The utilization of hybrid energy systems has necessitated to address the various Power Quality(PQ)concerns in Distributed Generation(DG)networks.Owing to the emergence of DG networks in recent times,it is envisaged fo...The utilization of hybrid energy systems has necessitated to address the various Power Quality(PQ)concerns in Distributed Generation(DG)networks.Owing to the emergence of DG networks in recent times,it is envisaged for every utility⁃grid⁃tied system to generate and utilize harmonic⁃less electric power.Therefore,the present research critically evaluates the operation of a utility⁃grid coordinated DG system and studies its islanding operation under faulted conditions.To achieve this,an Anti⁃Islanding Protection(AIP)scheme is developed which is capable of controlling the frequency and voltage variations.This scheme is operated by a coordinated operation of multivibrators.Their operation continuously traces the pre⁃defined limits of voltage,reactive,and real power,and matches with their reference values to avoid mismatch.It is revealed that,if the mismatched values of real and reactive power exceeded its threshold value of 0.1 p.u.,then the islanding condition is detected.Especially,the proposed system is assessed in two modes:utility⁃grid and islanding modes.In utility⁃grid mode,reactive power compensation is obtained by the control of voltage and frequency signals.However,in islanding mode,the real power requirement of the connected load is obtained with reduced harmonics under unsymmetrical faulted conditions.Incremental Conductance(IC)based Maximum Power Point Tracking(MPPT)technique ensures the extraction of maximum power under varying and stochastically atmospheric conditions.Simulation results reveal that the AIP scheme promptly disconnects the utility grid from the DG network in the minimum time during dynamic variations in frequency and voltage to prevent islanding.It is justified that there is violation of the considered threshold limits even under the faulted condition.The strategy of the switchgear scheme ensures the minimum detection time of the islanding operation.Total Harmonic Distortion(THD)is 0.26%for grid voltage.It validates according to the IEEE⁃1547 standard which stipulates that the THD of grid voltage must be less than 5%.Overall,satisfactory and accurate results are obtained,which are compared with the IEEE⁃1547 standard for validation.展开更多
The dynamics of network power response play a crucial role in system stability.However,the integration of power electronic equipment leads to amplitude and angular frequency(abbreviated as"frequency")time-va...The dynamics of network power response play a crucial role in system stability.However,the integration of power electronic equipment leads to amplitude and angular frequency(abbreviated as"frequency")time-varying characteristics of the node voltage during dynamic processes.As a result,traditional calcu-lation methods for and characteristics of the power response of the network based on phasor and impe-dance lose their validity.Therefore,this paper undertakes mathematical calculations to reveal the power response of a network under excitation by voltage with time-varying amplitude and frequency(TVAF),relying on the original mathematical relationships and superimposed step response.Then,the multi-timescale characteristics of both the active and reactive power of the network are explored physically.Additionally,this paper reveals a new phenomenon of storing and releasing the active and reactive power of the network.To meet practical engineering requirements,a simplified power expression is presented.Finally,the theoretical analysis is validated through time-domain simulations.展开更多
Characterizing the petrophysical properties holds significant importance in shale oil reservoirs.Twodimensional(2-D)nuclear magnetic resonance(NMR),a nondestructive and noninvasive technique,has numerous applications ...Characterizing the petrophysical properties holds significant importance in shale oil reservoirs.Twodimensional(2-D)nuclear magnetic resonance(NMR),a nondestructive and noninvasive technique,has numerous applications in petrophysical characterization.However,the complex occurrence states of the fluids and the highly non-uniform distributions of minerals and organic matter pose challenges in the NMR-based petrophysical characterization.A novel T_(1)-T_(2)relaxation theory is introduced for the first time in this study.The transverse and longitudinal relaxivities of pore fluids are determined based on numerical investigation and experimental analysis.Additionally,an improved random walk algorithm is proposed to,on the basis of digital shale core,simulate the effects of the hydrogen index(HI)for the organic matter,echo spacing(T_(E)),pyrite content,clay mineral type,and clay content on T_(1)-T_(2)spectra at different NMR frequencies.Furthermore,the frequency conversion cross-plots for various petrophysical parameters influenced by the above factors are established.This study provides new insights into NMRbased petrophysical characterization and the frequency conversion of petrophysical parameters measured by laboratory NMR instruments and NMR logging in shale oil reservoirs.It is of great significance for the efficient exploration and environmentally friendly production of shale oil.展开更多
In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law t...In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.展开更多
Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting t...Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.展开更多
The idea of Ku-band transceiver frequency conversion module design based on 3D micropackaging technology is proposed. By using the double frequency conversion technology,the dual transceiver circuit from Ku-band to L-...The idea of Ku-band transceiver frequency conversion module design based on 3D micropackaging technology is proposed. By using the double frequency conversion technology,the dual transceiver circuit from Ku-band to L-band is realized by combining with the local oscillator and the power control circuit to complete functions such as amplification, filtering and gain. In order to achieve the performance optimization and a high level of integration of the Ku-band monolithic microwave integrated circuits(MMIC) operating chip, the 3 D vertical interconnection micro-assembly technology is used. By stacking solder balls on the printed circuit board(PCB), the technology decreases the volume of the original transceiver to a miniaturized module. The module has a good electromagnetic compatibility through special structure designs. This module has the characteristics of miniaturization, low power consumption and high density, which is suitable for popularization in practical application.展开更多
As is well known, there exists a tradeoff between the breakdown voltage BVcEO and the cut-off frequency fT for a standard heterojunction bipolar transistor (HBT). In this paper, this tradeoff is alleviated by collec...As is well known, there exists a tradeoff between the breakdown voltage BVcEO and the cut-off frequency fT for a standard heterojunction bipolar transistor (HBT). In this paper, this tradeoff is alleviated by collector doping engineering in the SiGe HBT by utilizing a novel composite of P+ and N- doping layers inside the collector-base (CB) space-charge region (SCR). Compared with the single N-type collector, the introduction of the thin P+ layers provides a reverse electric field weakening the electric field near the CB metallurgical junction without changing the field direction, and the thin N layer further effectively lowers the electric field near the CB metallurgical junction. As a result, the electron temperature near the CB metallurgical junction is lowered, consequently suppressing the impact ionization, thus BVcEO is improved with a slight degradation in fT. The results show that the product of fTXBVcEo is improved from 309.51 GHz.V to 326.35 GHz.V.展开更多
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi...The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.展开更多
In this paper,a fault-tolerance wide voltage conversion gain DC/DC converter for More Electric Aircraft(MEA)is proposed.The proposed converter consists of a basic Cuk converter module and n expandable units.By adjusti...In this paper,a fault-tolerance wide voltage conversion gain DC/DC converter for More Electric Aircraft(MEA)is proposed.The proposed converter consists of a basic Cuk converter module and n expandable units.By adjusting the operation state of the expandable units,the voltage conversion gain of the proposed converter could be regulated,which makes it available for wide voltage conversion applications.Especially,since mutual redundancy can be realized between the basic Cuk converter module and the expandable units,the converter can continuously work when an unpredictable fault occurs to the fault-tolerant parts of the proposed converter,which reflects the fault tolerance of the converter and significantly improves the reliability of the system.Moreover,the advantages of small input current ripple,automatic current sharing and low voltage stress are also integrated in this converter.The working principle and features of the proposed converter are mainly introduced,and an experimental prototype with 800 W output power has been manufactured to verify the practicability and availability of the proposed converter.展开更多
The power and voltage levels of renewable energy resources is growing with the evolution of the power electronics and switching module technologies.For that,the need for the development of a compact and highly efficie...The power and voltage levels of renewable energy resources is growing with the evolution of the power electronics and switching module technologies.For that,the need for the development of a compact and highly efficient solid-state transformer is becoming a critical task in-order to integrate the current AC grid with the new renewable energy systems.The objective of this paper is to present the design,implementation,and testing of a compact multi-port solid-state transformer for microgrid integration applications.The proposed system has a four-port transformer and four converters connected to the ports.The transformer has four windings integrated on a single common core.Thus,it can integrate different renewable energy resources and energy storage systems.Each port has a rated power of 25 kW,and the switching frequency is pushed to 50 k Hz.The ports are chosen to represent a realistic industrial microgrid model consisting of grid,energy storage system,photovoltaic system,and load.The grid port is designed to operate at 4.16 k VAC corresponding to 7.2 kV DC bus voltage,while the other three ports operate at 500 VDC.Moreover,the grid,energy storage and photovoltaic ports are active ports with dual active bridge topologies,while the load port is a passive port with full bridge rectifier one.The proposed design is first validated with simulation results,and then the proposed transformer is implemented and tested.Experimental results show that the designed system is suitable for 4.16 k VAC medium voltage grid integration.展开更多
Thick CrN coatings were deposited on Si (111) substrates by electron source assisted mid-frequency magnetron sputtering working at 40 kHz. The deposition rate, structure, and microhardness of the coatings were stron...Thick CrN coatings were deposited on Si (111) substrates by electron source assisted mid-frequency magnetron sputtering working at 40 kHz. The deposition rate, structure, and microhardness of the coatings were strongly influenced by the negative bias voltage (Vb). The deposition rate reached 8.96 μm/h at a Vb of -150 V. X-ray diffraction measurement revealed strong CrN (200) orientation for films prepared at low bias voltages. At a high bias voltage of Vb less than -25 V both CrN (200) and (111) were observed. Large and homogeneous grains were observed by both atomic force microscopy and scanning electron microscopy in samples prepared under optimal conditions. The samples exhibited a fibrous microstructure for a low bias voltage and a columnar structure for VD less than -150 V.展开更多
To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery sys...To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery system, back-up diesel generator, etc., Isolated MicroGrid, which usually uses the inverter to maintain voltage and frequency of the system, is very weak in terms of voltage and frequency stability compared to the large-scale electrical power system. If wind turbine generator is applied to this weak power system, it could experience many problems in terms of maintaining its voltage and frequency. In this paper, the measurement result of voltage and frequency is presented for MicroGrid, which consists of the Wind Turbine Generator adopting the induction generator and the battery system. MicroGrid’s voltage waveform distortion and Wind Turbine Generator’s output oscillation problems are analyzed using PSCAD/EMTDC. Based on the analyzed result, the importance of type and capacity choice has been suggested in case the Wind Turbine Generator is applied to the Isolated MicroGrid.展开更多
The intermittent nature of wind and solar photovoltaic energy systems leads to the fluctuation of power generated due to the fact that the power output is highly dependent upon local weather conditions, which results ...The intermittent nature of wind and solar photovoltaic energy systems leads to the fluctuation of power generated due to the fact that the power output is highly dependent upon local weather conditions, which results to the load shading issue that led to the voltage and frequency instability. In additional to that, the high proportions of erratic renewable energy sources can lead to erratic frequency changes which affect the grid stability. In order to reduce this effect, the energy storage system is commonly used in most wind-solar energy systems to balance the voltage and frequency instability during load variations. One of the innovative energy storage systems is the compressed air energy storage system (CAES) for wind and solar hybrid energy system and this technology is the key focus in this research study. The aim of this research was to examine the system configuration of the CAES system through modelling and experimental approach with PID controller design for regulating the voltage and frequency under different load conditions. The essential elements and the entire system have been presented in this work as thorough modelling in the MATLAB/Simulink environment for different load conditions. The developed model was tested through an experimental workbench using the developed prototype of the compressed air storage in the Siemens Lab at DeKUT and explored the consequence of the working parameters on the system proficiency and the model accuracy. The performance of the system for the developed prototype of CAES system was validated using results from an experimental workbench with MATLAB/Simulink R2022b simulation. The modeling and experimental results, shows that the frequency fluctuation and voltage drop of the developed CAES system during load variations was governed by the I/P converter using a PID_Compact controller programed in the TIA Portal V17 software and downloaded into PLC S7 1200. Based on these results, the model can be applied as a basis for the performance assessment of the compressed air energy storage system so as to be included in current technology of wind and solar hybrid energy systems.展开更多
Frequency droop control is widely used in permanent magnet synchronous generators(PMSGs)based wind turbines(WTs)for grid frequency support.However,under frequency deviations,significant DC-link voltage fluctuations ma...Frequency droop control is widely used in permanent magnet synchronous generators(PMSGs)based wind turbines(WTs)for grid frequency support.However,under frequency deviations,significant DC-link voltage fluctuations may occur during the transient process due to sudden changes in real power of such WTs.To address this issue,a current feedforward control strategy is proposed for PMSG-based WTs to reduce DC-link voltage fluctuations when the WTs are providing frequency support under grid frequency deviations.Meanwhile,the desired frequency support capability of the PMSG-based WTs can be ensured.Simulation results verify the rationality of the analysis and the effectiveness of the proposed control method.展开更多
Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of...Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.展开更多
This paper describes the development of a timer based voltage to frequency converter(V FC).Timer LM555is used in astable multivibrator mode with two OPTO-LDRs(light dependent resistors)in the circuitry.The frequency o...This paper describes the development of a timer based voltage to frequency converter(V FC).Timer LM555is used in astable multivibrator mode with two OPTO-LDRs(light dependent resistors)in the circuitry.The frequency of timer output waveform which is measured using a digital storage oscillator(DSO)is almost linearly proportional to the applied input voltage.Hence we obtain a linear relationship between the frequency of timer output waveform and the input voltage.Because of its quasi-digital output,the main advantages of this developed converter are linear input-output relationship,small size,easy portabilityand high cost performance.In addition,the timer output waveform can be directly interfaced with personal computer or microprocessor/microcontroller for further processing of the input voltage signal without intervening any analog-to-digital converter(ADC).展开更多
Near-infrared single photon sources in telecommunication bands, especially at 1550 nm, are required for long-distance quantum communication. Here a down-conversion quantum interface is implemented, where the single ph...Near-infrared single photon sources in telecommunication bands, especially at 1550 nm, are required for long-distance quantum communication. Here a down-conversion quantum interface is implemented, where the single photons emitted from single In As quantum dot at 864 nm is down converted to 1552 nm by using a fiber-coupled periodically poled lithium niobate(PPLN) waveguide and a 1.95 μmm pump laser, and the frequency conversion efficiency is ~40%. The singlephoton purity of quantum dot emission is preserved during the down-conversion process, i.e., g^((2))(0), only 0.22 at 1552 nm.This present technique advances the Ⅲ-Ⅴ semiconductor quantum dots as a promising platform for long-distance quantum communication.展开更多
The emerging of commercial high-voltage gallium nitride(GaN) power devices provides extraordinary switching performance over silicone devices, which enables high-voltage power conversion switching at megahertz range.S...The emerging of commercial high-voltage gallium nitride(GaN) power devices provides extraordinary switching performance over silicone devices, which enables high-voltage power conversion switching at megahertz range.Such outstanding features also pose strong challenges for device packaging design since the package parasitics can significantly influence the device switching characteristics, and thus can shadow the advantages brought by GaN devices. Designers have been dealing with these challenges brought by high du/dt and high-frequency switching operation even since the silicon(Si) era when fast switching Si MOSFET is first developed and came up with lots of inspiring advanced power module packaging structures to mitigate the problems.This paper presents a review of advanced power module packaging and integration structures that are suitable for high frequency power conversion.The review covers the heritage from the high frequency Si MOSFET packaging to the state-of-the-art for GaN devices.展开更多
Nd3+,Eu3+ and Tb3+ ions doped transparent chlorophosphate glass ceramics were prepared and their frequency-conversion properties were studied. X-ray diffraction (XRD) patterns evidenced the formation of expected ...Nd3+,Eu3+ and Tb3+ ions doped transparent chlorophosphate glass ceramics were prepared and their frequency-conversion properties were studied. X-ray diffraction (XRD) patterns evidenced the formation of expected halide nanocrystals. The absorption,excitation and emission spectra investigation indicated that some of rare earth (RE) ions were trapped in low phonon energy halide nanocrystals,and therefore an efficient down frequency-conversion was observed. The comparative spectroscopic studies of RE doped samples suggested that the glass ceramics systems are potentially applicable as efficient ultraviolet to visible frequency-conversion photonics materials.展开更多
In this paper, the frequency conversion of quantum states based on the intracavity nonlinear interaction is proposed. The fidelity of an input state after frequency conversion is calculated, and it is shown the noise-...In this paper, the frequency conversion of quantum states based on the intracavity nonlinear interaction is proposed. The fidelity of an input state after frequency conversion is calculated, and it is shown the noise-free frequency conversion of a quantum state can be achieved by injecting a strong signal field. The dependences of conversion efficiency on the pump parameter, extra losses and input state amplitude are also analysed.展开更多
文摘The utilization of hybrid energy systems has necessitated to address the various Power Quality(PQ)concerns in Distributed Generation(DG)networks.Owing to the emergence of DG networks in recent times,it is envisaged for every utility⁃grid⁃tied system to generate and utilize harmonic⁃less electric power.Therefore,the present research critically evaluates the operation of a utility⁃grid coordinated DG system and studies its islanding operation under faulted conditions.To achieve this,an Anti⁃Islanding Protection(AIP)scheme is developed which is capable of controlling the frequency and voltage variations.This scheme is operated by a coordinated operation of multivibrators.Their operation continuously traces the pre⁃defined limits of voltage,reactive,and real power,and matches with their reference values to avoid mismatch.It is revealed that,if the mismatched values of real and reactive power exceeded its threshold value of 0.1 p.u.,then the islanding condition is detected.Especially,the proposed system is assessed in two modes:utility⁃grid and islanding modes.In utility⁃grid mode,reactive power compensation is obtained by the control of voltage and frequency signals.However,in islanding mode,the real power requirement of the connected load is obtained with reduced harmonics under unsymmetrical faulted conditions.Incremental Conductance(IC)based Maximum Power Point Tracking(MPPT)technique ensures the extraction of maximum power under varying and stochastically atmospheric conditions.Simulation results reveal that the AIP scheme promptly disconnects the utility grid from the DG network in the minimum time during dynamic variations in frequency and voltage to prevent islanding.It is justified that there is violation of the considered threshold limits even under the faulted condition.The strategy of the switchgear scheme ensures the minimum detection time of the islanding operation.Total Harmonic Distortion(THD)is 0.26%for grid voltage.It validates according to the IEEE⁃1547 standard which stipulates that the THD of grid voltage must be less than 5%.Overall,satisfactory and accurate results are obtained,which are compared with the IEEE⁃1547 standard for validation.
基金supported in part by the National Natural Science Fundation of China(52225704 and 52107096).
文摘The dynamics of network power response play a crucial role in system stability.However,the integration of power electronic equipment leads to amplitude and angular frequency(abbreviated as"frequency")time-varying characteristics of the node voltage during dynamic processes.As a result,traditional calcu-lation methods for and characteristics of the power response of the network based on phasor and impe-dance lose their validity.Therefore,this paper undertakes mathematical calculations to reveal the power response of a network under excitation by voltage with time-varying amplitude and frequency(TVAF),relying on the original mathematical relationships and superimposed step response.Then,the multi-timescale characteristics of both the active and reactive power of the network are explored physically.Additionally,this paper reveals a new phenomenon of storing and releasing the active and reactive power of the network.To meet practical engineering requirements,a simplified power expression is presented.Finally,the theoretical analysis is validated through time-domain simulations.
基金funded by the National Natural Science Foundation of China(42174131).
文摘Characterizing the petrophysical properties holds significant importance in shale oil reservoirs.Twodimensional(2-D)nuclear magnetic resonance(NMR),a nondestructive and noninvasive technique,has numerous applications in petrophysical characterization.However,the complex occurrence states of the fluids and the highly non-uniform distributions of minerals and organic matter pose challenges in the NMR-based petrophysical characterization.A novel T_(1)-T_(2)relaxation theory is introduced for the first time in this study.The transverse and longitudinal relaxivities of pore fluids are determined based on numerical investigation and experimental analysis.Additionally,an improved random walk algorithm is proposed to,on the basis of digital shale core,simulate the effects of the hydrogen index(HI)for the organic matter,echo spacing(T_(E)),pyrite content,clay mineral type,and clay content on T_(1)-T_(2)spectra at different NMR frequencies.Furthermore,the frequency conversion cross-plots for various petrophysical parameters influenced by the above factors are established.This study provides new insights into NMRbased petrophysical characterization and the frequency conversion of petrophysical parameters measured by laboratory NMR instruments and NMR logging in shale oil reservoirs.It is of great significance for the efficient exploration and environmentally friendly production of shale oil.
文摘In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.
基金Science and Technology Project of Aerospace Information Research Institute,Chinese Academy of Sciences(Y910340Z2F)Science and Technology Project of BBEF(E3E2010201)。
文摘Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.
文摘The idea of Ku-band transceiver frequency conversion module design based on 3D micropackaging technology is proposed. By using the double frequency conversion technology,the dual transceiver circuit from Ku-band to L-band is realized by combining with the local oscillator and the power control circuit to complete functions such as amplification, filtering and gain. In order to achieve the performance optimization and a high level of integration of the Ku-band monolithic microwave integrated circuits(MMIC) operating chip, the 3 D vertical interconnection micro-assembly technology is used. By stacking solder balls on the printed circuit board(PCB), the technology decreases the volume of the original transceiver to a miniaturized module. The module has a good electromagnetic compatibility through special structure designs. This module has the characteristics of miniaturization, low power consumption and high density, which is suitable for popularization in practical application.
基金supported by the National Natural Science Foundation of China(Grant Nos.60776051,61006059,and 61006044)the Beijing Municipal Natural Science Foundation,China(Grant Nos.4142007,4143059,4082007,and 4122014)the Beijing Municipal Education Committee,China(Grant Nos.KM200710005015 and KM200910005001)
文摘As is well known, there exists a tradeoff between the breakdown voltage BVcEO and the cut-off frequency fT for a standard heterojunction bipolar transistor (HBT). In this paper, this tradeoff is alleviated by collector doping engineering in the SiGe HBT by utilizing a novel composite of P+ and N- doping layers inside the collector-base (CB) space-charge region (SCR). Compared with the single N-type collector, the introduction of the thin P+ layers provides a reverse electric field weakening the electric field near the CB metallurgical junction without changing the field direction, and the thin N layer further effectively lowers the electric field near the CB metallurgical junction. As a result, the electron temperature near the CB metallurgical junction is lowered, consequently suppressing the impact ionization, thus BVcEO is improved with a slight degradation in fT. The results show that the product of fTXBVcEo is improved from 309.51 GHz.V to 326.35 GHz.V.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.
基金supported by the National Natural Science Foundation of China(No.51707103)the Hubei Provincial Key Laboratory on Operation and Control of Cascaded Hydropower Station,China(No.2022KJX08).
文摘In this paper,a fault-tolerance wide voltage conversion gain DC/DC converter for More Electric Aircraft(MEA)is proposed.The proposed converter consists of a basic Cuk converter module and n expandable units.By adjusting the operation state of the expandable units,the voltage conversion gain of the proposed converter could be regulated,which makes it available for wide voltage conversion applications.Especially,since mutual redundancy can be realized between the basic Cuk converter module and the expandable units,the converter can continuously work when an unpredictable fault occurs to the fault-tolerant parts of the proposed converter,which reflects the fault tolerance of the converter and significantly improves the reliability of the system.Moreover,the advantages of small input current ripple,automatic current sharing and low voltage stress are also integrated in this converter.The working principle and features of the proposed converter are mainly introduced,and an experimental prototype with 800 W output power has been manufactured to verify the practicability and availability of the proposed converter.
基金supported by the National Science Foundation under Grant No.1650470,GRAPES I/UCRC program。
文摘The power and voltage levels of renewable energy resources is growing with the evolution of the power electronics and switching module technologies.For that,the need for the development of a compact and highly efficient solid-state transformer is becoming a critical task in-order to integrate the current AC grid with the new renewable energy systems.The objective of this paper is to present the design,implementation,and testing of a compact multi-port solid-state transformer for microgrid integration applications.The proposed system has a four-port transformer and four converters connected to the ports.The transformer has four windings integrated on a single common core.Thus,it can integrate different renewable energy resources and energy storage systems.Each port has a rated power of 25 kW,and the switching frequency is pushed to 50 k Hz.The ports are chosen to represent a realistic industrial microgrid model consisting of grid,energy storage system,photovoltaic system,and load.The grid port is designed to operate at 4.16 k VAC corresponding to 7.2 kV DC bus voltage,while the other three ports operate at 500 VDC.Moreover,the grid,energy storage and photovoltaic ports are active ports with dual active bridge topologies,while the load port is a passive port with full bridge rectifier one.The proposed design is first validated with simulation results,and then the proposed transformer is implemented and tested.Experimental results show that the designed system is suitable for 4.16 k VAC medium voltage grid integration.
基金supported by National Natural Science Foundation of China(Nos.10435060,10675095)
文摘Thick CrN coatings were deposited on Si (111) substrates by electron source assisted mid-frequency magnetron sputtering working at 40 kHz. The deposition rate, structure, and microhardness of the coatings were strongly influenced by the negative bias voltage (Vb). The deposition rate reached 8.96 μm/h at a Vb of -150 V. X-ray diffraction measurement revealed strong CrN (200) orientation for films prepared at low bias voltages. At a high bias voltage of Vb less than -25 V both CrN (200) and (111) were observed. Large and homogeneous grains were observed by both atomic force microscopy and scanning electron microscopy in samples prepared under optimal conditions. The samples exhibited a fibrous microstructure for a low bias voltage and a columnar structure for VD less than -150 V.
文摘To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery system, back-up diesel generator, etc., Isolated MicroGrid, which usually uses the inverter to maintain voltage and frequency of the system, is very weak in terms of voltage and frequency stability compared to the large-scale electrical power system. If wind turbine generator is applied to this weak power system, it could experience many problems in terms of maintaining its voltage and frequency. In this paper, the measurement result of voltage and frequency is presented for MicroGrid, which consists of the Wind Turbine Generator adopting the induction generator and the battery system. MicroGrid’s voltage waveform distortion and Wind Turbine Generator’s output oscillation problems are analyzed using PSCAD/EMTDC. Based on the analyzed result, the importance of type and capacity choice has been suggested in case the Wind Turbine Generator is applied to the Isolated MicroGrid.
文摘The intermittent nature of wind and solar photovoltaic energy systems leads to the fluctuation of power generated due to the fact that the power output is highly dependent upon local weather conditions, which results to the load shading issue that led to the voltage and frequency instability. In additional to that, the high proportions of erratic renewable energy sources can lead to erratic frequency changes which affect the grid stability. In order to reduce this effect, the energy storage system is commonly used in most wind-solar energy systems to balance the voltage and frequency instability during load variations. One of the innovative energy storage systems is the compressed air energy storage system (CAES) for wind and solar hybrid energy system and this technology is the key focus in this research study. The aim of this research was to examine the system configuration of the CAES system through modelling and experimental approach with PID controller design for regulating the voltage and frequency under different load conditions. The essential elements and the entire system have been presented in this work as thorough modelling in the MATLAB/Simulink environment for different load conditions. The developed model was tested through an experimental workbench using the developed prototype of the compressed air storage in the Siemens Lab at DeKUT and explored the consequence of the working parameters on the system proficiency and the model accuracy. The performance of the system for the developed prototype of CAES system was validated using results from an experimental workbench with MATLAB/Simulink R2022b simulation. The modeling and experimental results, shows that the frequency fluctuation and voltage drop of the developed CAES system during load variations was governed by the I/P converter using a PID_Compact controller programed in the TIA Portal V17 software and downloaded into PLC S7 1200. Based on these results, the model can be applied as a basis for the performance assessment of the compressed air energy storage system so as to be included in current technology of wind and solar hybrid energy systems.
基金This work is jointly supported by the National Key R&D Programme of China(No.2017YFB0902000)the National Natural Science Foundation of China(No.U1766206)the Science and Technology Programme of the State Grid Corporation(No.52110418000P).
文摘Frequency droop control is widely used in permanent magnet synchronous generators(PMSGs)based wind turbines(WTs)for grid frequency support.However,under frequency deviations,significant DC-link voltage fluctuations may occur during the transient process due to sudden changes in real power of such WTs.To address this issue,a current feedforward control strategy is proposed for PMSG-based WTs to reduce DC-link voltage fluctuations when the WTs are providing frequency support under grid frequency deviations.Meanwhile,the desired frequency support capability of the PMSG-based WTs can be ensured.Simulation results verify the rationality of the analysis and the effectiveness of the proposed control method.
基金supported in part by the Jiangsu Carbon Peak Carbon Neutralization Science and Technology Innovation Special Fund under Grant BE2022032-1National Natural Science Foundation of China under Grant 52277035, Grant 51937006 and Grant 51907028the “SEU Zhishan Young Scholars” Program of Southeast University。
文摘Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.
文摘This paper describes the development of a timer based voltage to frequency converter(V FC).Timer LM555is used in astable multivibrator mode with two OPTO-LDRs(light dependent resistors)in the circuitry.The frequency of timer output waveform which is measured using a digital storage oscillator(DSO)is almost linearly proportional to the applied input voltage.Hence we obtain a linear relationship between the frequency of timer output waveform and the input voltage.Because of its quasi-digital output,the main advantages of this developed converter are linear input-output relationship,small size,easy portabilityand high cost performance.In addition,the timer output waveform can be directly interfaced with personal computer or microprocessor/microcontroller for further processing of the input voltage signal without intervening any analog-to-digital converter(ADC).
基金Project supported by the National Key Technologies R&D Program of China(Grant No.2018YFA0306101)the Scientific Instrument Developing Project of Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the National Natural Science Foundation of China(Grant No.61505196)
文摘Near-infrared single photon sources in telecommunication bands, especially at 1550 nm, are required for long-distance quantum communication. Here a down-conversion quantum interface is implemented, where the single photons emitted from single In As quantum dot at 864 nm is down converted to 1552 nm by using a fiber-coupled periodically poled lithium niobate(PPLN) waveguide and a 1.95 μmm pump laser, and the frequency conversion efficiency is ~40%. The singlephoton purity of quantum dot emission is preserved during the down-conversion process, i.e., g^((2))(0), only 0.22 at 1552 nm.This present technique advances the Ⅲ-Ⅴ semiconductor quantum dots as a promising platform for long-distance quantum communication.
文摘The emerging of commercial high-voltage gallium nitride(GaN) power devices provides extraordinary switching performance over silicone devices, which enables high-voltage power conversion switching at megahertz range.Such outstanding features also pose strong challenges for device packaging design since the package parasitics can significantly influence the device switching characteristics, and thus can shadow the advantages brought by GaN devices. Designers have been dealing with these challenges brought by high du/dt and high-frequency switching operation even since the silicon(Si) era when fast switching Si MOSFET is first developed and came up with lots of inspiring advanced power module packaging structures to mitigate the problems.This paper presents a review of advanced power module packaging and integration structures that are suitable for high frequency power conversion.The review covers the heritage from the high frequency Si MOSFET packaging to the state-of-the-art for GaN devices.
基金Project supported by the Applied Physics Research Centre of Imam Hossein University, Tehran, Iran (180/207/531-1388/5/5)
文摘Nd3+,Eu3+ and Tb3+ ions doped transparent chlorophosphate glass ceramics were prepared and their frequency-conversion properties were studied. X-ray diffraction (XRD) patterns evidenced the formation of expected halide nanocrystals. The absorption,excitation and emission spectra investigation indicated that some of rare earth (RE) ions were trapped in low phonon energy halide nanocrystals,and therefore an efficient down frequency-conversion was observed. The comparative spectroscopic studies of RE doped samples suggested that the glass ceramics systems are potentially applicable as efficient ultraviolet to visible frequency-conversion photonics materials.
基金supported by the National Natural Science Foundation of China (Grant No. 10974126)the National Basic Research Program of China (Grant No. 2010CB923102)
文摘In this paper, the frequency conversion of quantum states based on the intracavity nonlinear interaction is proposed. The fidelity of an input state after frequency conversion is calculated, and it is shown the noise-free frequency conversion of a quantum state can be achieved by injecting a strong signal field. The dependences of conversion efficiency on the pump parameter, extra losses and input state amplitude are also analysed.