期刊文献+
共找到488篇文章
< 1 2 25 >
每页显示 20 50 100
Weapon-target assignment for unmanned aerial vehicles: A multi-strategy threshold public goods game approach
1
作者 Wenhao Bi Zhaoxi Wang +1 位作者 Yang Xu An Zhang 《Defence Technology(防务技术)》 2025年第6期221-237,共17页
As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UA... As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario. 展开更多
关键词 Unmanned aerial vehicles(UAVs) weapon-target assignment Public goods game(PGG) Multi-chain markov Strategy update rule
在线阅读 下载PDF
Survey of the research on dynamic weapon-target assignment problem 被引量:50
2
作者 Cai Huaiping Liu Jingxu Chen Yingwu Wang Hao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期559-565,共7页
The basic concepts and models of weapon-target assignment (WTA) are introduced and the mathematical nature of the WTA models is also analyzed. A systematic survey of research on WTA problem is provided. The present ... The basic concepts and models of weapon-target assignment (WTA) are introduced and the mathematical nature of the WTA models is also analyzed. A systematic survey of research on WTA problem is provided. The present research on WTA is focused on models and algorithms. In the research on models of WTA, the static WTA models are mainly studied and the dynamic WTA models are not fully studied in deed. In the research on algorithms of WTA, the intelligent algorithms are often used to solve the WTA problem. The small scale of static WTA problems has been solved very well, however, the large scale of dynamic WTA problems has not been solved effectively so far. Finally, the characteristics of dynamic WTA are analyzed and directions for the future research on dynamic WTA are discussed. 展开更多
关键词 military operational research dynamic weapon-target assignment SURVEY firepower assignment decision making combination optimization.
在线阅读 下载PDF
Improved MOEA/D for Dynamic Weapon-Target Assignment Problem 被引量:7
3
作者 Ying Zhang Rennong Yang +1 位作者 Jialiang Zuo Xiaoning Jing 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第6期121-128,共8页
Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model base... Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment. 展开更多
关键词 multi-objective optimization(MOP) dynamic weapon-target assignment(DWTA) multi-objective evolutionary algorithm based on decomposition(MOEA/D) tabu search
在线阅读 下载PDF
Shuffled frog leaping algorithm with non-dominated sorting for dynamic weapon-target assignment 被引量:2
4
作者 ZHAO Yang LIU Jicheng +1 位作者 JIANG Ju ZHEN Ziyang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期1007-1019,共13页
The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-d... The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment. 展开更多
关键词 dynamic weapon-target assignment(DWTA)problem shuffled frog leaping algorithm(SFLA) air combat research
在线阅读 下载PDF
An Intelligent Algorithm for Solving Weapon-Target Assignment Problem:DDPG-DNPE Algorithm 被引量:1
5
作者 Tengda Li Gang Wang +3 位作者 Qiang Fu Xiangke Guo Minrui Zhao Xiangyu Liu 《Computers, Materials & Continua》 SCIE EI 2023年第9期3499-3522,共24页
Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinfo... Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinforcement learning theory,an improved Deep Deterministic Policy Gradient algorithm with dual noise and prioritized experience replay is proposed,which uses a double noise mechanism to expand the search range of the action,and introduces a priority experience playback mechanism to effectively achieve data utilization.Finally,the algorithm is simulated and validated on the ground-to-air countermeasures digital battlefield.The results of the experiment show that,under the framework of the deep neural network for intelligent weapon-target assignment proposed in this paper,compared to the traditional RELU algorithm,the agent trained with reinforcement learning algorithms,such asDeepDeterministic Policy Gradient algorithm,Asynchronous Advantage Actor-Critic algorithm,Deep Q Network algorithm performs better.It shows that the use of deep reinforcement learning algorithms to solve the weapon-target assignment problem in the field of air defense operations is scientific.In contrast to other reinforcement learning algorithms,the agent trained by the improved Deep Deterministic Policy Gradient algorithm has a higher win rate and reward in confrontation,and the use of weapon resources is more efficient.It shows that the model and algorithm have certain superiority and rationality.The results of this paper provide new ideas for solving the problemof weapon-target assignment in air defense combat command decisions. 展开更多
关键词 weapon-target assignment DDPG-DNPE algorithm deep reinforcement learning intelligent decision-making GRU
在线阅读 下载PDF
Constraint-Feature-Guided Evolutionary Algorithms for Multi-Objective Multi-Stage Weapon-Target Assignment Problems
6
作者 WANG Danjing XIN Bin +3 位作者 WANG Yipeng ZHANG Jia DENG Fang WANG Xianpeng 《Journal of Systems Science & Complexity》 2025年第3期972-999,共28页
The allocation of heterogeneous battlefield resources is crucial in Command and Control(C2).Balancing multiple competing objectives under complex constraints so as to provide decisionmakers with diverse feasible candi... The allocation of heterogeneous battlefield resources is crucial in Command and Control(C2).Balancing multiple competing objectives under complex constraints so as to provide decisionmakers with diverse feasible candidate decision schemes remains an urgent challenge.Based on these requirements,a constrained multi-objective multi-stage weapon-target assignment(CMOMWTA)model is established in this paper.To solve this problem,three constraint-feature-guided multi-objective evolutionary algorithms(CFG-MOEAs)are proposed under three typical multi-objective evolutionary frameworks(i.e.,NSGA-Ⅱ,NSGA-Ⅲ,and MOEA/D)to obtain various high-quality candidate decision schemes.Firstly,a constraint-feature-guided reproduction strategy incorporating crossover,mutation,and repair is developed to handle complex constraints.It extracts common row and column features from different linear constraints to generate the feasible offspring population.Then,a variable-length integer encoding method is adopted to concisely denote the decision schemes.Moreover,a hybrid initialization method incorporating both heuristic methods and random sampling is designed to better guide the population.Systemic experiments are conducted on three CFG-MOEAs to verify their effectiveness.The superior algorithm CFG-NSGA-Ⅱamong three CFG-MOEAs is compared with two state-of-the-art CMOMWTA algorithms,and extensive experimental results demonstrate the effectiveness and superiority of CFG-NSGA-Ⅱ. 展开更多
关键词 Evolutionary algorithms constrained multi-objective optimization problem constraint handling weapon-target assignment
原文传递
基于改进灰狼算法求解武器目标分配问题
7
作者 陈阳 李姜 +2 位作者 王烨 高远 郭立红 《兵器装备工程学报》 北大核心 2025年第6期227-233,共7页
针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会... 针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会,还有效提升了算法的全局探索能力,使得算法能够在更大范围内寻找最优解,避免陷入局部最优的问题。仿真结果表明,在目标数量与武器数量均为20的测试组中,改进后的灰狼优化算法相较于标准的粒子群优化算法(PSO)和传统的灰狼优化算法(GWO),取得了更为优异的成绩,改进算法的适应度中位数相对于PSO和GWO分别下降了11.57%和6.37%。改进灰狼优化算法显著提升了GWO算法的全局寻优能力,且能够有效解决WTA问题。 展开更多
关键词 武器目标分配问题 群智能优化 灰狼优化算法 粒子群算法 进化计算
在线阅读 下载PDF
多智能体近端策略优化的动态武器目标分配
8
作者 宫华 王智昕 +1 位作者 许可 张勇 《兵器装备工程学报》 北大核心 2025年第7期93-104,共12页
针对地对空防御作战中武器与目标之间的动态关系,以及多类型武器协同作战的复杂性,研究了动态武器目标分配问题。考虑防护效能与成本之间的冲突关系,以最大化资产生存概率和最小化武器消耗成本为目标,结合武器制导能力、软杀伤武器充能... 针对地对空防御作战中武器与目标之间的动态关系,以及多类型武器协同作战的复杂性,研究了动态武器目标分配问题。考虑防护效能与成本之间的冲突关系,以最大化资产生存概率和最小化武器消耗成本为目标,结合武器制导能力、软杀伤武器充能特性、时间窗等关键约束,建立了多作战单元协同的动态武器目标分配优化模型。基于策略熵和随机噪声策略设计了改进的多智能体近端策略优化算法进行求解。实验仿真验证了所提出算法的有效性。 展开更多
关键词 地对空防御 动态武器目标分配 多智能体强化学习 近端策略优化 策略熵 随机噪声
在线阅读 下载PDF
激光武器低空防御的自主协同火力分配研究
9
作者 杨荣军 闫德恒 +2 位作者 陶章志 王明明 郑少秋 《兵器装备工程学报》 北大核心 2025年第7期227-233,共7页
研究多激光武器单元对低空威胁目标火力分配的自主协同方法。对激光武器系统作战过程进行分析,基于多智能体系统理念,结合集中指挥和分散控制的优点,提出了低空防御协同指挥决策功能结构。综合考虑激光武器对无人机的拦截概率、处置时机... 研究多激光武器单元对低空威胁目标火力分配的自主协同方法。对激光武器系统作战过程进行分析,基于多智能体系统理念,结合集中指挥和分散控制的优点,提出了低空防御协同指挥决策功能结构。综合考虑激光武器对无人机的拦截概率、处置时机,以及拦截任务之间的关系,建立了一种多智能体协同火力分配模型,提出了相邻智能体局部通信的分布式协同拍卖算法。每个激光武器单元作为一个具备自主决策能力的智能体,能够独立计算对各目标拦截配对产生的边际收益,并优选拦截目标方案。同时,各激光武器单元与友邻单元进行决策信息共享和竞拍,确定组网协同拦截任务的整体分配方案。仿真验证了该方法处理多目标火力分配问题的有效性,并能在有限次迭代中收敛,能够实现对威胁目标的自主协同打击。 展开更多
关键词 低空防御 激光武器 火力分配 多智能系统 拍卖算法
在线阅读 下载PDF
舰船防空反导的目标分配方法研究 被引量:1
10
作者 费帅迪 蔡长龙 +2 位作者 刘飞 陈明晖 刘晓明 《系统仿真学报》 北大核心 2025年第2期508-516,共9页
为了解决动态武器目标分配问题中遇到的状态信息多类型、时间序列相关的问题,提出一种基于改进的深度强化学习算法的动态武器目标分配方法。构建了目标导弹-拦截单元的多输入分配模型;设计一个多输入的状态空间,并结合问题模型建立马尔... 为了解决动态武器目标分配问题中遇到的状态信息多类型、时间序列相关的问题,提出一种基于改进的深度强化学习算法的动态武器目标分配方法。构建了目标导弹-拦截单元的多输入分配模型;设计一个多输入的状态空间,并结合问题模型建立马尔可夫决策过程;设计一个结合多输入信息处理和门控循环网络的特征提取网络,提高对状态信息的提取能力,保留所需要的状态信息并遗忘不重要的状态信息;在策略网络中引入多头注意力机制,提高模型的表现能力和收敛速度。实验结果表明:该动态武器目标分配方法有较好的收敛速度和拦截收益。 展开更多
关键词 防空反导 目标分配 武器目标分配 深度强化学习 注意力机制 Advantage Actor-Critic
原文传递
基于混合粒子群算法的防空装备软硬杀伤目标分配方法研究 被引量:1
11
作者 刘世豪 崔小舟 +2 位作者 王斐斐 黄骁飞 王聪 《现代防御技术》 北大核心 2025年第1期97-107,共11页
在防空体系软硬协同作战模式中,对软杀伤和硬杀伤装备协同拦截进行合理高效的目标分配具有重要的意义,提出了一种基于混合粒子群算法的防空装备软硬杀伤目标分配方法。分析软硬协同拦截问题对应的寻优指标,使用硬杀伤装备射击有利度和... 在防空体系软硬协同作战模式中,对软杀伤和硬杀伤装备协同拦截进行合理高效的目标分配具有重要的意义,提出了一种基于混合粒子群算法的防空装备软硬杀伤目标分配方法。分析软硬协同拦截问题对应的寻优指标,使用硬杀伤装备射击有利度和软杀伤装备压制、频率、角度等干扰有利度指标整合目标综合拦截效能指标,将传统粒子群算法与遗传算法的优势进行结合,采用改进的混合粒子群算法,并设计了适合软硬装备同时分配的编码结构和加快算法收敛的粒子生成引导操作。仿真结果表明:在野战固定阵地防空场景中,混合粒子群算法可快速得到目标分配最优方案,相较于传统算法,目标综合拦截效能明显提升,在防空指挥控制系统中具有一定的工程应用价值。 展开更多
关键词 软硬协同 防空体系 目标分配 粒子群算法 指挥控制
在线阅读 下载PDF
基于三支决策和遗传算法的动态武器目标分配
12
作者 刘富樯 周伦 +3 位作者 刘中阳 皮阳军 蒲华燕 罗均 《兵工学报》 北大核心 2025年第3期255-263,共9页
面向动态武器目标分配任务,结合博弈思想开展多阶段问题建模与求解。针对动态多阶段中确定打击目标的问题,引入三支决策理论改进威胁评估模型,通过接受决策、延迟决策和拒绝决策3种分类选取每阶段的优先打击目标用于火力分配;构建基于... 面向动态武器目标分配任务,结合博弈思想开展多阶段问题建模与求解。针对动态多阶段中确定打击目标的问题,引入三支决策理论改进威胁评估模型,通过接受决策、延迟决策和拒绝决策3种分类选取每阶段的优先打击目标用于火力分配;构建基于博弈思想的动态武器目标分配模型,设计构造敌方规避风险值目标函数以充分考虑来袭目标的智能性与不确定性;针对多个打击阶段中不同决策偏好的影响,设计结合拥挤度与参考点的动态选择机制,以应对动态情况下对不同目标函数的偏好并提高求解质量;将改进的遗传算法用于求解所提动态武器目标分配问题,并通过对比仿真实验验证所提算法的有效性。 展开更多
关键词 武器目标分配 三支决策 多目标优化 遗传算法 拥挤度
在线阅读 下载PDF
Evolutionary decision-makings for the dynamic weapon-target assignment problem 被引量:21
13
作者 CHEN Jie1,2, XIN Bin1,2, PENG ZhiHong1,2, DOU LiHua1,2 & ZHANG Juan1,2 1 School of Automation, Beijing Institute of Technology, Beijing 100081, China 2 Key Laboratory of Complex System Intelligent Control and Decision, Ministry of Education, Beijing 100081, China 《Science in China(Series F)》 2009年第11期2006-2018,共13页
The dynamic weapon-target assignment (DWTA) problem is an important issue in the field of military command and control. An asset-based DWTA optimization model was proposed with four kinds of constraints considered, ... The dynamic weapon-target assignment (DWTA) problem is an important issue in the field of military command and control. An asset-based DWTA optimization model was proposed with four kinds of constraints considered, including capability constraints, strategy constraints, resource constraints and engagement feasibility constraints. A general "virtual" representation of decisions was presented to facilitate the generation of feasible decisions. The representation is in essence the permutation of all assignment pairs. A construction procedure converts the permutations into real feasible decisions. In order to solve this problem, three evolutionary decision-making algorithms, including a genetic algorithm and two memetic algorithms, were developed. Experimental results show that the memetic algorithm based on greedy local search can generate obviously better DWTA decisions, especially for large-scale problems, than the genetic algorithm and the memetic algorithm based on steepest local search. 展开更多
关键词 DECISION-MAKING dynamic weapon-target assignment (DWTA) military command and control evolutionary computation memetic algorithms constraints handling
原文传递
基于扩展CBBA的地面防空武器目标分配问题研究
14
作者 张敬宜 陶磊 刘伟杰 《火力与指挥控制》 北大核心 2025年第5期154-159,共6页
防空武器目标分配问题是一个NP-hard问题,其目的是在有限资源的情况下,通过优化分配策略,最大化系统的整体效能。针对传统的解决方法难以应对复杂的实际场景的问题,提出了一种基于扩展CBBA算法的武器目标分配问题的解决方案。通过对CBB... 防空武器目标分配问题是一个NP-hard问题,其目的是在有限资源的情况下,通过优化分配策略,最大化系统的整体效能。针对传统的解决方法难以应对复杂的实际场景的问题,提出了一种基于扩展CBBA算法的武器目标分配问题的解决方案。通过对CBBA算法进行扩展与改进,提出一种更加高效且适用于实际作战环境的武器目标分配方法。实验结果表明,该方法相较于传统算法具有显著的性能提升。 展开更多
关键词 武器目标分配 CBBA算法 粒子群算法 分布式 防空武器
在线阅读 下载PDF
一种定向能武器动态多目标分配方法
15
作者 陈文武 王平 +3 位作者 胡忠赫 成昕 阳东升 高思昊 《火力与指挥控制》 北大核心 2025年第9期112-121,128,共11页
针对集群目标威胁场景下定向能武器火力分配人力依赖强、算力赋能弱,作战效能受到严重制约的问题,提出一种定向能武器动态多目标分配模型。针对动态分配过程中射击稳定性差、易频繁转火的问题,设计了综合考虑历史累积与未来预测的优化... 针对集群目标威胁场景下定向能武器火力分配人力依赖强、算力赋能弱,作战效能受到严重制约的问题,提出一种定向能武器动态多目标分配模型。针对动态分配过程中射击稳定性差、易频繁转火的问题,设计了综合考虑历史累积与未来预测的优化目标函数形式,区别于传统概率毁伤律,将单次作用效果作为独立事件处理,提出的时间毁伤律通过特征毁伤时间,建立具有累积意义的定向能武器毁伤效率模型;给出方法运用流程与动态调整的重规划触发机制,并针对定向能武器抗击不确定目标长时间未击落的问题设计了反馈机制。通过多场景仿真验证分析发现,新方法能够给出拦截效率稳定、复杂场景适应强的分配方案,对提高定向能武器作战效能有一定参考价值。 展开更多
关键词 定向能武器 动态武器目标分配 毁伤律 动态重规划
在线阅读 下载PDF
基于深度强化学习的传感器-武器-目标分配方法
16
作者 闫世祥 刘海军 《现代防御技术》 北大核心 2025年第4期10-17,共8页
合理选择作战资源组成“传感器-武器-目标”杀伤链在防空网络化作战中具有重要的意义,研究了多约束限制、多优化指标下的传感器-武器-目标分配(sensor-weapon-taget assignment,S-WTA)问题,建立其数学模型,并提出一种基于深度强化学习... 合理选择作战资源组成“传感器-武器-目标”杀伤链在防空网络化作战中具有重要的意义,研究了多约束限制、多优化指标下的传感器-武器-目标分配(sensor-weapon-taget assignment,S-WTA)问题,建立其数学模型,并提出一种基于深度强化学习的分配方法。分析S-W-TA问题对应的寻优指标,使用杀伤链有利度指标整合传统的效能指标;采用深度Q网络(deep Q network,DQN)方法训练智能体,使用深度强化学习类方法对S-W-TA问题进行求解。仿真结果表明:在杀伤链择优组网的过程中,深度强化学习算法所求得的解优于工程上广泛应用的基于规则的分配方法,强化学习类算法更适合解决多约束限制、多优化指标的S-W-TA问题,具有一定的工程应用价值。 展开更多
关键词 网络化作战 传感器-武器-目标分配 杀伤链 强化学习 深度Q网络
在线阅读 下载PDF
Weapon-target assignment in unreliable peer-to-peer architecture based on adapted artificial bee colony algorithm 被引量:1
17
作者 Xiaolong LIU Jinchao LIANG +2 位作者 De-Yu LIU Riqing CHEN Shyan-Ming YUAN 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第1期23-31,共9页
It is of great significance for headquarters in warfare to address the weapon-target assignment(WTA)problem with distributed computing nodes to attack targets simultaneously from different weapon units.However,the com... It is of great significance for headquarters in warfare to address the weapon-target assignment(WTA)problem with distributed computing nodes to attack targets simultaneously from different weapon units.However,the computing nodes on the battlefield are vulnerable to be attacked and the communication environment is usually unreliable.To solve the WTA problems in unreliable environments,this paper proposes a scheme based on decentralized peer-to-peer architecture and adapted artificial bee colony(ABC)optimization algorithm.In the decentralized architecture,the peer computing node is distributed to each weapon units and the packet loss rate is used to simulate the unreliable communication environment.The decisions made in each peer node will be merged into the decision set to carry out the optimal decision in the decentralized system by adapted ABC algorithm.The experimental results demonstrate that the decentralized peer-to-peer architecture perform an extraordinary role in the unreliable communication environment.The proposed scheme preforms outstanding results of enemy residual value(ERV)with the packet loss rate in the range from 0 to 0.9. 展开更多
关键词 weapon-target assignment(WTA) PEER-TO-PEER heuristic algorithm artificial bee colony(ABC)
原文传递
基于改进PSO算法的联合防空火力目标分配
18
作者 陈平 孙强 王聪 《指挥信息系统与技术》 2025年第2期62-66,共5页
为提高联合防空火力目标分配方案的可靠性和实时性,提出了一种改进粒子群优化算法(PSO)的火力目标分配算法。针对基础粒子群算法收敛速度慢和容易出现早熟停滞的缺点,在离散PSO算法的基础上引入了动态惯性因子和早熟-变异算子,同时,该... 为提高联合防空火力目标分配方案的可靠性和实时性,提出了一种改进粒子群优化算法(PSO)的火力目标分配算法。针对基础粒子群算法收敛速度慢和容易出现早熟停滞的缺点,在离散PSO算法的基础上引入了动态惯性因子和早熟-变异算子,同时,该算法对适应度函数和粒子的移动方式进行了优化,增强了全局搜索能力,提高了收敛速度。最后,仿真结果验证了改进PSO算法的有效性。 展开更多
关键词 火力目标分配 粒子群算法 动态惯性因子 早熟-变异算子
在线阅读 下载PDF
高保真集成式嵌入式训练系统设计
19
作者 刘娜英 赵永库 孙永强 《火力与指挥控制》 北大核心 2025年第5期174-179,共6页
军事训练历来是提高战斗力的基本手段,是赢得战争胜利的决定性因素之一。集成式嵌入式训练系统通过在载机已有硬件资源基础上集成相关软件实现系统功能,具有训练成本低、逼真度高、易于维护升级的特点,代表未来嵌入式训练系统发展的趋... 军事训练历来是提高战斗力的基本手段,是赢得战争胜利的决定性因素之一。集成式嵌入式训练系统通过在载机已有硬件资源基础上集成相关软件实现系统功能,具有训练成本低、逼真度高、易于维护升级的特点,代表未来嵌入式训练系统发展的趋势。面向未来作战场景,总结国内外研究经验,提出了一种高保真集成式嵌入式训练系统方案,分别从设计原则、系统架构、训练模式、工作原理4方面展开论述,实现训练与作战的无缝连接,达到“像作战一样训练和像训练一样作战”的目的。 展开更多
关键词 空战训练 虚拟武器 虚拟传感器 虚拟目标 训练评估 嵌训链
在线阅读 下载PDF
基于改进PSO-DQN的动态火力分配算法
20
作者 邱少明 刘良玉 +1 位作者 黄昕晨 俄必聪 《电光与控制》 北大核心 2025年第6期24-30,共7页
针对动态火力分配中难以反映战场态势博弈情况的问题,提出了基于深度Q网络(DQN)的混沌随机粒子群(TRPSO-DQN)火力分配算法。首先使用DQN根据战场态势生成博弈矩阵;其次利用改进粒子群算法求解纳什均衡,以解决传统线性规划求解结果不准... 针对动态火力分配中难以反映战场态势博弈情况的问题,提出了基于深度Q网络(DQN)的混沌随机粒子群(TRPSO-DQN)火力分配算法。首先使用DQN根据战场态势生成博弈矩阵;其次利用改进粒子群算法求解纳什均衡,以解决传统线性规划求解结果不准确、大维度矩阵无法求解的问题;最后利用提出的TRPSO-DQN算法实现动态火力分配。实验结果表明,该算法在实现动态火力分配方面具有很强的对抗性,火力分配的结果也更加合理,算法的收敛速度较快,纳什均衡的求解精度也优于其他算法。 展开更多
关键词 粒子群优化算法 纳什均衡 混沌映射 火力分配
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部