期刊文献+
共找到149篇文章
< 1 2 8 >
每页显示 20 50 100
Biomimetic inner helicoidal microfluidics with enhanced capillary rise for step liquid lifting mimicking transpiration
1
作者 Zhaolong Wang Yinfeng Li +5 位作者 Ziheng Zhan Mingzhu Xie Yingying Li Chengqi Zhang Zhichao Dong Yong Shuai 《International Journal of Extreme Manufacturing》 2025年第2期737-747,共11页
Bionic microfluidics is garnering increasing attention due to the superior fluidic performance enabled by biomimetic microstructures.Inspired by the unique structures of young pumpkin stems,we fabricate helicoidally p... Bionic microfluidics is garnering increasing attention due to the superior fluidic performance enabled by biomimetic microstructures.Inspired by the unique structures of young pumpkin stems,we fabricate helicoidally patterned microchannels with precisely controlled morphologies using the projection micro-stereolithography(PμSL)-based 3D printing technique.Our helicoidally patterned microchannels achieve approximately twice the liquid lifting height compared to similarly sized smooth microchannels.This improvement is attributed to the enhanced capillary force.The additional meniscus formed between the helicoidally patterned microstructures significantly contributes to the increased capillary effects.Furthermore,the underlying mechanisms of fluidic performance in helicoidally patterned microchannels are theorized using a newly developed equation,which is also employed to optimize the geometric parameters and fluidic performance of the biomimetic helicoidal microchannels.Additionally,our biomimetic helicoidally patterned microchannels facilitate a significant step-lifting phenomenon,mimicking tall trees'transpiration.The fluidic performance of our biomimetic helicoidally patterned microchannels show promise for applications in enhanced liquid lifting,step-lifting,clean-water production,and others. 展开更多
关键词 BIOMIMETIC helicoidally patterned microchannel enhanced capillary rise step lifting mimicked transpiration
在线阅读 下载PDF
Quercus acutissima exhibits more adaptable water uptake patterns in response to seasonal changes compared to Pinus massoniana
2
作者 Suimeng Zhang Xiaodi Wang +3 位作者 Zhaowang Huang YiTao Bao Jiang Jiang Ziqiang Liu 《Forest Ecosystems》 2025年第1期29-37,共9页
Background:Seasonal precipitation variability significantly affects water use in forests;however,whether water uptake is adapted to changes in precipitation,particularly whether it could affect the coexistence of tree... Background:Seasonal precipitation variability significantly affects water use in forests;however,whether water uptake is adapted to changes in precipitation,particularly whether it could affect the coexistence of tree species,has rarely been quantified in forest systems.Method:In this study,dual stable isotopes and the Li-6400 portable photosynthesis system were used to determine the water sources of a mixed conifer(Pinus massoniana)and broadleaf(Quercus acutissima)forest and changes in hydraulic characteristics during the dry and wet seasons in a southern hilly region of China.Results:Although the hydraulic characteristics of P.massoniana were lower than those of Q.acutissima,it maintained a stable water source from the deep soil layer and a higher stomatal conductance(Gs),leading to a higher transpiration rate(Tr)during the growing seasons.Q.acutissima mainly absorbed water from deeper soil layers in the dry season and took up from shallow soil layers in the wet season.Its Gs values exhibited sensitivity to precipitation,while it maintained a lower Tr value during the growing seasons.The excessive water-use strategy observed in P.massoniana may confer weak drought-tolerance during higher frequency and more intense extreme precipitation events,whereas Q.acutissima may exhibit better ecological adaption to precipitation changes.Conclusions:The overlap of water niches in mixed forests did not appear to affect the coexistence of tree species.The present study provides insights into reforestation and water management in the southern hilly regions of China. 展开更多
关键词 Water use TRANSPIRATION Stable isotope Hydraulic characteristics
在线阅读 下载PDF
Numerical Study on Natural Circulation System under Various Cooling Mediums
3
作者 Yumei Lv Wei Dai +2 位作者 Shupeng Xie Peng Hu Fei He 《Frontiers in Heat and Mass Transfer》 2025年第2期397-420,共24页
Aiming at the global design issue of transpiration cooling thermal protection system,a self-driven circulation loop is proposed as the internal coolant flow passage for the transpiration cooling structure to achieve a... Aiming at the global design issue of transpiration cooling thermal protection system,a self-driven circulation loop is proposed as the internal coolant flow passage for the transpiration cooling structure to achieve adaptive cooling.To enhance the universality of this internal cooling pipe design and facilitate its application,numerical studies are conducted on this systemwith four commonly used cooling mediums as coolant.Firstly,the accuracy of the numerical method is verified through an established experimental platform.Then,transient numerical simulations are performed on the flow states of different cooling mediums in the new self-circulation system.Based on the numerical result,the flow,phase change,and heat transfer characteristics of different cooling mediums are analyzed.Differences in fluid velocity and latent heat of phase change result in significant variation in heat exchange capacity among different coolingmediums,with the maximumdifference reaching up to 3 times.Besides,faster circulation speed leads to greater heat transfer capacity,with a maximum of 7600 W/m^(2).Consequently,the operating mechanism and cooling laws of the natural circulation system is further investigated,providing a reference for the practical application of this system. 展开更多
关键词 Transpiration cooling natural circulation loop phase change heat transfer capability flow state
在线阅读 下载PDF
Effects of environmental variables on canopy transpiration in two coniferous forests at different growing-season stages
4
作者 Shengnan Chen Wei Wei 《Forest Ecosystems》 2025年第5期852-862,共11页
Soil water content(SWC)and meteorological conditions,as key environmental variables influencing tree water use,vary highly within the growing season,hindering a better understanding of environmental control mechanisms... Soil water content(SWC)and meteorological conditions,as key environmental variables influencing tree water use,vary highly within the growing season,hindering a better understanding of environmental control mechanisms on canopy transpiration(Ec).Disentangling the effects of these variables on Ec across growing-season stages is crucial for Ec estimation and forest management.In this study,43-year-old Pinus tabuliformis Carr.and 31-yearold Platycladus orientalis(L.)Franco plantations in the semiarid Chinese Loess Plateau were monitored for Ec during the growing season of 2015-2020.The contributions of environmental factors to Ec were assessed using the boosted regression tree(BRT)model.Results showed that the contributions of SWC to Ec were greater at the early(May-June)and late(September)stages,while the contributions of vapor pressure deficit(VPD)and total solar radiation(Rs)to Ec increased at the middle(July-August)stage due to high soil water availability.Overall,Ec in both plantations was dominated by SWC(20.4%≤contributions≤48.8%)and Rs(22.7%≤contributions≤35.8%).Both species exhibited strong stomatal regulation of Ec.Specifically,stomatal opening was significantly inhibited by VPD at the early stage and strongly affected by SWC at the late stage.This study highlights that soil water conditions in artificial forests should be adjusted according to changes in influencing factors on Ec.Particularly during the early and late stages,measures(e.g.,land preparation,thinning,and pruning)can be implemented to improve soil moisture in such dryland forests. 展开更多
关键词 Tree transpiration Soil water Meteorology factors Stomatal regulation Dryland areas
在线阅读 下载PDF
Development of Mathematical Model for Calculating Physiological Parameters in Jatropha curcas under Soil Flooding
5
作者 CHHEDI LAL VERMA KRISHAN K.VERMA MUNNA SINGH 《农业研究与应用》 2025年第1期19-30,共12页
【Objective】Jatropha curcas is a potential source of biodiesel plant grown on waste and unattended lands,and parts of the areas are often suffered from flooding.The present study was conducted to develop a model to c... 【Objective】Jatropha curcas is a potential source of biodiesel plant grown on waste and unattended lands,and parts of the areas are often suffered from flooding.The present study was conducted to develop a model to calculate the net CO_(2)assimilation rate,transpiration rate and stomatal conductance with respect to leaf position,which affect the J.curcas productivity under soil flooding.【Method】The process of developing mathematical models for physiological responses associated with parameterization,optimization and validation.The concept was applied for the calculation of net CO 2 assimilation rate from transpiration rate and stomatal conductance,transpiration rate from net CO_(2)assimilation rate and stomatal conductance,and stomatal conductance from net CO_(2)assimilation rate and transpiration rate in different leaf positions of J.curcas.The models were tested under soil flooding and normal conditions to suffice its wider applicability.A model was proposed to calculate net CO 2 assimilation rate,transpiration rate and stomatal conductance responses from a known set of response function data by calculating a transformation characteristic constant between any two possible paired response functions.【Result】The mean deviations and root mean square errors(RMSE)of calculated physiological responses were low,which validated the proposed hypothesis and statistical models.The approach was applied for modeling physiological responses successfully in J.curcas.RMSE ranged from1.69%to 11.17%when transpiration rate and stomatal conductance were transformed to net CO_(2)assimilation rate,and from 1.70%to 11.61%in case net CO_(2)assimilation rate and stomatal conductance were transformed to transpiration rate,and from 3.87%to 13.21%if net CO_(2)assimilation rate and transpiration rate were transformed to stomatal conductance,respectively.【Conclusion】The model can be useful for calculating cumulative responses under different conditions from a basic known set of data.The key to successful physiological models is finding the better options that are realistic,easy to understand,interpretative and practical between adherence to reality,comprehensibility,interpretative value,and practical usefulness on sustainable agriculture in years to come. 展开更多
关键词 Jatropha curcas L. leaf position photosynthetic CO_(2)assimilation TRANSPIRATION stomatal conductance soil flooding
在线阅读 下载PDF
Gas Exchange, Xylem Ions and Abscisic Acid Response to Na^+-Salts and Cl^--Salts in Populus euphratica 被引量:8
6
作者 陈少良 李金克 +3 位作者 王天华 王沙生 Andrea POLLE Aloys HüTTERMANN 《Acta Botanica Sinica》 CSCD 2003年第5期561-566,共6页
We investigated the osmotic stress and ion-specific effects on xylem abscisic acid (ABA), ion uptake and transport and gas exchange in one-year-old seedlings of Populus euphratica Oliv. Net photosynthetic rates (P-n) ... We investigated the osmotic stress and ion-specific effects on xylem abscisic acid (ABA), ion uptake and transport and gas exchange in one-year-old seedlings of Populus euphratica Oliv. Net photosynthetic rates (P-n) and unit transpiration rates (TRN) were both significantly decreased upon an osmotic shock caused by PEG 6000 solution (osmotic potential = -0.24 MPa) or a saline, which was applied by 50 mmol/L Na+-salts (NaNO3 : NaHCO3 : NaH2PO4 = 5 : 4 : 1, pH 6.8, osmotic potential = -0.24 MPa) or by 50 mmol/L Cl--salts (KCl : NH4Cl = 1:1, osmotic potential = -0.24 MPa). However, salt-treated P. euphratica plants maintained typically higher TRN than those exposed to PEG. Xylem ABA concentrations increased rapidly following the PEG treatment, exhibiting peaking values at 1 h, then returning to pre-stress levels, followed by a gradual increase. Similarly, both Na+-treated and Cl--treated trees exhibited a rapid rise of ABA after salt stress was initiated. Notably, salt-treated plants maintained a relatively higher ABA than PEG-treated plants in a longer term. Collectively, results suggest that osmotic stress and ion-specific effects were both responsible for salt-induced ABA in P. euphratica : the initial rapid increase of xylem ABA appears to be a consequence of an osmotic shock, whereas specific salt effects seem to be responsible for ABA accumulation later on. Compared with Cl--treated trees, a higher inhibitory effect on gas exchange (P-n and TRN) was observed in Na+-salt plants, resulting from its long-sustained ABA and higher salt concentrations in the xylem. Displacement of membrane-associated Ca2+ by Na+ and the lesser capacity in Na+ compartmentation in root vacuoles likely contribute to the high influx of Na+ and Cl- in Na+-treated plants. Xylem K+, Ca2+ and Mg2+ concentrations were elevated by external Na+ -salts and Cl--salts, suggesting that P. euphratica maintained a higher capacity in nutrient uptake under saline conditions, which makes a contribution to its salinity tolerance. 展开更多
关键词 xylem ABA MACRONUTRIENTS TRANSPIRATION photosynthesis Na+-salts Cl--salts PEG Populus euphratica
在线阅读 下载PDF
Species- and Habitat-variability of Photosynthesis, Transpiration and Water Use Efficiency of Different Plant Species in Maowusu Sand Area 被引量:107
7
作者 蒋高明 何维明 《Acta Botanica Sinica》 CSCD 1999年第10期1114-1124,共11页
Photosynthesis ( P n ), transpiration ( E ) and water use efficiency ( WUE ) of more than 66 arid sand species from different environmental habitats, shifting sand dune, fixed sand dune, lowland and wetland in ... Photosynthesis ( P n ), transpiration ( E ) and water use efficiency ( WUE ) of more than 66 arid sand species from different environmental habitats, shifting sand dune, fixed sand dune, lowland and wetland in the Maowusu Sand Area were analyzed and the relation among these characteristics and the resource utilization efficiency, taxonomic categories and growth forms of the species were assessed. The results showed that species from Chenopodiaceae, Gramineae, Leguminosae which possessed the C 4 photosynthesis pathway, or C 3 pathway and also with nitrogen_fixation capacities had higher or the highest P n values, i.e., 20~30 μmol CO 2·m -2 ·s -1 , while that of evergreen shrub of Pinaceae had the lowest P n values, i.e., 0~5 μmol CO 2·m -2 ·s -1 . Those species from Compositae, Scrophulariaceae, and Gramineae with C 3 pathway but no N_fixation capacity had the highest E rates, i.e., 20~30 mmol H 2O·m -2 ·s -1 and again the evergreen shrub together with some species from Salicaceae and Compositae had the lowest E rates, i.e., 0~5 mmol H 2O·m -2 ·s -1 . Species from Leguminosae, Gramineae and Chenopodiaceae with C 4 pathway or C 3 pathway with N_fixation capacity, both shrubs and grasses, generally had higher WUE . However, even the physiological traits of the same species were habitat_ and season_specific. The values of both P n and E in late summer were much higher than those in early summer, with average increases of 26%, 40% respectively in the four habitats. WUE in late summer was, however, 12% lower. Generally, when the environments became drier as a result of habitats changed, i.e., in the order of wetland, lowland, fixed sand dune and shifting sand dune, P n and E decreased but WUE increased. 展开更多
关键词 PHOTOSYNTHESIS TRANSPIRATION Water use efficiency HABITAT C 4 pathway SHRUBS Grasses Maowusu Sand Area
在线阅读 下载PDF
SIMULATION OF THE PHYSIOLOGICAL RESPONSES OF C 3 PLANT LEAVES TO ENVIRONMENTAL FACTORS BY A MODEL WHICH COMBINES STOMATAL CONDUCTANCE, PHOTOSYNTHESIS AND TRANSPIRATION 被引量:42
8
作者 于强 王天铎 《Acta Botanica Sinica》 CSCD 1998年第8期740-754,共15页
Transpiration element is included in the integrated stomatal conductance photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer con... Transpiration element is included in the integrated stomatal conductance photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer conductance. Leuning in his revised Ball's model replaced relative humidity with VPD s (the vapor pressure deficit from stomatal pore to leaf surface) and thereby made the relation with transpiration more straightforward, and made it possible for the regulation of transpiration and the influence of boundary layer conductance to be integrated into the combined model. If the differences in water vapor and CO 2 concentration between leaf and ambient air are considered, VPD s , the evaporative demand, is influenced by stomatal and boundary layer conductance. The physiological responses of photosynthesis, transpiration, and stomatal function, and the changes of intercellular CO 2 and water use efficiency to environmental factors, such as wind speed, photon flux density, leaf temperature and ambient CO 2, are analyzed. It is shown that if the boundary layer conductance drops to a level comparable with stomatal conductance, the results of simulation by the model presented here differ significantly from those by the previous model, and, in some cases, are more realistic than the latter. 展开更多
关键词 PHOTOSYNTHESIS TRANSPIRATION Stomatal conductance Boundary layer conductance Integrated model
在线阅读 下载PDF
Water Use of Leymus chinensis Community 被引量:6
9
作者 宋炳煜 杨劼 +1 位作者 旭日 乌江雨 《Acta Botanica Sinica》 CSCD 2003年第10期1245-1250,共6页
Soil moisture of Leymus chinensis (Trin.) Tzvel. community has obviously stratified phenomena: the layer (0-40 cm) in which roots are concentrically distributed is directly influenced by precipitation and evapotranspi... Soil moisture of Leymus chinensis (Trin.) Tzvel. community has obviously stratified phenomena: the layer (0-40 cm) in which roots are concentrically distributed is directly influenced by precipitation and evapotranspiration. It can be called interaction layer of precipitation and evapotranspiration. The layer (40-120 cm), where water-storage capacity exchange lagged exchange of the root-layer water-storage capacity and the community evapotranspiration, can be called major water-storage layer. The layer (under 120 cm) can be called water relatively stable/balanced layer. The year 1996 was a normal flow year, and soil water had a surplus of 18 mm at the end of the growing season. The year 1998 was a high flow year, because leakage took place under continuous heavy rainfall, soil water had a deficit of 15 mm at the end of the growing season. Transpiration to evapotranspiration ( T/ET) value reflected not only the luxuriance degree of the community, but also the water use regime of the environmental resources. T/ET value was low (0.5) in May 1998, reaching 0.7 in June, then decreasing to 0.6 in July, due to the impact of rainfall inclining, while August reached the maximum (0.9), and September decreased to 0.6. Water use efficiency (WUE) was mainly restricted by the growing rate of plants under sufficient water condition (1998). Its seasonal changes were coincident with the grand period of growth of the plants. When both meanings of WUE and T/ET were analyzed profoundly, the concept of evapotranspiration efficiency (ETE) which can all-side reflect utilization regime of the environmental water resources was advanced. 展开更多
关键词 Leymus chinensis community water use efficiency (WUE) transpiration to evapotranspiration (T/ET) evapotranspiration efficiency (ETE)
在线阅读 下载PDF
Responses of the seedlings of five dominant tree species in Changbai Mountain to soil water stress 被引量:1
10
作者 代力民 李秋荣 +1 位作者 王淼 姬兰柱 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第3期191-196,共6页
Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fi... Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fisch.ex Turcz) from the broadleaved/Korean pine forest in Changbai Mountain. Leaf growth, water transpiration and photosynthesis were compared for each species under three soil moisture conditions: 85%-100% (high water, CK), 65%-85% (Medium water, MW) and 45%-65% (low water, LW) of 37.4% water-holding capacity in field. The results showed that the characteristic of typical drought-resistance of the leaves is significantly developed. The net photosynthetic rate and water use efficiency of Fraxinus mandshurica were higher in MW than those in CK. But for the other four species, the net photosynthetic rate and water use efficiency in CK were lower than those in MW and LW. The transpiration rate responding to soil moistures varied from species to species. 展开更多
关键词 Water stress Net photosynthesis Transpiration rate Water use efficiency Broadleaf/Korean pine forest
在线阅读 下载PDF
Effects of Different Vibration Intensities Harvesting on Photosynthesis System Parameters of Lycium barbarum L. Trees with Harvest Machine 被引量:2
11
作者 何军 李晓莺 +1 位作者 叶力勤 曹有龙 《Agricultural Science & Technology》 CAS 2009年第5期52-54,共3页
The effects of different vibration intensities harvesting on photosynthesis system parameters of Lycium barbarum L. tree with harvest machine were researched. The result showed that the photosynthetic rate, transpirat... The effects of different vibration intensities harvesting on photosynthesis system parameters of Lycium barbarum L. tree with harvest machine were researched. The result showed that the photosynthetic rate, transpiration rate, stomata conductance and intercellular CO2 concentration of L. barbarum tree's leaves under different treatment during different periods have no significant difference compared with contrast. It indicates that there is no significant effect on photosynthesis system parameters of L. barbarum tree's leaves with harvest machine. 展开更多
关键词 Lycium barbarum L. Harvest machine Photosynthetic rate Transpiration rate
在线阅读 下载PDF
The Dynamic Study on Transpiration Consumption of Black Locust Forest 被引量:2
12
作者 贺康宁 侯振宏 《Forestry Studies in China》 CAS 2001年第2期10-17,共8页
To know the annual water consumption of forest, it is necessary to acquire the annual transpiration value of stands. This paper is based on the data measured in the typical weather of the growth season, from 1998 to 2... To know the annual water consumption of forest, it is necessary to acquire the annual transpiration value of stands. This paper is based on the data measured in the typical weather of the growth season, from 1998 to 2000, with the LI 1600 Steady Porometer and the general weather information. The daily variation of transpiration in black locust forest ( Robinia pesudoacacia L.) is modeled by Penman Monteith equation. As a result of the model, a continuous daily transpiration in the growth season was calculated. The net radiation, intercepted by black locust forest canopy, was acquired from a semi empirical equation of measuring net radiation R n with the extinction coefficient k and leaf area index LAI . The canopy integral stomatic resistance is a mimesis with an empirical equation of measuring data. Compared with measuring data, the relative error of the modeled ones is less than 12% averagely. At last, the total transpiration of black locust forest during the period of 1998 and 2000 in the growth season of May to October, as an average transpiration of the different density stands, were 192 46, 187 07 and 195 59?mm respectively. 展开更多
关键词 black locust TRANSPIRATION net radiation leaf area index extinction coefficient stomatic resistance water consumption
在线阅读 下载PDF
Studies on Photosynthetic Characteristics of Tomato Leaves after Inoculation with Tomato Powdery Mildew (Oidium neolycopersici) 被引量:1
13
作者 吴昊 董华芳 许延波 《Plant Diseases and Pests》 CAS 2011年第2期9-11,21,共4页
[ Objective ] The paper was to explore the pathogenic mechanism of tomato powdery mildew, and to study the effects of the disease on photosynthetic characteristics of tomato. [ Method ] With four tomato varieties as m... [ Objective ] The paper was to explore the pathogenic mechanism of tomato powdery mildew, and to study the effects of the disease on photosynthetic characteristics of tomato. [ Method ] With four tomato varieties as materials, the pathogen of tomato powdery mildew was artificially inoculated. After the varieties were infected, the parameters including net photosynthetic rate, stomatal conductance and transpiration rate of tomato leaf were measured by Li-6400 portable photo- synthesis detector under natural lighting conditions. [ Result] The net photosynthetic rate, stomatal conductance and transpiration rate of four tomato varieties all decreased after infection. However, the decrease extent of these parameters of four varieties was different. The parameters of seriously damaged Jinyangdajuxdng ( No. 4) and Xinsheng No. 1 ( No. 5 ) decreased greatly, while the parameters of slightly damaged Lujia ( No. 13 ) and improved 98-6 decreased lightly. [ Condu- sion] The results could provide theoretical basis for the study on pathogenic mechanism, new prevention way and resistance breeding of tomato powdery mildew. 展开更多
关键词 Tomato powdery mildew Net photosynthetic rate Stomatal conductance Transpiration rate
在线阅读 下载PDF
The Response of Transpiration Rate of Malus pumila cv.Goldspur to Illumination and Soil Moisture 被引量:1
14
作者 王克勤 杨晓晖 《Forestry Studies in China》 CAS 2001年第2期18-25,共8页
We tested the transpiration rate ( Tr ) of seven\|year\|old field and two\|year\|old potted Malus pumila cv.Goldspur under different conditions of illumination and soil water. The results showed that the interre... We tested the transpiration rate ( Tr ) of seven\|year\|old field and two\|year\|old potted Malus pumila cv.Goldspur under different conditions of illumination and soil water. The results showed that the interrelationship between Tr of Malus pumila cv.Goldspur and illumination and soil water content ( SWC ) was quite remarkable. Tr increased with the increase of light intensity and SWC . However, when one of the environmental stresses of illumination and water existed, the improvement of the other condition couldn't make Tr rise greatly. Only when SWC was higher than 11%, which arrived at over 55% of the field content ( FC ), or the photosynthetic active radiation ( PAR ) higher than 400?μmol·s -1 m -2 , Tr could rise greatly with the increase of PAR or SWC . But when SWC was higher than 15%, which reached over 75% of FC or PAR higher than 1?000?μmol·s -1 ·m -2 , Tr would not change a lot with the change of PAR or SWC . That PAR and SWC influenced the magnitude of stomatic resistance( RS ) and leaf water potential ( Ψ l) was the basic reason for the Tr responded to them. Light stress reduced the open degree of stomas, so when severe light stress existed ( PAR <100?μmol·s -1 ·m -2 ), RS was larger ( RS >2 0?s·cm -1 ), which led to the decrease of Tr(Tr <5?μgH 2O·s -1 ·cm -2 ). When severe water stress existed( SWC <11% and<55% of FC and soil water potential Ψ ws <-1 15?MPa), RS was higher than 4 00?s·cm -1 and Ψ l lower than -2 10?MPa, which led to Tr lower than 11?μgH 2O·s -1 ·cm -2 . When soil water was adequate( SWC >15% amd over 75% of FC , and Ψ ws >-0 50?MPa), RS was lower than 2 00?s·cm -1 , Ψ l higher than -1 65?MPa and Tr would be higher than 15?μgH 2O·s -1 ·m -2 . The range of SWC , 11%~15%, which accounted for 55% to 75% of FC , and correspond RS (2 00~4 00?s·cm -1 ) were the turning area, where the variable curve of Tr transited from a variable trend to another variable one. It could be considered as the range to control soil water. 展开更多
关键词 transpiration rate irradiation intensity(photosynthetically active radiance) soil moisture
在线阅读 下载PDF
Comparison of Gas Exchange Characteristic in Leaves of Soybean Varieties with Different Yield Levels
15
作者 耿艳秋 张治安 +2 位作者 李大勇 赵洪祥 郑洪兵 《Agricultural Science & Technology》 CAS 2010年第8期98-101,共4页
[Objective] The aim was to explore the gases exchange characteristic in leaves of soybean cultivars at different yield levels to provide a certain theories basis for high yield breeding and cultivation of soybean cult... [Objective] The aim was to explore the gases exchange characteristic in leaves of soybean cultivars at different yield levels to provide a certain theories basis for high yield breeding and cultivation of soybean cultivars. [Method] Nine soybean cultivars divided into three yield levels were planted under the same environmental condition. At V4(seedling),R2(blooming),R4(pod-bearing),R6(pod-filling) and R7(maturing) growth stages,the net photosynthetic rate (Pn),stomatal conductance (Gs) and transpiration rate (Tr) in soybean leaves were measured with Li-6400 portable photosynthesis system. [Result] At all growth stages,the net photosynthetic rate,stomatal conductance in leaves of high yield soybean cultivars were significantly higher than low yield soybean cultivars. At V4,R2 and R4 stages,transpiration rate in leaves of high yield soybean cultivars was significantly higher than low yield soybean cultivars; there was no significant difference on transpiration rate in leaves of soybean cultivars at different yield levels at R6 and R7 stage. At V4 and R2 stage,water use efficiency (WUE) in leaves of soybean cultivars at different yield showed a trend of low yield cultivarsmiddle yield cultivarshigh yield cultivars,while it appeared high yield cultivarsmiddle yield cultivarslow yield cultivars at R4,R6 and R7 stage. [Conclusion] The gases exchange capacity in leaves of high yield soybean cultivars was significantly higher than low yield soybean cultivars,which had provided physiological basis of high yield. The net photosynthetic rate could be used as an selection index of high yield soybean. 展开更多
关键词 SOYBEAN Net photosynthetic rate Stomatal conductance Transpiration rate Water use efficiency
在线阅读 下载PDF
Photosynthesis and Transpiration Characters of Alfalfa (Medicago sativa) and Their Relationship with Relevant Factors during Branching Stage
16
作者 马宇飞 李红丽 +2 位作者 董智 任国勇 董鲁光 《Animal Husbandry and Feed Science》 CAS 2009年第2期32-35,共4页
[ Objective] The paper presents the diumal changes of photosynthesis and transpiration of different alfalfa varieties and their relationship with the associated physiological and ecological factors during branching st... [ Objective] The paper presents the diumal changes of photosynthesis and transpiration of different alfalfa varieties and their relationship with the associated physiological and ecological factors during branching stage, so as to provide a basis for the development, utilization, and breed- ing of alfalfa. [ Method] Under natural conditions, the diurnal changes of net photosynthetic rate (Pn), transpiration rate (Tr), the relevant physio- logical factors including leaf temperature (TI), stomatal conductance (Gs) and intemal COn concentration (Ci), as well as the relevant physiologi- cal factors including photosynthetic available radiation (PAR), CO2 concentration in field (Ca) and air temperature (Ta) were measured in four al- falfa varieties (Algonguin, WL323 HQ, WL414, and Millionaire). The water use efficiency (WUE) and light use efficiency (LUE) were calculated, and the correlation among them was also analyzed. [Result] The Pn, Tr, PAR and Ta of the four varieties appeared to vary in a single-peak curve; the sequence of WUE was WL323 HQ ~ Algonguin ~ WL414 ~ Millionaire; there was no significant difference in LUE of the four alfalfa varieties; coef- ficient analysis showed that Pn was mainly affected by PAR, Gs, and Ci, while Tr by PAR and Ta. [ Conclusion] WL323 HQ is the variety with high Pn, high WUE and low Tr, and it has strong adaptability to drought. In four alfalfa varieties, PAR, Ta, Gs, and TI are the primary determining fac- tors while Ca and Ci the limiting factors of Tr; Gs is the primary determining factor while Ci the limiting factor of Pn. 展开更多
关键词 Alfalfa Medicago Sativa) Net photosynthesis rate Transpiration rate
在线阅读 下载PDF
Transpiration surface reduction of Kousa Dogwood trees during serious water imbalance
17
作者 王斐 山本晴彦 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第4期337-342,I0006,共7页
The response of Kousa dogwood (Cornus kousa Buerg.) to extreme stresses was investigated by RGB image analysis in the hot, dry and windy summer in 2007 in Yamaguch, Japan. Results show that tip and margin leaf scorc... The response of Kousa dogwood (Cornus kousa Buerg.) to extreme stresses was investigated by RGB image analysis in the hot, dry and windy summer in 2007 in Yamaguch, Japan. Results show that tip and margin leaf scorch was observed on many Kousa dogwood trees and clearly dark brown defense barrier appeared on scorched leaves. The defense barrier withdrew back from distal to proximal gradually until successful control of scorching, and left a series of unsuccessful defense traces. By responsive analysis of leaf color homogeneity with RGB image analysis method, a sharp logistic equation was obtained for the relative green/luminance (RGL) value of scorched leaves. By the meteorological analysis, the occurrence of dogwood leaf scorch-back was almost synchronous with the aridity peak period. It sug- gested that during the sudden aridity increment the extreme water stresses induce the defense response of Kousa dogwood tree to shear the excessive transpiration leaf area, and prevent the rest of the trees from further water loss. Image pixet analysis showed that 40.2% leaf area of sampled dogwood trees was reduced through the partial leaf scorch-back by the end of August in 2007. In contrast, only 13.2% leaf area was reduced from the same trees in 2008, for the reason of sufficient precipitation during first half year. In any case, the Kousa dogwood trees indeed reduced their transpiration surface area and appeared a surface reduction pattern differing from those shedding leaves or withering all the aboveground. Based on desiccation process analysis, it is considered that the interaction of the leaf dried back and the self-defense response was the key of the transpiration surface reduction (TSR) of Kousa dogwood during sudden hot and droughty stresses. 展开更多
关键词 aridity peak Kousa dogwood leaf scorch-back logistic responsive function relative G/L transpiration surface reduction
在线阅读 下载PDF
Thermal performance of solar air collector with slit-like perforations
18
作者 李宪莉 由世俊 +1 位作者 张欢 尤占平 《Journal of Central South University》 SCIE EI CAS 2009年第S1期145-149,共5页
To offer a potentially low-cost and high-efficiency option for once-through applications,the unglazed transpired solar collector was studied. The semi-empirical correlation of overall heat exchange effectivenessε for... To offer a potentially low-cost and high-efficiency option for once-through applications,the unglazed transpired solar collector was studied. The semi-empirical correlation of overall heat exchange effectivenessε for UTC with circular holes was proposed to verify whether it being fit for this kind of absorber with slit-like perforations. The results show that in certain parameters,the predicted values of ε are very close to measured values,and the root mean square difference in betweens about 0.10,so the modle is suitable. Based on experimental results,this kind of absorber is proved to be feasible,with highest value of ε,up to 0.81. In addition,with the increase of γ,overall heat exchange effectiveness ε will decrease,i.e.,the value of ε will decrease with the increase of suction velocity vs or the decrease of wind velocity uw. However,the actual value of solar radiation intensity G and ambient temperature T∞ have little influence on ε. 展开更多
关键词 unglazed transpired solar COLLECTOR overall heat EXCHANGE EFFECTIVENESS slit-like PERFORATIONS
在线阅读 下载PDF
关于“transpiration ratio”概念的商榷
19
作者 李荣生 《植物生理学通讯》 CSCD 北大核心 2003年第6期663-,共1页
关键词 蒸腾系数 定义 需水量 transpiration ratio 植物生理学 TR 概念 思维形式
在线阅读 下载PDF
Changes of Gas Exchanges in Leaves of Different Cultivars of Winter Wheat Released in Different Years 被引量:5
20
作者 刘合芹 蒋高明 +6 位作者 张其德 孙家柱 渠春梅 郭仁俊 高雷明 白克智 匡廷云 《Acta Botanica Sinica》 CSCD 2002年第8期913-919,共7页
Three winter wheat cultivars ( Triticum aestivum L.), representatives of those widely cultivated in Beijing over the past six decades, were grown in the same environmental condition, and their physiological features w... Three winter wheat cultivars ( Triticum aestivum L.), representatives of those widely cultivated in Beijing over the past six decades, were grown in the same environmental condition, and their physiological features were investigated. Daily changes of net photosynthetic rate (P-n), transpiration (T-r) in different growth stages were measured in order to find the relationship between leaf photosynthesis and yield. Instantaneous water use efficiency (WUE) of leaf was calculated from P-n/T-r. It is suggested that relationship between photosynthetic rate and yield changed with the developing stages of wheat. High yield wheat cultivar Jingdong 8 (released in the 1990s) had a higher photosynthetic rate ( the maximal P-n increased by 77%) and transpiration rate (the maximal T-r increased by 69%), but a lower WUE than the low yield cultivar Yanda 1817 (released in the 1940s) during the day time at stem elongation stage. However; difference of P-n among the three cultivars changed with wheat growth process. Before 10 o'clock P-n in leaves of Jingdong 8 usually was the highest of the three cultivars, but P-n of Yanda 1817 was the highest after 10 o'clock. At dough ripe stage, P-n in leaves of Yanda. 1817 was the highest among the three cultivars during the whole day. The difference of changing trend of transpiration in three wheat cultivars was similar to P,, but WUE of Yanda 1817 was the highest in those three cultivars, indicating that the higher yield of Jingdong 8 was achieved via a greater consumption of water. Contrary to the cultivars released in the later period, midday depression of photosynthesis was small in Yanda 1817, which might suggest that Yanda 1817 was resistant to photoinhibition. It is possible that photosynthetic potential in leaves of wheat increased as wheat cultivars was improved over the past six decades. However, it became less resistant to photoinhibition. 展开更多
关键词 net photosynthesis daily change wheat cultivars transpiration rate water use efficiency
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部