses to address these challenges.The proposed approach captures a nodal fracture map within the targeted blast area and integrates channel and spatial attention mechanisms into the ResUnet(RU)model.The channel attention mechanism dynamically recalibrates the importance of each feature channel,and the spatial attention mechanism enhances feature representation in key areas while minimizing background noise,thus improving segmentation accuracy.A dynamic serpentine convolution module is also introduced that adaptively adjusts the shape and orientation of the convolution kernel based on the local structure of the input feature map.Furthermore,this method enables the automatic extraction and quantification of borehole nodal fracture information by fitting sinusoidal curves to the boundaries of the fracture contours using the least squares method.In comparison to other advanced deep learning models,our enhanced RU demonstrates superior performance across evaluation metrics,including accuracy,pixel accuracy(PA),and intersection over union(IoU).Unlike traditional manual extraction methods,our intelligent detection approach provides considerable time and cost savings,with an average error rate of approximately 4%.This approach has the potential to greatly improve the efficiency of geological surveys of borehole fractures.展开更多
This study presents a drone-based aerial imaging method for automated rice seedling detection and counting in paddy fields.Utilizing a drone equipped with a high-resolution camera,images are captured 14 days postsowin...This study presents a drone-based aerial imaging method for automated rice seedling detection and counting in paddy fields.Utilizing a drone equipped with a high-resolution camera,images are captured 14 days postsowing at a consistent altitude of six meters,employing autonomous flight for uniform data acquisition.The approach effectively addresses the distinct growth patterns of both single and clustered rice seedlings at this early stage.The methodology follows a two-step process:first,the GoogleNet deep learning network identifies the location and center points of rice plants.Then,the U-Net deep learning network performs classification and counting of individual plants and clusters.This combination of deep learning models achieved a 90%accuracy rate in classifying and counting both single and clustered seedlings.To validate the method’s effectiveness,results were compared against traditional manual counting conducted by agricultural experts.The comparison revealed minimal discrepancies,with a variance of only 2–4 clumps per square meter,confirming the reliability of the proposed method.This automated approach offers significant benefits by providing an efficient,accurate,and scalable solution for monitoring seedling growth.It enables farmers to optimize fertilizer and pesticide application,improve resource allocation,and enhance overall crop management,ultimately contributing to increased agricultural productivity.展开更多
Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of s...Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of surgical failure.Therefore,it is necessary to design a visualization system for closed thoracic drainage.Augmented reality(AR)technology can assist in visualizing the internal anatomical structure and determining the insertion point on the body surface.The structure of the currently used steel-needle-guided chest tube was modified by integrating it with an ultrafine diameter camera to provide real-time visualization of the puncture process.After simulation experiments,the overall registration error of the AR method was measured to be within(3.59±0.53)mm,indicating its potential for clinical application.The ultrafine diameter camera module and improved steel-needle-guided chest tube can timely reflect the position of the needle tip in the human body.A comparative experiment showed that video guidance could improve the safety of the puncture process compared to the traditional method.Finally,a qualitative evaluation of the usability of the system was conducted through a questionnaire.This system facilitates the visualization of closed thoracic drainage puncture procedure and pro-vides an implementation scheme to enhance the accuracy and safety of the operative step,which is conducive to reducing the learning curve and improving the proficiency of the doctors.展开更多
The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogram...The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.展开更多
The seawater column is typically taken as a homogeneous velocity layer in wide-angle crustal seismic surveys in marine environments. However, heterogeneities in salinity and temperature throughout the seawater layer r...The seawater column is typically taken as a homogeneous velocity layer in wide-angle crustal seismic surveys in marine environments. However, heterogeneities in salinity and temperature throughout the seawater layer result insignificant lateral variations in its seismic velocity, especially in deep marine environments. Failure to compensate for these velocity inhomogeneities will introduce significant artifacts in constructing crustal velocity models using seismic tomography. In this study, we conduct numerical experiments to investigate the impact of heterogeneous seismic velocities in seawater on tomographic inversion for crustal velocity models. Experiments that include lateral variation in seawater velocity demonstrated that the modeled crustal velocities were contaminated by artifacts from tomographic inversions when assuming a homogeneous water layer. To suppress such artifacts, we propose two strategies:(1) simultaneous inversion of water velocities and the crustal velocities;(2) layer-stripping inversion during which to first invert for seawater velocity and then correct the travel times before inverting for crustal velocities. The layer-stripping inversion significantly improves the modeling of variation in seawater velocity when preformed with seismic sensors deployed on the ocean bottom and in the water column. Such strategies improve crustal modeling via wide-angle seismic surveys in deep-marine environment.展开更多
In order to deal with torque pulsation problem caused by traditional control method for brushless DC (BLDC) motor and to achieve high precision and good stability, a novel control strategy is proposed. Compared with...In order to deal with torque pulsation problem caused by traditional control method for brushless DC (BLDC) motor and to achieve high precision and good stability, a novel control strategy is proposed. Compared with the traditional control scheme, by using phase voltage as a control objective and making waveform of phase current approximately quasi-sinusoidal, torque ripple of BLDC motor is reduced from the original 14% to 3.4%, while toque is increased by 3.8%. Furthermore, by detecting zero-crossings of back electromotive force (BEMF) with non-conducting phases, sensorless control is realized. The new control strategy is simple. It can minimize torque ripple, increase torque, and realize sensorless control for BLDC motor. Simulation and experiments show good performance of BLDC motor by using the new control method.展开更多
AIM:To compare the effects of scleral buckling using wide-angle viewing systems(WAVS) with that using indirect ophthalmoscope for the treatment of rhegmatogenous retinal detachment.METHODS:The study was a retrospe...AIM:To compare the effects of scleral buckling using wide-angle viewing systems(WAVS) with that using indirect ophthalmoscope for the treatment of rhegmatogenous retinal detachment.METHODS:The study was a retrospective analyses of the medical records of 94 eyes(94 patients) with rhegmatogenous retinal detachment.Among them,47 eyes underwent scleral buckling using WAVS with endoiiluminator(Group W),and 47 eyes underwent scleral buckling using indirect ophthalmoscope(Group I).Surgical durations,primary success rate,best-corrected visual acuities(BCVA),delayed subretinal fluid absorptions and surgical complications were compared between the two groups.RESULTS:At baseline,there were no statistical differences between the two groups in patient's age(P=0.997),gender(P=0.853),symptom duration(P=0.216),BCVA(P=0.389),refractive error(P=0.167),intraocular pressure(P=0.595),the number of retinal breaks(P=0.832),the extent of retinal detachment(P =0.246),subretinal demarcation line(P=0.801),and macular detachment(P=0.811).The follow-up period was 12 mo.The surgical durations in Group W(with or without encircling buckling) were significant shorter than those in Group I(P〈0.001 respectively).The primary success rate was94.27%in Group W,which was similar to that in Group I(92.38%,P=0.931).The BCVA in Group W was better than that in Group I(P〈0.001) at 1-month follow-up visit.However,there were no significant differences between the two groups at 3-month(P=0.221),6-month(P =0.674),and 12-month(P=0.363) follow-up visits respectively.Delayed subretinal fluid absorptions were more common in Group I than in Group W at 1-month(P=0.045) follow-up visit,but there were no significant differences between the two groups at 3-month(P=0.111),6-month(P =1.000) and 12-month follow-up visits respectively.CONCLUSION:Scleral buckling using WAVS can be an alternative choose for rhegmatogenous retinal detachment展开更多
Polarity reversals may occur to transmitted P waves if the incidence angle is greater than the critical incidence angle. We analyze the characteristics of reflection and transmission coefficients under the condition o...Polarity reversals may occur to transmitted P waves if the incidence angle is greater than the critical incidence angle. We analyze the characteristics of reflection and transmission coefficients under the condition of wide incidence angle based on Zoeppritz equations. We find that for specific conditions, as the incidence angle increases, the characteristic curve of the transmitted P-wave coefficient enters the third quadrant from the first quadrant through the origin, which produces a transition in the transmitted P wave and the corresponding coefficient experiences polarity reversal. We derive the incidence angle when the transmitted P-wave coefficient is zero and verify that it equals zero by using finite-difference forward modeling for a single-interface model. We replace the water in the model reservoir by gas and see that the reservoir P-wave velocity and density decrease dramatically. By analyzing the synthetic seismogram of the transmitted P wave in the single-interface model, we show that the gas-saturated reservoir is responsible for polarity reversal.展开更多
The studies of seismic tomography and wide-angle reflection have been carried out to reveal the velocity structUrebeneath the eastern Dabie orogenic belt. The result from the seismic tomography shows the high velocity...The studies of seismic tomography and wide-angle reflection have been carried out to reveal the velocity structUrebeneath the eastern Dabie orogenic belt. The result from the seismic tomography shows the high velocity bodiesmight be positioned to a depth of only about 1 .5 km below sea level within the Dabie ultra-high pressure metamorphic (UHPM) belt; the fan-profile shows the Shuihou-Wuhe fault, the demarcation between the South Dabieand the North Dabie, slopes to the south-west at a dip angle of about 45° in the bottom of upper crust. The wideangle reflection shows the middle crustal boundaries and the complex features from the lower crust.展开更多
文摘Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry should use wide-angle camera as much as possible is done.Then,the limitation of the single lens camera to expand field angle and the combined wide-angle camera existing on the market not suitable for light load of low altitude UAV(Unmanned Aerial Vehicle)due to excessive weight are pointed out.The characteristics of combined wide-angle low altitude light camera with self-calibration and self-stabilization developed by the author are described,especially the principle of self-calibration for the combination of static error and dynamic error.Based on the practice of large scale mapping,a technical procedure in aerial photography by taking with wide-angle camera and large overlap simultaneously for improving the accuracy of low altitude photogrammetry is proposed.The typical engineering produced data is used to verity the above theoretical analysis.A technical route for increasing accuracy of low altitude photogrammetry with combined wide-angle camera is expounded.
文摘Automobile accidents cost over a trillion-do llar every year and this figure will continue increasing without employing new technological solutions.Among these solutions,the automated lane-keeping system is one of the promising ones and such a system consists of two essential technologies:road detection and steering control.In this paper,novel lane keeping algorithms are proposed and are implemented using only a single off-the-shelf wide-angle camera as input.The implemented system is verified,through both simulation and experiments,and is found providing satisfactory performance for an automated lane-keeping system.When compared to the state-of-the-art lane-keeping systems,the implemented system can perform consistently across various ambient light conditions including the most challenging ones.
基金support by the Advanced Integrated Optoelectronics Facility at Tianjin University
文摘Metasurfaces composed of two-dimensional nanopillar arrays can manipulate light fields in desirable ways and exhibit the unique advantage of beam steering.Here,we experimentally demonstrate a metasurface-based wide-angle broadband all-dielectric blazed grating with an extreme incident angle of up to 80°,which is achieved by optimizing the wide-angle phase shifts and transmissivities of the unit cells.It exhibits a maximum diffraction efficiency of 72%and a high average efficiency of 64%over a wide range of incident angles from−80° to 45° at 1.55μm.Moreover,the proposed grating has a broad bandwidth of 200 nm(1.45-1.65μm),and average efficiencies of more than 50%can be achieved experimentally over the same incidence angles.Our results may pave the way for the creation of novel and efficient flat optical devices for wavefront control.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2023YFB3811400 and 2022YFB3806000)the National Natural Science Foundation of China(Grant No.12074314)+1 种基金the Science and Technology New Star Program of Shaanxi Province,China(Grant No.2023KJXX-148)the Fundamental Research Funds for the Central Universities。
文摘The emergent metagrating,with its unique and flexible beam shaping capabilities,offers new paths to efficient modulation of acoustic waves.In this work,an acoustic metagrating is demonstrated for high-efficiency and wide-angle anomalous refraction.It is shown that the normal reflection and transmission can be totally suppressed by properly modulating the amplitude and phase characteristics of the metagrating supercells for high-efficiency anomalous refraction.The anomalous refraction behavior is achieved in the wide range of incident angles from 28°to 78°,and the efficiency of-1st order diffraction is higher than 90%by finely designing the metagrating structure.The anomalous refraction behaviors are verified experimentally at incidence angle of 28°,45°,and 78°,respectively.The demonstrated metagrating is anticipated to possess efficient wide-angle composite wavefront engineering applications in such fields as communications.
基金National Natural Science Foundation of China,Grant/Award Number:61702320。
文摘Precise localisation and navigation are the two most important tasks for mobile robots.Visual simultaneous localisation and mapping(VSLAM)is useful in localisation systems of mobile robots.The wide-angle camera has a broad field of vision and more abundant information on images,so it is widely used in mobile robots,including legged robots.However,wide-angle cameras are more complicated than ordinary cameras in the design of visual localisation systems,and higher requirements and challenges are put forward for VSLAM technologies based on wide-angle cameras.In order to resolve the problem of distortion in wide-angle images and improve the accuracy of localisation,a sampling VSLAM based on a wide-angle camera model for legged mobile robots is proposed.For the predictability of the periodic motion of a legged robot,in the method,the images are sampled periodically,image blocks with clear texture are selected and the image details are enhanced to extract the feature points on the image.Then,the feature points of the blocks are extracted and by using the feature points of the blocks in the images,the feature points on the images are extracted.Finally,the points on the incident light through the normalised plane are selected as the template points;the relationship between the template points and the images is established through the wide-angle camera model,and the pixel coordinates of the template points in the images and the descriptors are calculated.Moreover,many experiments are conducted on the TUM datasets with a quadruped robot.The experimental results show that the trajectory error and translation error measured by the proposed method are reduced compared with the VINS-MONO,ORB-SLAM3 and Periodic SLAM systems.
基金financial supports from National Natural Science Foundation of China(Grant Nos.U23A20368 and 62175006)Academic Excellence Foundation of BUAA for PhD Students.
文摘Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.
基金Supported by the Fundamental Research Funds for the Central Universities(2024300443)the Natural Science Foundation of Jiangsu Province(BK20241224).
文摘This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,and a CMOS sensor.In view of the significant contrast between face and background in thermal infra⁃red images,this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,lightweight detector named YOLO-Fastest-IR.Four YOLO-Fastest-IR models(IR0 to IR3)with different scales are designed based on YOLO-Fastest.To train and evaluate these lightweight models,a multi-user low-resolution thermal face database(RGBT-MLTF)was collected,and the four networks were trained.Experiments demon⁃strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.The proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed,making it more suitable for deployment on mobile platforms or embedded devices.After obtaining the region of interest(ROI)in the infrared(IR)image,the RGB camera is guided by the thermal infrared face detection results to achieve fine positioning of the RGB face.Experimental results show that YOLO-Fastest-IR achieves a frame rate of 92.9 FPS on a Raspberry Pi 4B and successfully detects 97.4%of faces in the RGBT-MLTF test set.Ultimate⁃ly,an infrared temperature measurement system with low cost,strong robustness,and high real-time perfor⁃mance was integrated,achieving a temperature measurement accuracy of 0.3℃.
基金supported by the Hunan Provin〓〓cial Natural Science Foundation for Excellent Young Scholars(Grant No.2023JJ20045)the National Natural Science Foundation of China(Grant No.12372189)。
文摘Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned aerial vehicles.Localizing moving targets is crucial for analyzing their motion characteristics and dynamic properties.Reconstructing the trajectories of points from asynchronous cameras is a significant challenge.It encompasses two coupled sub-problems:Trajectory reconstruction and camera synchronization.Present methods typically address only one of these sub-problems individually.This paper proposes a 3D trajectory reconstruction method for point targets based on asynchronous cameras,simultaneously solving both sub-problems.Firstly,we extend the trajectory intersection method to asynchronous cameras to resolve the limitation of traditional triangulation that requires camera synchronization.Secondly,we develop models for camera temporal information and target motion,based on imaging mechanisms and target dynamics characteristics.The parameters are optimized simultaneously to achieve trajectory reconstruction without accurate time parameters.Thirdly,we optimize the camera rotations alongside the camera time information and target motion parameters,using tighter and more continuous constraints on moving points.The reconstruction accuracy is significantly improved,especially when the camera rotations are inaccurate.Finally,the simulated and real-world experimental results demonstrate the feasibility and accuracy of the proposed method.The real-world results indicate that the proposed algorithm achieved a localization error of 112.95 m at an observation distance range of 15-20 km.
基金supported by Natural Science Foundation of Jilin Province(20210101468JC)Chinese Academy of Sciences and Local Government Cooperation Project(2023SYHZ0027,23SH04)National Natural Science Foundation of China(12273063&12203078)。
文摘Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calculating the sky area visibility distribution via extinction measurement challenging.To address this issue,we propose the Photometry-Free Sky Area Visibility Estimation(PFSAVE)method.This method uses the standard magnitude of the faintest star observed within a given sky area to estimate visibility.By employing a pertransformation refitting optimization strategy,we achieve a high-precision coordinate transformation model with an accuracy of 0.42 pixels.Using the results of HEALPix segmentation is also introduced to achieve high spatial resolution.Comprehensive analysis based on real allsky images demonstrates that our method exhibits higher accuracy than the extinction-based method.Our method supports both manual and robotic dynamic scheduling,especially under partially cloudy conditions.
基金supported by the National Natural Science Foundation of China(No.52474172).
文摘It is important to understand the development of joints and fractures in rock masses to ensure drilling stability and blasting effectiveness.Traditional manual observation techniques for identifying and extracting fracture characteristics have been proven to be inefficient and prone to subjective interpretation.Moreover,conventional image processing algorithms and classical deep learning models often encounter difficulties in accurately identifying fracture areas,resulting in unclear contours.This study proposes an intelligent method for detecting internal fractures in mine rock masses to address these challenges.The proposed approach captures a nodal fracture map within the targeted blast area and integrates channel and spatial attention mechanisms into the ResUnet(RU)model.The channel attention mechanism dynamically recalibrates the importance of each feature channel,and the spatial attention mechanism enhances feature representation in key areas while minimizing background noise,thus improving segmentation accuracy.A dynamic serpentine convolution module is also introduced that adaptively adjusts the shape and orientation of the convolution kernel based on the local structure of the input feature map.Furthermore,this method enables the automatic extraction and quantification of borehole nodal fracture information by fitting sinusoidal curves to the boundaries of the fracture contours using the least squares method.In comparison to other advanced deep learning models,our enhanced RU demonstrates superior performance across evaluation metrics,including accuracy,pixel accuracy(PA),and intersection over union(IoU).Unlike traditional manual extraction methods,our intelligent detection approach provides considerable time and cost savings,with an average error rate of approximately 4%.This approach has the potential to greatly improve the efficiency of geological surveys of borehole fractures.
基金funded by the Ministry of Education and Training Project(code number:B2023-TCT-08).
文摘This study presents a drone-based aerial imaging method for automated rice seedling detection and counting in paddy fields.Utilizing a drone equipped with a high-resolution camera,images are captured 14 days postsowing at a consistent altitude of six meters,employing autonomous flight for uniform data acquisition.The approach effectively addresses the distinct growth patterns of both single and clustered rice seedlings at this early stage.The methodology follows a two-step process:first,the GoogleNet deep learning network identifies the location and center points of rice plants.Then,the U-Net deep learning network performs classification and counting of individual plants and clusters.This combination of deep learning models achieved a 90%accuracy rate in classifying and counting both single and clustered seedlings.To validate the method’s effectiveness,results were compared against traditional manual counting conducted by agricultural experts.The comparison revealed minimal discrepancies,with a variance of only 2–4 clumps per square meter,confirming the reliability of the proposed method.This automated approach offers significant benefits by providing an efficient,accurate,and scalable solution for monitoring seedling growth.It enables farmers to optimize fertilizer and pesticide application,improve resource allocation,and enhance overall crop management,ultimately contributing to increased agricultural productivity.
基金the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant(No.20172005)。
文摘Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of surgical failure.Therefore,it is necessary to design a visualization system for closed thoracic drainage.Augmented reality(AR)technology can assist in visualizing the internal anatomical structure and determining the insertion point on the body surface.The structure of the currently used steel-needle-guided chest tube was modified by integrating it with an ultrafine diameter camera to provide real-time visualization of the puncture process.After simulation experiments,the overall registration error of the AR method was measured to be within(3.59±0.53)mm,indicating its potential for clinical application.The ultrafine diameter camera module and improved steel-needle-guided chest tube can timely reflect the position of the needle tip in the human body.A comparative experiment showed that video guidance could improve the safety of the puncture process compared to the traditional method.Finally,a qualitative evaluation of the usability of the system was conducted through a questionnaire.This system facilitates the visualization of closed thoracic drainage puncture procedure and pro-vides an implementation scheme to enhance the accuracy and safety of the operative step,which is conducive to reducing the learning curve and improving the proficiency of the doctors.
基金Natural Science Foundation of Hunan Province,China(No.2024JJ8335)Open Topic of Hunan Geospatial Information Engineering and Technology Research Center,China(No.HNGIET2023004).
文摘The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.
基金supported by the National Natural Science Foundation of China (No.41230318)the Natural Science Foundation of Shandong Province (No.ZR2014DM006)+1 种基金the China Postdoctoral Science Foundation (No.2015M582138)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education
文摘The seawater column is typically taken as a homogeneous velocity layer in wide-angle crustal seismic surveys in marine environments. However, heterogeneities in salinity and temperature throughout the seawater layer result insignificant lateral variations in its seismic velocity, especially in deep marine environments. Failure to compensate for these velocity inhomogeneities will introduce significant artifacts in constructing crustal velocity models using seismic tomography. In this study, we conduct numerical experiments to investigate the impact of heterogeneous seismic velocities in seawater on tomographic inversion for crustal velocity models. Experiments that include lateral variation in seawater velocity demonstrated that the modeled crustal velocities were contaminated by artifacts from tomographic inversions when assuming a homogeneous water layer. To suppress such artifacts, we propose two strategies:(1) simultaneous inversion of water velocities and the crustal velocities;(2) layer-stripping inversion during which to first invert for seawater velocity and then correct the travel times before inverting for crustal velocities. The layer-stripping inversion significantly improves the modeling of variation in seawater velocity when preformed with seismic sensors deployed on the ocean bottom and in the water column. Such strategies improve crustal modeling via wide-angle seismic surveys in deep-marine environment.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.T0103)
文摘In order to deal with torque pulsation problem caused by traditional control method for brushless DC (BLDC) motor and to achieve high precision and good stability, a novel control strategy is proposed. Compared with the traditional control scheme, by using phase voltage as a control objective and making waveform of phase current approximately quasi-sinusoidal, torque ripple of BLDC motor is reduced from the original 14% to 3.4%, while toque is increased by 3.8%. Furthermore, by detecting zero-crossings of back electromotive force (BEMF) with non-conducting phases, sensorless control is realized. The new control strategy is simple. It can minimize torque ripple, increase torque, and realize sensorless control for BLDC motor. Simulation and experiments show good performance of BLDC motor by using the new control method.
基金Supported by the Projects of Henan Health and Family Planning Commission(No.2014005)Henan Health Department(No.201304007)Henan Science and Technology Department(No.142102310110)
文摘AIM:To compare the effects of scleral buckling using wide-angle viewing systems(WAVS) with that using indirect ophthalmoscope for the treatment of rhegmatogenous retinal detachment.METHODS:The study was a retrospective analyses of the medical records of 94 eyes(94 patients) with rhegmatogenous retinal detachment.Among them,47 eyes underwent scleral buckling using WAVS with endoiiluminator(Group W),and 47 eyes underwent scleral buckling using indirect ophthalmoscope(Group I).Surgical durations,primary success rate,best-corrected visual acuities(BCVA),delayed subretinal fluid absorptions and surgical complications were compared between the two groups.RESULTS:At baseline,there were no statistical differences between the two groups in patient's age(P=0.997),gender(P=0.853),symptom duration(P=0.216),BCVA(P=0.389),refractive error(P=0.167),intraocular pressure(P=0.595),the number of retinal breaks(P=0.832),the extent of retinal detachment(P =0.246),subretinal demarcation line(P=0.801),and macular detachment(P=0.811).The follow-up period was 12 mo.The surgical durations in Group W(with or without encircling buckling) were significant shorter than those in Group I(P〈0.001 respectively).The primary success rate was94.27%in Group W,which was similar to that in Group I(92.38%,P=0.931).The BCVA in Group W was better than that in Group I(P〈0.001) at 1-month follow-up visit.However,there were no significant differences between the two groups at 3-month(P=0.221),6-month(P =0.674),and 12-month(P=0.363) follow-up visits respectively.Delayed subretinal fluid absorptions were more common in Group I than in Group W at 1-month(P=0.045) follow-up visit,but there were no significant differences between the two groups at 3-month(P=0.111),6-month(P =1.000) and 12-month follow-up visits respectively.CONCLUSION:Scleral buckling using WAVS can be an alternative choose for rhegmatogenous retinal detachment
基金the National Natural Science Foundation of China(No.41374123)
文摘Polarity reversals may occur to transmitted P waves if the incidence angle is greater than the critical incidence angle. We analyze the characteristics of reflection and transmission coefficients under the condition of wide incidence angle based on Zoeppritz equations. We find that for specific conditions, as the incidence angle increases, the characteristic curve of the transmitted P-wave coefficient enters the third quadrant from the first quadrant through the origin, which produces a transition in the transmitted P wave and the corresponding coefficient experiences polarity reversal. We derive the incidence angle when the transmitted P-wave coefficient is zero and verify that it equals zero by using finite-difference forward modeling for a single-interface model. We replace the water in the model reservoir by gas and see that the reservoir P-wave velocity and density decrease dramatically. By analyzing the synthetic seismogram of the transmitted P wave in the single-interface model, we show that the gas-saturated reservoir is responsible for polarity reversal.
文摘The studies of seismic tomography and wide-angle reflection have been carried out to reveal the velocity structUrebeneath the eastern Dabie orogenic belt. The result from the seismic tomography shows the high velocity bodiesmight be positioned to a depth of only about 1 .5 km below sea level within the Dabie ultra-high pressure metamorphic (UHPM) belt; the fan-profile shows the Shuihou-Wuhe fault, the demarcation between the South Dabieand the North Dabie, slopes to the south-west at a dip angle of about 45° in the bottom of upper crust. The wideangle reflection shows the middle crustal boundaries and the complex features from the lower crust.