This study aims to examine the explicit solution for calculating the Average Run Length(ARL)on the triple exponentially weighted moving average(TEWMA)control chart applied to autoregressive model(AR(p)),where AR(p)is ...This study aims to examine the explicit solution for calculating the Average Run Length(ARL)on the triple exponentially weighted moving average(TEWMA)control chart applied to autoregressive model(AR(p)),where AR(p)is an autoregressive model of order p,representing a time series with dependencies on its p previous values.Additionally,the study evaluates the accuracy of both explicit and numerical integral equation(NIE)solutions for AR(p)using the TEWMA control chart,focusing on the absolute percentage relative error.The results indicate that the explicit and approximate solutions are in close agreement.Furthermore,the study investigates the performance of exponentially weighted moving average(EWMA)and TEWMA control charts in detecting changes in the process,using the relative mean index(RMI)as a measure.The findings demonstrate that the TEWMA control chart outperforms the EWMA control chart in detecting process changes,especially when the value ofλis sufficiently large.In addition,an analysis using historical data from the SET index between January 2024 and May 2024 and historical data of global annual plastic production,the results of both data sets also emphasize the superior performance of the TEWMA control chart.展开更多
Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model ...Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process. Then, an integrated framework of combining iterative learning control (ILC) and model predictive control (MPC) is formed reasonably. The output of feedforward ILC is estimated on the basis of the predefined process 2D model. By min- imizing a quadratic objective function, the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes. Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as well as faster convergence speed can be achieved than traditional proportion type (P- t-we) ILC despite the model error and disturbances.展开更多
D-T_(2)two-dimensional nuclear magnetic resonance(2D NMR)logging technology can distinguish pore fluid types intuitively,and it is widely used in oil and gas exploration.Many 2D NMR inversion methods(e.g.,truncated si...D-T_(2)two-dimensional nuclear magnetic resonance(2D NMR)logging technology can distinguish pore fluid types intuitively,and it is widely used in oil and gas exploration.Many 2D NMR inversion methods(e.g.,truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization methods)have been proposed successively,but most are limited to numerical simulations.This study focused on the applicability of different inversion methods for NMR logging data of various acquisition sequences,from which the optimal inversion method was selected based on the comparative analysis.First,the two-dimensional NMR logging principle was studied.Then,these inversion methods were studied in detail,and the precision and computational efficiency of CPMG and diffusion editing(DE)sequences obtained from oil-water and gas-water models were compared,respectively.The inversion results and calculation time of truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization were compared and analyzed through numerical simulations.The inversion method was optimized to process SP mode logging data from the MR Scanner instrument.The results showed that the TIST-regularization and LM-norm smoothing methods were more accurate for the CPMG and DE sequence echo trains of the oil-water and gas-water models.However,the LM-norm smoothing method was less time-consuming,making it more suitable for logging data processing.A case study in well A25 showed that the processing results by the LM-norm smoothing method were consistent with GEOLOG software.This demonstrates that the LM-norm smoothing method is applicable in practical NMR logging processing.展开更多
Two-dimensional numerical research has been carried out on the ablation effects of titanium target irradiated by intense pulsed ion beam (IPIB) generated by TEMP Ⅱ accelerator. Temporal and spatial evolution of the...Two-dimensional numerical research has been carried out on the ablation effects of titanium target irradiated by intense pulsed ion beam (IPIB) generated by TEMP Ⅱ accelerator. Temporal and spatial evolution of the ablation process of the target during a pulse time has been simulated. We have come to the conclusion that the melting and evaporating process begin from the surface and the target is ablated layer by layer when the target is irradiated by the IPIB. Meanwhile, we also obtained the result that the average ablation velocity in target central region is about 10 m/s, which is far less than the ejection velocity of the plume plasma formed by irradiation. Different effects have been compared to the different ratio of the ions and different energy density of IPIB while the target is irradiated by pulsed beams.展开更多
River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal pro...River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.展开更多
The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The e...The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The existing two-dimensional Tsallis cross entropy method is not the strict two-dimensional extension. Thus two new methods of image thresholding using two-dimensional Tsallis cross entropy based on either Chaotic Particle Swarm Optimization (CPSO) or decomposition are proposed. The former uses CPSO to find the optimal threshold. The recursive algorithm is adopted to avoid the repetitive computation of fitness function in iterative procedure. The computing speed is improved greatly. The latter converts the two-dimensional computation into two one-dimensional spaces, which makes the computational complexity further reduced from O(L2) to O(L). The experimental results show that, compared with the proposed recently two-dimensional Shannon or Tsallis cross entropy method, the two new methods can achieve superior segmentation results and reduce running time greatly.展开更多
Glaucoma is an eye disease characterized by pathologically elevated intraocular pressure,optic nerve atrophy,and visual field defects,which can lead to irreversible vision loss.In recent years,the rapid development of...Glaucoma is an eye disease characterized by pathologically elevated intraocular pressure,optic nerve atrophy,and visual field defects,which can lead to irreversible vision loss.In recent years,the rapid development of artificial intelligence(AI)technology has provided new approaches for the early diagnosis and management of glaucoma.By classifying and annotating glaucoma-related images,AI models can learn and recognize the specific pathological features of glaucoma,thereby achieving automated imaging analysis and classification.Research on glaucoma imaging classification and annotation mainly involves color fundus photography(CFP),optical coherence tomography(OCT),anterior segment optical coherence tomography(AS-OCT),and ultrasound biomicroscopy(UBM)images.CFP is primarily used for the annotation of the optic cup and disc,while OCT is used for measuring and annotating the thickness of the retinal nerve fiber layer,and AS-OCT and UBM focus on the annotation of the anterior chamber angle structure and the measurement of anterior segment structural parameters.To standardize the classification and annotation of glaucoma images,enhance the quality and consistency of annotated data,and promote the clinical application of intelligent ophthalmology,this guideline has been developed.This guideline systematically elaborates on the principles,methods,processes,and quality control requirements for the classification and annotation of glaucoma images,providing standardized guidance for the classification and annotation of glaucoma images.展开更多
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w...Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.展开更多
Two-dimensional(2D)supports confined single-atom catalysts(2D SACs)with unique geometric and electronic structures have been attractive candidates in different catalytic applications,such as energy conversion and stor...Two-dimensional(2D)supports confined single-atom catalysts(2D SACs)with unique geometric and electronic structures have been attractive candidates in different catalytic applications,such as energy conversion and storage,value-added chemical synthesis and environmental remediation.However,their environmental appli-cations lack of a comprehensive summary and in-depth discussion.In this review,recent progresses in synthesis routes and advanced characterization techniques for 2D SACs are introduced,and a comprehensive discussion on their applications in environmental remediation is presented.Generally,2D SACs can be effective in catalytic elimination of aqueous and gaseous pollutants via radical or non-radical routes and transformation of toxic pollutants into less poisonous species or highly value-added products,opening a new horizon for the contami-nant treatment.In addition,in-depth reaction mechanisms and potential pathways are systematically discussed,and the relationship between the structure-performance is highlighted.Finally,several critical challenges within this field are presented,and possible directions for further explorations of 2D SACs in environmental remediation are suggested.Although the research of 2D SACs in the environmental application is still in its infancy,this review will provide a timely summary on the emerging field,and would stimulate tremendous interest for designing more attractive 2D SACs and promoting their wide applications.展开更多
P. M. Djuric, etc.(1992) researched on the segmentation of nonstationary stochastic process into piecewise stationary stochastic process by Bayesian criterion ,and gave a dynamic equation about the number of segments,...P. M. Djuric, etc.(1992) researched on the segmentation of nonstationary stochastic process into piecewise stationary stochastic process by Bayesian criterion ,and gave a dynamic equation about the number of segments, their boundaries and AR model orders for each segment, but did not give detailed solution for the equation. Because the solution for the equation is very complex, this paper investigates the solution, derives some recursive relations, simplifies the problem ,saves computation time and goes further into the segmentation of nonstationary stochastic process into piecewise stationary stochastic process.展开更多
This paper describes the preparation and properties of TiN_x-SiO_2 double-layered antireflective(AR) coatings that were applied with print process. The coating material was analyzed and TiN_x was used instead of TiO_2...This paper describes the preparation and properties of TiN_x-SiO_2 double-layered antireflective(AR) coatings that were applied with print process. The coating material was analyzed and TiN_x was used instead of TiO_2 as high refractive material. The influence of solution concentration on AR property was studied. The testing result shows that the coatings using print process are featured with excellent mechanical property and the AR property is comparable to American Southwall AR product. It is expected that the study would promote the industrialization progress in AR coatings.展开更多
Seismological Bureau of Sichuan Province, Chengdu 610041, China2) Center for Analysis and Prediction, State Seismological Bureau, Beijing 100036, China3) Observation Center for Prediction of Earthquakes and Volcanic E...Seismological Bureau of Sichuan Province, Chengdu 610041, China2) Center for Analysis and Prediction, State Seismological Bureau, Beijing 100036, China3) Observation Center for Prediction of Earthquakes and Volcanic Eruptions, Faculty of Sciences, Tohoku University, Sendai 98077, Japan展开更多
In the knitting industry the measurements of the stitch density and the stitch length are usually done manually, which may lead to lower efficiency and less definition and also bring subjective ideas into the test res...In the knitting industry the measurements of the stitch density and the stitch length are usually done manually, which may lead to lower efficiency and less definition and also bring subjective ideas into the test results. In order to improve the effect we can measure with Digital Image Processing Techniques. A piece of sample is scanned into computer and changed into a digital image, which is processed with media filtering. To acquire the power spectrum, the image in the spatial domain is converted into the frequency domain. Picking up the characteristic points describing the stitch density and the stitch length separately in the power spectra and reconstructing them, the values of the stitch density and the stitch length could be calculated. When measuring the stitch length, we should establish a geometric model of the stitch based en the digital image processing, which provides a method to transform the stitch length in the two-dimensien space into the three-dimensien space and to measure the value of the stitch length more accurately. This method also provides a new way to measure the stitch length without damaging the fabric.展开更多
In this work,the effects of the frequency,pressure,gas composition,and secondary-electron emission coefficient on the discharge mode in capacitively coupled Ar/O_(2) plasmas were carefully studied through simulations....In this work,the effects of the frequency,pressure,gas composition,and secondary-electron emission coefficient on the discharge mode in capacitively coupled Ar/O_(2) plasmas were carefully studied through simulations.Three discharge modes,i.e.,α,γ,and drift-ambipolar(DA),were considered in this study.The results show that a mode transition from theγ-DA hybrid mode dominated by theγmode to the DA-αhybrid mode dominated by the DA mode is induced by increasing the frequency from 100 k Hz to 40 MHz.Furthermore,the electron temperature decreases with increasing frequency,while the plasma density first decreases and then increases.It was found that the electronegativity increases slightly with increasing pressure in the lowfrequency region,and it increases notably with increasing pressure in the high-frequency region.It was also observed that the frequency corresponding to the mode transition fromγto DA decreased when the secondary-electron emission coefficient was decreased.Finally,it was found that increasing the oxygen content weakens theγmode and enhances the DA mode.More importantly,the density of oxygen atoms and ozone will increase greatly with increasing oxygen content,which is of great significance for industrial applications.展开更多
基金the National Science,Research and Innovation Fund(NSRF)King Mongkuts University of Technology North Bangkok under contract no.KMUTNB-FF-68-B-08.
文摘This study aims to examine the explicit solution for calculating the Average Run Length(ARL)on the triple exponentially weighted moving average(TEWMA)control chart applied to autoregressive model(AR(p)),where AR(p)is an autoregressive model of order p,representing a time series with dependencies on its p previous values.Additionally,the study evaluates the accuracy of both explicit and numerical integral equation(NIE)solutions for AR(p)using the TEWMA control chart,focusing on the absolute percentage relative error.The results indicate that the explicit and approximate solutions are in close agreement.Furthermore,the study investigates the performance of exponentially weighted moving average(EWMA)and TEWMA control charts in detecting changes in the process,using the relative mean index(RMI)as a measure.The findings demonstrate that the TEWMA control chart outperforms the EWMA control chart in detecting process changes,especially when the value ofλis sufficiently large.In addition,an analysis using historical data from the SET index between January 2024 and May 2024 and historical data of global annual plastic production,the results of both data sets also emphasize the superior performance of the TEWMA control chart.
基金Supported in part by the State Key Development Program for Basic Research of China(2012CB720505)the National Natural Science Foundation of China(61174105,60874049)
文摘Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process. Then, an integrated framework of combining iterative learning control (ILC) and model predictive control (MPC) is formed reasonably. The output of feedforward ILC is estimated on the basis of the predefined process 2D model. By min- imizing a quadratic objective function, the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes. Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as well as faster convergence speed can be achieved than traditional proportion type (P- t-we) ILC despite the model error and disturbances.
基金sponsored by the National Natural Science Foundation of China(Nos.42174149,41774144)the National Major Projects(No.2016ZX05014-001).
文摘D-T_(2)two-dimensional nuclear magnetic resonance(2D NMR)logging technology can distinguish pore fluid types intuitively,and it is widely used in oil and gas exploration.Many 2D NMR inversion methods(e.g.,truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization methods)have been proposed successively,but most are limited to numerical simulations.This study focused on the applicability of different inversion methods for NMR logging data of various acquisition sequences,from which the optimal inversion method was selected based on the comparative analysis.First,the two-dimensional NMR logging principle was studied.Then,these inversion methods were studied in detail,and the precision and computational efficiency of CPMG and diffusion editing(DE)sequences obtained from oil-water and gas-water models were compared,respectively.The inversion results and calculation time of truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization were compared and analyzed through numerical simulations.The inversion method was optimized to process SP mode logging data from the MR Scanner instrument.The results showed that the TIST-regularization and LM-norm smoothing methods were more accurate for the CPMG and DE sequence echo trains of the oil-water and gas-water models.However,the LM-norm smoothing method was less time-consuming,making it more suitable for logging data processing.A case study in well A25 showed that the processing results by the LM-norm smoothing method were consistent with GEOLOG software.This demonstrates that the LM-norm smoothing method is applicable in practical NMR logging processing.
文摘Two-dimensional numerical research has been carried out on the ablation effects of titanium target irradiated by intense pulsed ion beam (IPIB) generated by TEMP Ⅱ accelerator. Temporal and spatial evolution of the ablation process of the target during a pulse time has been simulated. We have come to the conclusion that the melting and evaporating process begin from the surface and the target is ablated layer by layer when the target is irradiated by the IPIB. Meanwhile, we also obtained the result that the average ablation velocity in target central region is about 10 m/s, which is far less than the ejection velocity of the plume plasma formed by irradiation. Different effects have been compared to the different ratio of the ions and different energy density of IPIB while the target is irradiated by pulsed beams.
基金supported by the National Natural Science Foundation of China(Grant No.50579030)
文摘River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.
基金supported by National Natural Science Foundation of China under Grant No.60872065Open Foundation of State Key Laboratory for Novel Software Technology at Nanjing University under Grant No.KFKT2010B17
文摘The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The existing two-dimensional Tsallis cross entropy method is not the strict two-dimensional extension. Thus two new methods of image thresholding using two-dimensional Tsallis cross entropy based on either Chaotic Particle Swarm Optimization (CPSO) or decomposition are proposed. The former uses CPSO to find the optimal threshold. The recursive algorithm is adopted to avoid the repetitive computation of fitness function in iterative procedure. The computing speed is improved greatly. The latter converts the two-dimensional computation into two one-dimensional spaces, which makes the computational complexity further reduced from O(L2) to O(L). The experimental results show that, compared with the proposed recently two-dimensional Shannon or Tsallis cross entropy method, the two new methods can achieve superior segmentation results and reduce running time greatly.
基金Supported by Guangdong Basic and Applied Basic Research Foundation(No.2025A1515011627)San Ming Project of Medicine in Shenzhen(No.SZSM202311012).
文摘Glaucoma is an eye disease characterized by pathologically elevated intraocular pressure,optic nerve atrophy,and visual field defects,which can lead to irreversible vision loss.In recent years,the rapid development of artificial intelligence(AI)technology has provided new approaches for the early diagnosis and management of glaucoma.By classifying and annotating glaucoma-related images,AI models can learn and recognize the specific pathological features of glaucoma,thereby achieving automated imaging analysis and classification.Research on glaucoma imaging classification and annotation mainly involves color fundus photography(CFP),optical coherence tomography(OCT),anterior segment optical coherence tomography(AS-OCT),and ultrasound biomicroscopy(UBM)images.CFP is primarily used for the annotation of the optic cup and disc,while OCT is used for measuring and annotating the thickness of the retinal nerve fiber layer,and AS-OCT and UBM focus on the annotation of the anterior chamber angle structure and the measurement of anterior segment structural parameters.To standardize the classification and annotation of glaucoma images,enhance the quality and consistency of annotated data,and promote the clinical application of intelligent ophthalmology,this guideline has been developed.This guideline systematically elaborates on the principles,methods,processes,and quality control requirements for the classification and annotation of glaucoma images,providing standardized guidance for the classification and annotation of glaucoma images.
基金Supported in part by NSFC/RGC joint Research Scheme (N-HKUST639/09), the National Natural Science Foundation of China (61104058, 61273101), Guangzhou Scientific and Technological Project (2012J5100032), Nansha district independent innovation project (201103003), China Postdoctoral Science Foundation (2012M511367, 2012M511368), and Doctor Scientific Research Foundation of Liaoning Province (20121046).
文摘Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.
基金This work was financially supported by the National Natural Science Foundation of China(51602133,51876093)China MOST(2018YFE0183600).
文摘Two-dimensional(2D)supports confined single-atom catalysts(2D SACs)with unique geometric and electronic structures have been attractive candidates in different catalytic applications,such as energy conversion and storage,value-added chemical synthesis and environmental remediation.However,their environmental appli-cations lack of a comprehensive summary and in-depth discussion.In this review,recent progresses in synthesis routes and advanced characterization techniques for 2D SACs are introduced,and a comprehensive discussion on their applications in environmental remediation is presented.Generally,2D SACs can be effective in catalytic elimination of aqueous and gaseous pollutants via radical or non-radical routes and transformation of toxic pollutants into less poisonous species or highly value-added products,opening a new horizon for the contami-nant treatment.In addition,in-depth reaction mechanisms and potential pathways are systematically discussed,and the relationship between the structure-performance is highlighted.Finally,several critical challenges within this field are presented,and possible directions for further explorations of 2D SACs in environmental remediation are suggested.Although the research of 2D SACs in the environmental application is still in its infancy,this review will provide a timely summary on the emerging field,and would stimulate tremendous interest for designing more attractive 2D SACs and promoting their wide applications.
文摘P. M. Djuric, etc.(1992) researched on the segmentation of nonstationary stochastic process into piecewise stationary stochastic process by Bayesian criterion ,and gave a dynamic equation about the number of segments, their boundaries and AR model orders for each segment, but did not give detailed solution for the equation. Because the solution for the equation is very complex, this paper investigates the solution, derives some recursive relations, simplifies the problem ,saves computation time and goes further into the segmentation of nonstationary stochastic process into piecewise stationary stochastic process.
文摘This paper describes the preparation and properties of TiN_x-SiO_2 double-layered antireflective(AR) coatings that were applied with print process. The coating material was analyzed and TiN_x was used instead of TiO_2 as high refractive material. The influence of solution concentration on AR property was studied. The testing result shows that the coatings using print process are featured with excellent mechanical property and the AR property is comparable to American Southwall AR product. It is expected that the study would promote the industrialization progress in AR coatings.
文摘Seismological Bureau of Sichuan Province, Chengdu 610041, China2) Center for Analysis and Prediction, State Seismological Bureau, Beijing 100036, China3) Observation Center for Prediction of Earthquakes and Volcanic Eruptions, Faculty of Sciences, Tohoku University, Sendai 98077, Japan
文摘In the knitting industry the measurements of the stitch density and the stitch length are usually done manually, which may lead to lower efficiency and less definition and also bring subjective ideas into the test results. In order to improve the effect we can measure with Digital Image Processing Techniques. A piece of sample is scanned into computer and changed into a digital image, which is processed with media filtering. To acquire the power spectrum, the image in the spatial domain is converted into the frequency domain. Picking up the characteristic points describing the stitch density and the stitch length separately in the power spectra and reconstructing them, the values of the stitch density and the stitch length could be calculated. When measuring the stitch length, we should establish a geometric model of the stitch based en the digital image processing, which provides a method to transform the stitch length in the two-dimensien space into the three-dimensien space and to measure the value of the stitch length more accurately. This method also provides a new way to measure the stitch length without damaging the fabric.
基金supported by National Natural Science Foundation of China(Nos.11805107 and 12275039)the Fundamental Research Funds in Heilongjiang Provincial Universities of China(No.145309625)。
文摘In this work,the effects of the frequency,pressure,gas composition,and secondary-electron emission coefficient on the discharge mode in capacitively coupled Ar/O_(2) plasmas were carefully studied through simulations.Three discharge modes,i.e.,α,γ,and drift-ambipolar(DA),were considered in this study.The results show that a mode transition from theγ-DA hybrid mode dominated by theγmode to the DA-αhybrid mode dominated by the DA mode is induced by increasing the frequency from 100 k Hz to 40 MHz.Furthermore,the electron temperature decreases with increasing frequency,while the plasma density first decreases and then increases.It was found that the electronegativity increases slightly with increasing pressure in the lowfrequency region,and it increases notably with increasing pressure in the high-frequency region.It was also observed that the frequency corresponding to the mode transition fromγto DA decreased when the secondary-electron emission coefficient was decreased.Finally,it was found that increasing the oxygen content weakens theγmode and enhances the DA mode.More importantly,the density of oxygen atoms and ozone will increase greatly with increasing oxygen content,which is of great significance for industrial applications.