针对基于三电平变换器的电磁法发射机中功率开关器件开路故障特点和复杂工作环境,提出了针对性的故障诊断方法。该方法以变换器输出电压为原始信号,利用变采样频率的小波包分析方法提取特征向量,以提高对信号频率的分辨准确度。然后利...针对基于三电平变换器的电磁法发射机中功率开关器件开路故障特点和复杂工作环境,提出了针对性的故障诊断方法。该方法以变换器输出电压为原始信号,利用变采样频率的小波包分析方法提取特征向量,以提高对信号频率的分辨准确度。然后利用核主成分分析对特征向量进行降维,可以简化分类器的结构,提高诊断时间。采用概率神经网络建立故障分类器,可以提高诊断方法的鲁棒性。在一台5 k W电磁法三电平变换器实验样机上进行实验和分析,实验结果表明该方法可以准确地进行故障诊断,有较好的诊断准确度、实时性和较强的鲁棒性,具有一定的工程应用价值。展开更多
针对三相串联故障电弧的研究大多只是提供一种能够识别出故障电弧的方法,没有考虑用于工业实时检测的可能性,提出了一种基于深度置信网络的故障电弧检测方法。首先,通过搭建三相异步电机故障电弧实验平台获取不同故障情况下的电流数据,...针对三相串联故障电弧的研究大多只是提供一种能够识别出故障电弧的方法,没有考虑用于工业实时检测的可能性,提出了一种基于深度置信网络的故障电弧检测方法。首先,通过搭建三相异步电机故障电弧实验平台获取不同故障情况下的电流数据,并利用提升小波变换对其进行去噪;其次,通过核主成分分析法KPCA(kernel principal component analysis)提取去噪之后的数据的主成分,减少需要分析的变量;最后,通过PSO优化的DBN网络进行故障识别,与BP神经网络和极限学习机相比,其检测速度更快且准确率达到了98.8%,为应用于实时检测提供了可能性。展开更多
文摘针对基于三电平变换器的电磁法发射机中功率开关器件开路故障特点和复杂工作环境,提出了针对性的故障诊断方法。该方法以变换器输出电压为原始信号,利用变采样频率的小波包分析方法提取特征向量,以提高对信号频率的分辨准确度。然后利用核主成分分析对特征向量进行降维,可以简化分类器的结构,提高诊断时间。采用概率神经网络建立故障分类器,可以提高诊断方法的鲁棒性。在一台5 k W电磁法三电平变换器实验样机上进行实验和分析,实验结果表明该方法可以准确地进行故障诊断,有较好的诊断准确度、实时性和较强的鲁棒性,具有一定的工程应用价值。
文摘针对三相串联故障电弧的研究大多只是提供一种能够识别出故障电弧的方法,没有考虑用于工业实时检测的可能性,提出了一种基于深度置信网络的故障电弧检测方法。首先,通过搭建三相异步电机故障电弧实验平台获取不同故障情况下的电流数据,并利用提升小波变换对其进行去噪;其次,通过核主成分分析法KPCA(kernel principal component analysis)提取去噪之后的数据的主成分,减少需要分析的变量;最后,通过PSO优化的DBN网络进行故障识别,与BP神经网络和极限学习机相比,其检测速度更快且准确率达到了98.8%,为应用于实时检测提供了可能性。