Massive sequence view (MSV) is a classic timeline-based dynamic network visualization approach. However, it is vulnerable to visual clutter caused by overlapping edges, thereby leading to unexpected misunderstanding o...Massive sequence view (MSV) is a classic timeline-based dynamic network visualization approach. However, it is vulnerable to visual clutter caused by overlapping edges, thereby leading to unexpected misunderstanding of time-varying trends of network communications. This study presents a new edge sampling algorithm called edge-based multi-class blue noise (E-MCBN) to reduce visual clutter in MSV. Our main idea is inspired by the multi-class blue noise (MCBN) sampling algorithm, commonly used in multi-class scatterplot decluttering. First, we take a node pair as an edge class, which can be regarded as an analogy to classes in multi-class scatterplots. Second, we propose two indicators, namely, class overlap and inter-class conflict degrees, to measure the overlapping degree and mutual exclusion, respectively, between edge classes. These indicators help construct the foundation of migrating the MCBN sampling from multi-class scatterplots to dynamic network samplings. Finally, we propose three strategies to accelerate MCBN sampling and a partitioning strategy to preserve local high-density edges in the MSV. The result shows that our approach can effectively reduce visual clutters and improve the readability of MSV. Moreover, our approach can also overcome the disadvantages of the MCBN sampling (i.e., long-running and failure to preserve local high-density communication areas in MSV). This study is the first that introduces MCBN sampling into a dynamic network sampling.展开更多
In this paper, a method to initiate, develop and visualize an abstract syntax tree (AST) in C++ source code is presented. The approach is in chronological order starting with collection of program codes as a string an...In this paper, a method to initiate, develop and visualize an abstract syntax tree (AST) in C++ source code is presented. The approach is in chronological order starting with collection of program codes as a string and split into individual characters using regular expression. This will be followed by separating the token grammar using best first search (BFS) algorithm to determine node having lowest value, lastly followed by graph presentation of intermediate representation achieved with the help of graph visualization software (GraphViz) while former is implemented using python programming language version 3. The efficacy of our approach is used in analyzing C++ code and yielded a satisfactory result.展开更多
基金supported in part by the National Key Research and Development Program of China(2018YFB1700403)the Special Funds for the Construction of an Innovative Province of Hunan(2020GK2028)+1 种基金the National Natural Science Foundation of China(Grant Nos.61872388,62072470)the Natural Science Foundation of Hunan Province(2020JJ4758).
文摘Massive sequence view (MSV) is a classic timeline-based dynamic network visualization approach. However, it is vulnerable to visual clutter caused by overlapping edges, thereby leading to unexpected misunderstanding of time-varying trends of network communications. This study presents a new edge sampling algorithm called edge-based multi-class blue noise (E-MCBN) to reduce visual clutter in MSV. Our main idea is inspired by the multi-class blue noise (MCBN) sampling algorithm, commonly used in multi-class scatterplot decluttering. First, we take a node pair as an edge class, which can be regarded as an analogy to classes in multi-class scatterplots. Second, we propose two indicators, namely, class overlap and inter-class conflict degrees, to measure the overlapping degree and mutual exclusion, respectively, between edge classes. These indicators help construct the foundation of migrating the MCBN sampling from multi-class scatterplots to dynamic network samplings. Finally, we propose three strategies to accelerate MCBN sampling and a partitioning strategy to preserve local high-density edges in the MSV. The result shows that our approach can effectively reduce visual clutters and improve the readability of MSV. Moreover, our approach can also overcome the disadvantages of the MCBN sampling (i.e., long-running and failure to preserve local high-density communication areas in MSV). This study is the first that introduces MCBN sampling into a dynamic network sampling.
文摘In this paper, a method to initiate, develop and visualize an abstract syntax tree (AST) in C++ source code is presented. The approach is in chronological order starting with collection of program codes as a string and split into individual characters using regular expression. This will be followed by separating the token grammar using best first search (BFS) algorithm to determine node having lowest value, lastly followed by graph presentation of intermediate representation achieved with the help of graph visualization software (GraphViz) while former is implemented using python programming language version 3. The efficacy of our approach is used in analyzing C++ code and yielded a satisfactory result.