This study reviews the hepatotoxic chemicals,mechanisms of toxicity,and detoxification methods of Toosendan Fructus(TF).Limonin-type triterpenoids,as primary hepatotoxic components,mediate toxicity though inflammation...This study reviews the hepatotoxic chemicals,mechanisms of toxicity,and detoxification methods of Toosendan Fructus(TF).Limonin-type triterpenoids,as primary hepatotoxic components,mediate toxicity though inflammation,oxidative stress,mitochondrial dysfunction,ferroptosis,and apoptosis.Hepatotoxicity can be mitigated by controlling dosage,using processed forms of the herbs,and through rational herbal compatibility.The review provides insights for enhancing the safety and clinical application of TF.展开更多
Developing high performance electrocatalysts for the cathodic oxygen reduction reaction(ORR)is essential for the widespread application of fuel cells.Herein,a promising Pt_(2)NiCo atomic ordered ternary intermetallic ...Developing high performance electrocatalysts for the cathodic oxygen reduction reaction(ORR)is essential for the widespread application of fuel cells.Herein,a promising Pt_(2)NiCo atomic ordered ternary intermetallic compound with N-doped carbon layer coating(o-Pt_(2)NiCo@NC)has been synthesized via a facile method and applied in acidic ORR.The confinement effect provided by the carbon layer not only inhibits the agglomeration and sintering of intermetallic nanoparticles during high temperature process but also provides adequate protection for the nanoparticles,mitigating the aggregation,detachment and poisoning of nanoparticles during the electrochemical process.As a result,the o-Pt_(2)NiCo@NC demonstrates a mass activity(MA)and specific activity(SA)of 0.65 A/mgPt and 1.41mA/cm_(Pt) ^(2) in 0.1mol/L HClO_(4),respectively.In addition,after 30,000 potential cycles from 0.6 V to 1.0 V,the MA of o-Pt_(2)NiCo@NC shows much lower decrease than the disordered Pt_(2)NiCo alloy and Pt/C.Even cycling at high potential cycles of 1.5 V for 10,000 cycles,the MA still retains∼70%,demonstrating superior long-term durability.Furthermore,the o-Pt_(2)NiCo@NC also exhibits strong tolerance to CO,SO_(x),and PO_(x) molecules in toxicity tolerance tests.The strategy in this work provides a novel insight for the development of ORR catalysts with high catalytic activity,durability and toxicity tolerance.展开更多
The MXenes,a new class of two-dimensional layered materials,have found extensive applications in water treatment for its excellent thermal stability,electrical conductivity,and excellent adsorption ability.Sulfidized ...The MXenes,a new class of two-dimensional layered materials,have found extensive applications in water treatment for its excellent thermal stability,electrical conductivity,and excellent adsorption ability.Sulfidized nano zero-valent iron(S-nZVI)is a good reducing agent,however,the practical application of S-nZVI is currently restricted due to the tendency of nano materials to agglomerate.Herein,MXenes use as a support and in situ loading S-nZVI on it to prepare a new material(S-nZVI/Ti_(3)C_(2)T_(x)),and applied it to U(VI)removal in water treatment.The microscopic characterization proves that S-nZVI on Ti_(3)C_(2)T_(x) has good dispersion and effectively alleviates agglomeration.Batch experiments shown that SnZVI/Ti_(3)C_(2)T_(x) has a very good effect on U(VI)removal,and themaximumadsorption capacity reaches 674.4mg/g under the aerobic condition at pH=6.0.The pseudo-second-order kinetic model and the Langmuir isotherm model were found to be more appropriate for describing the adsorption behavior.This indicates that the removal process is a single molecular layer chemisorption.Moreover,the S-nZVI/Ti_(3)C_(2)T_(x) maintained a removal efficiency of over 85%for U(VI)even after being reused five times,demonstrating its excellent reusability.It is worth noting that the material can remove 79.8%of 50 mg/L of U(VI)in simulated seawater,indicating that S-nZVI/Ti_(3)C_(2)T_(x) possessed an excellent uranium extraction performance from seawater.Experimental results and XPS analysis showed that U(VI)was removed by adsorption,reduction and co-precipitation.Moreover,S-nZVI/Ti_(3)C_(2)T_(x) was a lowtoxicitymaterial to Hyriopsis cumingii.Therefore,S-nZVI/Ti_(3)C_(2)T_(x) was expected to be a candidate as adsorbent with great potential in removal of uranium from wastewater and seawater.展开更多
Objective This study was conducted to optimize the operational parameters of anaerobic-anoxic-oxic (A^2/O) processes to reduce the toxicity of municipal wastewater and evaluate its ability to reduce toxicity. Method...Objective This study was conducted to optimize the operational parameters of anaerobic-anoxic-oxic (A^2/O) processes to reduce the toxicity of municipal wastewater and evaluate its ability to reduce toxicity. Methods A luminescent bacterium toxicity bioassay was employed to assess the toxicity of influent and effluent of each reactor in the A2/O system. Results The optimum operational parameters for toxicity reduction were as follows: anaerobic hydraulic retention time (HRT) = 2.8 h, anoxic HRT = 2.8 h, aerobic HRT = 6.9 h, sludge retention time (SRT) = 15 days and internal recycle ratio (IRR) = 100%. An important toxicity reduction (%) was observed in the optimized A2/O process, even when the toluene concentration of the influent was 120.7 mg·L^-1. Conclusions The toxicity of municipal wastewater was reduced significantly during the A^2/O process. A^2/O process can be used for toxicity reduction of municipal wastewater under toxic-shock loading.展开更多
Due to the unique antibacterial activities, silver nanoparticles(AgNPs) have been extensively used in commercial products. Anthropogenic activities have released considerable AgNPs as well as highly toxic silver ion...Due to the unique antibacterial activities, silver nanoparticles(AgNPs) have been extensively used in commercial products. Anthropogenic activities have released considerable AgNPs as well as highly toxic silver ion(Ag^+) into the aquatic environment.Our recent study revealed that ubiquitous natural organic matter(NOM) could reduce Ag^+to Ag NP under natural sunlight. However, the toxic effect of this process is not well understood. In this work, we prepared mixture solution of Ag^+and AgNPs with varied Ag^+% through the sunlight-driven reduction of Ag^+by NOM and investigated the acute toxicity of the solutions on Daphnia magna. Formation of AgNPs was demonstrated and characterized by comprehensive techniques and the fraction of unconverted Ag^+was determined by ultrafiltration-inductively coupled plasma mass spectrometry determination. The formation of AgNPs enhanced significantly with the increasing of solution p H and cumulative photosynthetically active radiation of sunlight. The toxicity of the resulting solution was further investigated by using freshwater crustacean D. magna as a model and an 8 hr-median lethal concentration(LC50) demonstrated that the reduction of Ag^+by NOM to AgNPs significantly mitigated the acute toxicity of silver. These results highlight the importance of sunlight and NOM in the fate, transformation and toxicity of Ag^+and AgNPs,and further indicate that the acute toxicity of AgNPs should be mainly ascribed to the dissolved Ag^+from AgNPs.展开更多
The degradation of metoprolol(MTP)by the UV/sulfite with oxygen as an advanced reduction process(ARP)and that without oxygen as an advanced oxidation process(AOP)was comparatively studied herein.The degradation of MTP...The degradation of metoprolol(MTP)by the UV/sulfite with oxygen as an advanced reduction process(ARP)and that without oxygen as an advanced oxidation process(AOP)was comparatively studied herein.The degradation of MTP by both processes followed the first-order rate law with comparable reaction rate constants of 1.50×10^(-3)sec^(−1)and 1.20×10^(-3)sec^(−1),respectively.Scavenging experiments demonstrated that both e^(−)_(aq)and H·played a crucial role in MTP degradation by the UV/sulfite as an ARP,while SO_(4)^(·−)was the dominant oxidant in the UV/sulfite AOP.The degradation kinetics of MTP by the UV/sulfite as an ARP and AOP shared a similar pH dependence with a minimum rate obtained around pH 8.The results could be well explained by the pH impacts on the MTP speciation and sulfite species.Totally six transformation products(TPs)were identified from MTP degradation by the UV/sulfite ARP,and two additional ones were detected in the UV/sulfite AOP.The benzene ring and ether groups of MTP were proposed as the major reactive sites for both processes based on molecular orbital calculations by density functional theory(DFT).The similar degradation products of MTP by the UV/sulfite process as an ARP and AOP indicated that e^(−)_(aq)/H·and SO_(4)^(·−)might share similar reaction mechanisms,primarily including hydroxylation,dealkylation,and H abstraction.The toxicity of MTP solution treated by the UV/sulfite AOP was calculated to be higher than that in the ARP by the Ecological Struc-ture Activity Relationships(ECOSAR)software,due to the accumulation of TPs with higher toxicity.展开更多
The development of distinguished photocatalysts with high photo-carrier disassociation and photo-redox power for efficient elimination of pollutants in water is of great significance but still a grand challenge.Herein...The development of distinguished photocatalysts with high photo-carrier disassociation and photo-redox power for efficient elimination of pollutants in water is of great significance but still a grand challenge.Herein,a novel Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) S-scheme heterojunction was built up by integrating Cd0.5Zn0.5S nanoparticles on Bi2WO6 microspheres via a simple route.The S-scheme charge transfer mode substantially boosts the high-energetic electrons/holes spatial detachment and conservation on the Cd_(0.5)Zn_(0.5)S(reduction)and Bi_(2)WO_(6)(oxidation),respectively,as well as effectively suppresses the photo-corrosion of Cd_(0.5)Zn_(0.5)S,rendering Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) photocatalysts with superior redox ability.The optimal Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) heterojunction achieves exceptional visible-light-driven photocatalytic tetracycline degradation and Cr(VI)reduction efficiency,3.2(1.9)-time and 33.6(1.6)-time stronger than that of neat Bi_(2)WO_(6)(Cd_(0.5)Zn_(0.5)S),while retaining the superior stability and reusability.Quenching test,mass spectrometry analysis,and toxicity assessment based on Quantitative Structure Activity Relationships.calculation unravel the prime active substances,intermediates,photo-degradation pathway,and intermediate eco-toxicity in photocatalytic process.This research not only offers a potential photocatalyst for aquatic environment protection but also promotes the exploration of novel and powerful chalcogenides-based S-scheme photocatalysts for environment protection.展开更多
Selective catalytic reduction(SCR) catalyst waste is a hazardous solid waste that seriously threatens the environment and public health.In this study,a thermal melting technology is proposed for the treatment of waste...Selective catalytic reduction(SCR) catalyst waste is a hazardous solid waste that seriously threatens the environment and public health.In this study,a thermal melting technology is proposed for the treatment of waste SCR catalysts.The melting characteristics and mineral phase transformation of waste SCR catalysts blended with three different groups of additives were explored by heating stage microscopy,thermogravimetric analysis/differential scanning calorimetry(TG/DSC) analysis,thermodynamic simulation,and X-ray diffraction(XRD) analysis;heavy metal leaching toxicity was tested by inductively coupled plasma-atomic emission spectrometry(I CP-AES) analysis.The results indicated that the melting point of waste SCR catalysts can be effectively reduced with proper additives.The additive formula of 39.00% Fe2 O3(in weight),6.50% CaO,3.30% SiO2,and 1.20% Al2 O3 achieves the optimal fluxing behavior,significantly decreasing the initial melting temperature from 1223℃ to1169℃.Furthermore,the whole heating process of waste SCR catalysts can be divided into three stages:the solid reaction stage,the sintering stage,and the primary melting stage.The leaching concentrations of V,As,Pb,and Se are significantly reduced,from 10.64,1.054,0.195,and 0.347 mg/L to 0.178,0.025,0.048,and 0.003 mg/L,respectively,much lower than the standard limits after melting treatment,showing the strong immobilization capacity of optimal additives for heavy metals in waste SCR catalysts.The results demonstrate the feasibility of harmless melting treatments for waste SCR catalysts with relatively low energy consumption,providing theoretical support for a novel method of disposing of hazardous waste SCR catalysts.展开更多
The traditional Chinese medicine Aconm Lateralis Radix Praeparaia(Fuzi)is pungent and sweet in taste,hot in nature,and has high toxicity.It governs the meridians of the heart,kidney and spleen.It has the functions of ...The traditional Chinese medicine Aconm Lateralis Radix Praeparaia(Fuzi)is pungent and sweet in taste,hot in nature,and has high toxicity.It governs the meridians of the heart,kidney and spleen.It has the functions of restoring yang to save from collapse,dispersing cold and removing dampness,and warming the middle to relieve pain.It is often used for the treatment of yang collapse,cold limbs,weak pulse,heart yang deficiency,heart pain due to chest impediment,abdominal cold-pain,kidney yang deficiency,impotence and cold in womb,and syndrome of exogenous disease due to yang deficiency,etc.Its great yang qi and strong medicinal properties often bring about toxic and adverse effects.However,after processing or combination with other medicinal materials,the effects of Aconm Lateralis Radix Praeparaia are quite different.Not only the toxicity is greatly reduced,but also the curative effects are strengthened.Through searching related literature,this paper reviewed the researches about the toxicity reduction and curative effect improvement of Aconm Lateralis Radix Praeparaia,in order to provide a certain theoretic reference for future further research of Aconm Lateralis Radix Praeparaia.展开更多
Hybrid materials with synergistic properties have been used for various applications.Herein,we report a green biosynthesis strategy for the fabrication of a novel Pd/bacteria@ZIF-8 composite,featuring a sandwiched str...Hybrid materials with synergistic properties have been used for various applications.Herein,we report a green biosynthesis strategy for the fabrication of a novel Pd/bacteria@ZIF-8 composite,featuring a sandwiched structure and size-selective capabilities.The Shewanella oneidensis(S.oneidensis)MR-1 was selected as the biological reductant to reduce Pd ions and synthesize Pd nanoparticles anchored on the surface of bacteria without the need for additional chemical reductants,bonding agents and toxic surfactants.This innovative sandwiched Pd/bacteria@ZIF-8 catalyst was further coated by the ZIF-8 to enhance its structural integrity.The as-prepared composite exhibits significant catalytic activity and excellent size-selective performance in the hydrogenation of olefins.This methodology opens up a horizon to designing size-selective catalysts through constructing the sandwiched structure.展开更多
文摘This study reviews the hepatotoxic chemicals,mechanisms of toxicity,and detoxification methods of Toosendan Fructus(TF).Limonin-type triterpenoids,as primary hepatotoxic components,mediate toxicity though inflammation,oxidative stress,mitochondrial dysfunction,ferroptosis,and apoptosis.Hepatotoxicity can be mitigated by controlling dosage,using processed forms of the herbs,and through rational herbal compatibility.The review provides insights for enhancing the safety and clinical application of TF.
基金supported by the National Natural Science Foundation(No.22279036)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(No.B21003).
文摘Developing high performance electrocatalysts for the cathodic oxygen reduction reaction(ORR)is essential for the widespread application of fuel cells.Herein,a promising Pt_(2)NiCo atomic ordered ternary intermetallic compound with N-doped carbon layer coating(o-Pt_(2)NiCo@NC)has been synthesized via a facile method and applied in acidic ORR.The confinement effect provided by the carbon layer not only inhibits the agglomeration and sintering of intermetallic nanoparticles during high temperature process but also provides adequate protection for the nanoparticles,mitigating the aggregation,detachment and poisoning of nanoparticles during the electrochemical process.As a result,the o-Pt_(2)NiCo@NC demonstrates a mass activity(MA)and specific activity(SA)of 0.65 A/mgPt and 1.41mA/cm_(Pt) ^(2) in 0.1mol/L HClO_(4),respectively.In addition,after 30,000 potential cycles from 0.6 V to 1.0 V,the MA of o-Pt_(2)NiCo@NC shows much lower decrease than the disordered Pt_(2)NiCo alloy and Pt/C.Even cycling at high potential cycles of 1.5 V for 10,000 cycles,the MA still retains∼70%,demonstrating superior long-term durability.Furthermore,the o-Pt_(2)NiCo@NC also exhibits strong tolerance to CO,SO_(x),and PO_(x) molecules in toxicity tolerance tests.The strategy in this work provides a novel insight for the development of ORR catalysts with high catalytic activity,durability and toxicity tolerance.
基金supported by the National Natural Science Foundation of China(No.42277063)the Postdoctoral Research Foundation of China(No.2021M702886)+1 种基金the Leading Innovative Talents cultivation Project of Changzhou City(No.CQ20230096)the Research Initiation Project of Changzhou University.
文摘The MXenes,a new class of two-dimensional layered materials,have found extensive applications in water treatment for its excellent thermal stability,electrical conductivity,and excellent adsorption ability.Sulfidized nano zero-valent iron(S-nZVI)is a good reducing agent,however,the practical application of S-nZVI is currently restricted due to the tendency of nano materials to agglomerate.Herein,MXenes use as a support and in situ loading S-nZVI on it to prepare a new material(S-nZVI/Ti_(3)C_(2)T_(x)),and applied it to U(VI)removal in water treatment.The microscopic characterization proves that S-nZVI on Ti_(3)C_(2)T_(x) has good dispersion and effectively alleviates agglomeration.Batch experiments shown that SnZVI/Ti_(3)C_(2)T_(x) has a very good effect on U(VI)removal,and themaximumadsorption capacity reaches 674.4mg/g under the aerobic condition at pH=6.0.The pseudo-second-order kinetic model and the Langmuir isotherm model were found to be more appropriate for describing the adsorption behavior.This indicates that the removal process is a single molecular layer chemisorption.Moreover,the S-nZVI/Ti_(3)C_(2)T_(x) maintained a removal efficiency of over 85%for U(VI)even after being reused five times,demonstrating its excellent reusability.It is worth noting that the material can remove 79.8%of 50 mg/L of U(VI)in simulated seawater,indicating that S-nZVI/Ti_(3)C_(2)T_(x) possessed an excellent uranium extraction performance from seawater.Experimental results and XPS analysis showed that U(VI)was removed by adsorption,reduction and co-precipitation.Moreover,S-nZVI/Ti_(3)C_(2)T_(x) was a lowtoxicitymaterial to Hyriopsis cumingii.Therefore,S-nZVI/Ti_(3)C_(2)T_(x) was expected to be a candidate as adsorbent with great potential in removal of uranium from wastewater and seawater.
基金supported by the National Science Foundation Project grants of China(No.50878165,No.21007010)the Program for New Century Excellent Talents in University(NCET-08-0403)+4 种基金the Research Fund for the Doctoral Program of Higher Education of China(No.20090075120007)the Shanghai Committee of Science and Technology,China(No.09230500200)the Fundamental Research Funds for the Central Universities of China(No.10D11308)the Key Special Program on the S&T for the Pollution Control and Treatment of Water Bodies(No. 2008ZX07316-003)the Shanghai Leading Academic Discipline Project (No.B604)
文摘Objective This study was conducted to optimize the operational parameters of anaerobic-anoxic-oxic (A^2/O) processes to reduce the toxicity of municipal wastewater and evaluate its ability to reduce toxicity. Methods A luminescent bacterium toxicity bioassay was employed to assess the toxicity of influent and effluent of each reactor in the A2/O system. Results The optimum operational parameters for toxicity reduction were as follows: anaerobic hydraulic retention time (HRT) = 2.8 h, anoxic HRT = 2.8 h, aerobic HRT = 6.9 h, sludge retention time (SRT) = 15 days and internal recycle ratio (IRR) = 100%. An important toxicity reduction (%) was observed in the optimized A2/O process, even when the toluene concentration of the influent was 120.7 mg·L^-1. Conclusions The toxicity of municipal wastewater was reduced significantly during the A^2/O process. A^2/O process can be used for toxicity reduction of municipal wastewater under toxic-shock loading.
基金supported by the National Science Fund for Distinguished Young Scholars (No. 21025729)the National Natural Science Foundation of China (Nos. 21337004, 21207124)the Young Scientists Fund of RCEES (No. RCEES-QN20130028F)
文摘Due to the unique antibacterial activities, silver nanoparticles(AgNPs) have been extensively used in commercial products. Anthropogenic activities have released considerable AgNPs as well as highly toxic silver ion(Ag^+) into the aquatic environment.Our recent study revealed that ubiquitous natural organic matter(NOM) could reduce Ag^+to Ag NP under natural sunlight. However, the toxic effect of this process is not well understood. In this work, we prepared mixture solution of Ag^+and AgNPs with varied Ag^+% through the sunlight-driven reduction of Ag^+by NOM and investigated the acute toxicity of the solutions on Daphnia magna. Formation of AgNPs was demonstrated and characterized by comprehensive techniques and the fraction of unconverted Ag^+was determined by ultrafiltration-inductively coupled plasma mass spectrometry determination. The formation of AgNPs enhanced significantly with the increasing of solution p H and cumulative photosynthetically active radiation of sunlight. The toxicity of the resulting solution was further investigated by using freshwater crustacean D. magna as a model and an 8 hr-median lethal concentration(LC50) demonstrated that the reduction of Ag^+by NOM to AgNPs significantly mitigated the acute toxicity of silver. These results highlight the importance of sunlight and NOM in the fate, transformation and toxicity of Ag^+and AgNPs,and further indicate that the acute toxicity of AgNPs should be mainly ascribed to the dissolved Ag^+from AgNPs.
基金This study was supported by the Guangdong introducing innovative and entrepreneurial teams(No.2019ZT08L213)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0403)+2 种基金the National Natural Science Foundation of China(Nos.51979044 and 42177045)the Young Talent Project of Beijing Normal University at Zhuhai(No.310432101)We also thank the support received from China Scholarship Council(CSC)for providing a graduate fellowship to Y.C.(No.202006120356).
文摘The degradation of metoprolol(MTP)by the UV/sulfite with oxygen as an advanced reduction process(ARP)and that without oxygen as an advanced oxidation process(AOP)was comparatively studied herein.The degradation of MTP by both processes followed the first-order rate law with comparable reaction rate constants of 1.50×10^(-3)sec^(−1)and 1.20×10^(-3)sec^(−1),respectively.Scavenging experiments demonstrated that both e^(−)_(aq)and H·played a crucial role in MTP degradation by the UV/sulfite as an ARP,while SO_(4)^(·−)was the dominant oxidant in the UV/sulfite AOP.The degradation kinetics of MTP by the UV/sulfite as an ARP and AOP shared a similar pH dependence with a minimum rate obtained around pH 8.The results could be well explained by the pH impacts on the MTP speciation and sulfite species.Totally six transformation products(TPs)were identified from MTP degradation by the UV/sulfite ARP,and two additional ones were detected in the UV/sulfite AOP.The benzene ring and ether groups of MTP were proposed as the major reactive sites for both processes based on molecular orbital calculations by density functional theory(DFT).The similar degradation products of MTP by the UV/sulfite process as an ARP and AOP indicated that e^(−)_(aq)/H·and SO_(4)^(·−)might share similar reaction mechanisms,primarily including hydroxylation,dealkylation,and H abstraction.The toxicity of MTP solution treated by the UV/sulfite AOP was calculated to be higher than that in the ARP by the Ecological Struc-ture Activity Relationships(ECOSAR)software,due to the accumulation of TPs with higher toxicity.
文摘The development of distinguished photocatalysts with high photo-carrier disassociation and photo-redox power for efficient elimination of pollutants in water is of great significance but still a grand challenge.Herein,a novel Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) S-scheme heterojunction was built up by integrating Cd0.5Zn0.5S nanoparticles on Bi2WO6 microspheres via a simple route.The S-scheme charge transfer mode substantially boosts the high-energetic electrons/holes spatial detachment and conservation on the Cd_(0.5)Zn_(0.5)S(reduction)and Bi_(2)WO_(6)(oxidation),respectively,as well as effectively suppresses the photo-corrosion of Cd_(0.5)Zn_(0.5)S,rendering Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) photocatalysts with superior redox ability.The optimal Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) heterojunction achieves exceptional visible-light-driven photocatalytic tetracycline degradation and Cr(VI)reduction efficiency,3.2(1.9)-time and 33.6(1.6)-time stronger than that of neat Bi_(2)WO_(6)(Cd_(0.5)Zn_(0.5)S),while retaining the superior stability and reusability.Quenching test,mass spectrometry analysis,and toxicity assessment based on Quantitative Structure Activity Relationships.calculation unravel the prime active substances,intermediates,photo-degradation pathway,and intermediate eco-toxicity in photocatalytic process.This research not only offers a potential photocatalyst for aquatic environment protection but also promotes the exploration of novel and powerful chalcogenides-based S-scheme photocatalysts for environment protection.
基金Project supported by the National Key Research and Development Program of China (No. 2018YFB0604104)。
文摘Selective catalytic reduction(SCR) catalyst waste is a hazardous solid waste that seriously threatens the environment and public health.In this study,a thermal melting technology is proposed for the treatment of waste SCR catalysts.The melting characteristics and mineral phase transformation of waste SCR catalysts blended with three different groups of additives were explored by heating stage microscopy,thermogravimetric analysis/differential scanning calorimetry(TG/DSC) analysis,thermodynamic simulation,and X-ray diffraction(XRD) analysis;heavy metal leaching toxicity was tested by inductively coupled plasma-atomic emission spectrometry(I CP-AES) analysis.The results indicated that the melting point of waste SCR catalysts can be effectively reduced with proper additives.The additive formula of 39.00% Fe2 O3(in weight),6.50% CaO,3.30% SiO2,and 1.20% Al2 O3 achieves the optimal fluxing behavior,significantly decreasing the initial melting temperature from 1223℃ to1169℃.Furthermore,the whole heating process of waste SCR catalysts can be divided into three stages:the solid reaction stage,the sintering stage,and the primary melting stage.The leaching concentrations of V,As,Pb,and Se are significantly reduced,from 10.64,1.054,0.195,and 0.347 mg/L to 0.178,0.025,0.048,and 0.003 mg/L,respectively,much lower than the standard limits after melting treatment,showing the strong immobilization capacity of optimal additives for heavy metals in waste SCR catalysts.The results demonstrate the feasibility of harmless melting treatments for waste SCR catalysts with relatively low energy consumption,providing theoretical support for a novel method of disposing of hazardous waste SCR catalysts.
基金Program of Key Laboratory of Zhuang and Yao Medicine(Gui Ke Ji Zi[2014]No.32)Program of Collaborative Innovation Center of Zhuang and Yao Medicine(Gui Jiao Ke Yan[2013]No.20)+2 种基金First-class Discipline in Guangxi:Traditional Chinese Medicine(0501802815)National Natural Science Foundation of China(82060695):Quality Evaluation of Dendrobium officinale Kimura et Migo in Guangxi Based on"Light-Quality"ResponseGuangxi Zhuang Autonomous Region National Medicine Resources and Application Engineering Research Center(Gui Fa Gai Gao Ji Han[2020]No.2605).
文摘The traditional Chinese medicine Aconm Lateralis Radix Praeparaia(Fuzi)is pungent and sweet in taste,hot in nature,and has high toxicity.It governs the meridians of the heart,kidney and spleen.It has the functions of restoring yang to save from collapse,dispersing cold and removing dampness,and warming the middle to relieve pain.It is often used for the treatment of yang collapse,cold limbs,weak pulse,heart yang deficiency,heart pain due to chest impediment,abdominal cold-pain,kidney yang deficiency,impotence and cold in womb,and syndrome of exogenous disease due to yang deficiency,etc.Its great yang qi and strong medicinal properties often bring about toxic and adverse effects.However,after processing or combination with other medicinal materials,the effects of Aconm Lateralis Radix Praeparaia are quite different.Not only the toxicity is greatly reduced,but also the curative effects are strengthened.Through searching related literature,this paper reviewed the researches about the toxicity reduction and curative effect improvement of Aconm Lateralis Radix Praeparaia,in order to provide a certain theoretic reference for future further research of Aconm Lateralis Radix Praeparaia.
基金supported by the Young Talent Support Fund from Jiangsu University(No.5501310013)Jiangsu Provincial Founds for Young Scholars(Nos.BK20210782 and BK20210744)+2 种基金the Fellowship of China Postdoctoral Science Foundation(No.2022M720057)Wenzhou Science&Technology Program(No.ZG2021025)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515111017).
文摘Hybrid materials with synergistic properties have been used for various applications.Herein,we report a green biosynthesis strategy for the fabrication of a novel Pd/bacteria@ZIF-8 composite,featuring a sandwiched structure and size-selective capabilities.The Shewanella oneidensis(S.oneidensis)MR-1 was selected as the biological reductant to reduce Pd ions and synthesize Pd nanoparticles anchored on the surface of bacteria without the need for additional chemical reductants,bonding agents and toxic surfactants.This innovative sandwiched Pd/bacteria@ZIF-8 catalyst was further coated by the ZIF-8 to enhance its structural integrity.The as-prepared composite exhibits significant catalytic activity and excellent size-selective performance in the hydrogenation of olefins.This methodology opens up a horizon to designing size-selective catalysts through constructing the sandwiched structure.