摘要
It is important to understand the development of joints and fractures in rock masses to ensure drilling stability and blasting effectiveness.Traditional manual observation techniques for identifying and extracting fracture characteristics have been proven to be inefficient and prone to subjective interpretation.Moreover,conventional image processing algorithms and classical deep learning models often encounter difficulties in accurately identifying fracture areas,resulting in unclear contours.This study proposes an intelligent method for detecting internal fractures in mine rock masses to address these challenges.The proposed approach captures a nodal fracture map within the targeted blast area and integrates channel and spatial attention mechanisms into the ResUnet(RU)model.The channel attention mechanism dynamically recalibrates the importance of each feature channel,and the spatial attention mechanism enhances feature representation in key areas while minimizing background noise,thus improving segmentation accuracy.A dynamic serpentine convolution module is also introduced that adaptively adjusts the shape and orientation of the convolution kernel based on the local structure of the input feature map.Furthermore,this method enables the automatic extraction and quantification of borehole nodal fracture information by fitting sinusoidal curves to the boundaries of the fracture contours using the least squares method.In comparison to other advanced deep learning models,our enhanced RU demonstrates superior performance across evaluation metrics,including accuracy,pixel accuracy(PA),and intersection over union(IoU).Unlike traditional manual extraction methods,our intelligent detection approach provides considerable time and cost savings,with an average error rate of approximately 4%.This approach has the potential to greatly improve the efficiency of geological surveys of borehole fractures.
基金
supported by the National Natural Science Foundation of China(No.52474172).