A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of fr...A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of freedom of the Trailing Edge Flap(TEF)is analyzed by employing an inverse nested overset grid method.Simulation of non-rotational and rotational modes of blade motion are carried out to investigate the formation and development of TEF shedding vortex with high-frequency deflection of TEF.Moreover,the mechanism of TEF deflection interference with blade tip vortex and overall rotor aerodynamics is also explored.In nonrotational mode,two bundles of vortices form at the gap ends of TEF and the main blade and merge into a single TEF vortex.Dynamic deflection of the TEF significantly interferes with the blade tip vortex.The position of the blade tip vortex consistently changes,and its frequency is directly related to the frequency of TEF deflection.In rotational mode,the tip vortex forms a helical structure.The end vortices at the gap sides co-swirl and subsequently merge into the concentrated beam of tip vortices,causing fluctuations in the vorticity and axial position of the tip vortex under the rotor.This research concludes with the investigation on suppression of Blade Vortex Interaction(BVI),showing an increase in miss distance and reduction in the vorticity of tip vortex through TEF phase control at a particular control frequency.Through this mechanism,a designed TEF deflection law increases the miss distance by 34.7%and reduces vorticity by 11.9%at the target position,demonstrating the effectiveness of AFC in mitigating BVI.展开更多
Vortex-induced vibration of hydrofoils is concerned with structural safety and noise level in hydraulic machinery and marine engineering.The research on vibration characteristics under different operating conditions i...Vortex-induced vibration of hydrofoils is concerned with structural safety and noise level in hydraulic machinery and marine engineering.The research on vibration characteristics under different operating conditions is significant.In this study,numerical simulations are conducted to investigate the vortex-induced vibration responses of an elastically suspended hydrofoil with blunt trailing edge in pitch direction.The work studies the effects of four parameters,namely the structural natural frequency,mass ratio,initial attack angle,and Reynolds number on vibration characteristics,with special emphasis on frequency lock-in.Results indicate that as the structural natural frequency changes,the vibration amplitude may increase substantially within a certain frequency range,in which the vortex shedding frequency locks into the structural natural frequency,and frequency lock-in occurs.In addition,with increasing the mass ratio,the frequency range of lock-in becomes narrower,and both the upper and lower thresholds decrease.As the initial attack angle increases from 0◦to 6◦,the lock-in range gets reduced.Over the three Reynolds numbers(6×10^(5),9×10^(5),and 12×10^(5)),the lock-in range remains virtually unchanged.Moreover,for a certain structural natural frequency,modifying the mass ratio,initial attack angle,and Reynolds number could effectively suppress the vibration amplitude.展开更多
Biomimetics has recently emerged as an interesting approach to enhance renewable energy technologies.In this work,bioinspired Trailing Edge Serrations(TES)were evaluated on a typical Vertical Axis Wind Turbine(VAWT)ai...Biomimetics has recently emerged as an interesting approach to enhance renewable energy technologies.In this work,bioinspired Trailing Edge Serrations(TES)were evaluated on a typical Vertical Axis Wind Turbine(VAWT)airfoil,the DU06-W200.As noise reduction benefits of these mechanisms are already well-established,this study focuses on their impact on airfoil and VAWT performance.A saw-tooth geometry was chosen based on VAWT specifications and existing research,followed by a detailed assessment through wind tunnel tests using a newly developed aerodynamic balance.For a broad spectrum of attack angles and Reynolds numbers,lift,drag,and pitching moments were carefully measured.The results show that TES enhance the lift-to-drag ratio,especially in stalled conditions,and postpone stall at negative angles,expanding the effective performance range.A notable increase in pitching moment also is also observed,relevant for blade-strut joint design.Additionally,the impact on turbine performance was estimated using an analytical model,demonstrating excellent accuracy when compared against previous experimental results.TES offer a modest 2%improve-ment in peak performance,though they slightly narrow the optimal tip-speed ratio zone.Despite this,the potential noise reduction and performance gains make TES a valuable addition to VAWT designs,especially in urban settings.展开更多
Flagstaff Urban Trails System(FUTS) is a city-wide network of non-motorized, shared-use pathways that are used by bicyclists, walkers, hikers, runners, and other users for both recreation and transportation. FUTS tota...Flagstaff Urban Trails System(FUTS) is a city-wide network of non-motorized, shared-use pathways that are used by bicyclists, walkers, hikers, runners, and other users for both recreation and transportation. FUTS totals 79.2 km in Flagstaff, the Flagstaff government approved the fi rst plan in 1988, and FUTS Trail Priority Evaluation 2011 outlined the evaluation criteria, trail rankings and ranking results The new FUTS Master Plan shows about 130-km planned trails, and creates an ultimate trail system about 210 km. FUTS management organization and Transportation Tax Program is the key to keep the successful works of FUTS. Status quo of China National Trails System(CNTS) is reviewed as: scenic areas have relatively sound trail systems, but there is no any standard system; green corridors within the urban and rural system become popular, but there is no connection system. The development of China National Trails System can be promoted in 3 aspects: establishing national trails system, planning and design trails comprehensively, stressing daily operation and management.展开更多
基金supported by the National Natural Science Foundation of China(No.11972190)。
文摘A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of freedom of the Trailing Edge Flap(TEF)is analyzed by employing an inverse nested overset grid method.Simulation of non-rotational and rotational modes of blade motion are carried out to investigate the formation and development of TEF shedding vortex with high-frequency deflection of TEF.Moreover,the mechanism of TEF deflection interference with blade tip vortex and overall rotor aerodynamics is also explored.In nonrotational mode,two bundles of vortices form at the gap ends of TEF and the main blade and merge into a single TEF vortex.Dynamic deflection of the TEF significantly interferes with the blade tip vortex.The position of the blade tip vortex consistently changes,and its frequency is directly related to the frequency of TEF deflection.In rotational mode,the tip vortex forms a helical structure.The end vortices at the gap sides co-swirl and subsequently merge into the concentrated beam of tip vortices,causing fluctuations in the vorticity and axial position of the tip vortex under the rotor.This research concludes with the investigation on suppression of Blade Vortex Interaction(BVI),showing an increase in miss distance and reduction in the vorticity of tip vortex through TEF phase control at a particular control frequency.Through this mechanism,a designed TEF deflection law increases the miss distance by 34.7%and reduces vorticity by 11.9%at the target position,demonstrating the effectiveness of AFC in mitigating BVI.
基金the National Natural Science Foundation of China(Nos.52171316 and 51479116)。
文摘Vortex-induced vibration of hydrofoils is concerned with structural safety and noise level in hydraulic machinery and marine engineering.The research on vibration characteristics under different operating conditions is significant.In this study,numerical simulations are conducted to investigate the vortex-induced vibration responses of an elastically suspended hydrofoil with blunt trailing edge in pitch direction.The work studies the effects of four parameters,namely the structural natural frequency,mass ratio,initial attack angle,and Reynolds number on vibration characteristics,with special emphasis on frequency lock-in.Results indicate that as the structural natural frequency changes,the vibration amplitude may increase substantially within a certain frequency range,in which the vortex shedding frequency locks into the structural natural frequency,and frequency lock-in occurs.In addition,with increasing the mass ratio,the frequency range of lock-in becomes narrower,and both the upper and lower thresholds decrease.As the initial attack angle increases from 0◦to 6◦,the lock-in range gets reduced.Over the three Reynolds numbers(6×10^(5),9×10^(5),and 12×10^(5)),the lock-in range remains virtually unchanged.Moreover,for a certain structural natural frequency,modifying the mass ratio,initial attack angle,and Reynolds number could effectively suppress the vibration amplitude.
基金The authors wish to thank the financial support of the Spanish Ministry of Science,Innovation and Universities in reference to the Project:Efficiency improvement and noise reduction of a vertical axis wind turbine for urban environments(MERTURB)-Ref.MCINN-22-TED2021-131307B-100.
文摘Biomimetics has recently emerged as an interesting approach to enhance renewable energy technologies.In this work,bioinspired Trailing Edge Serrations(TES)were evaluated on a typical Vertical Axis Wind Turbine(VAWT)airfoil,the DU06-W200.As noise reduction benefits of these mechanisms are already well-established,this study focuses on their impact on airfoil and VAWT performance.A saw-tooth geometry was chosen based on VAWT specifications and existing research,followed by a detailed assessment through wind tunnel tests using a newly developed aerodynamic balance.For a broad spectrum of attack angles and Reynolds numbers,lift,drag,and pitching moments were carefully measured.The results show that TES enhance the lift-to-drag ratio,especially in stalled conditions,and postpone stall at negative angles,expanding the effective performance range.A notable increase in pitching moment also is also observed,relevant for blade-strut joint design.Additionally,the impact on turbine performance was estimated using an analytical model,demonstrating excellent accuracy when compared against previous experimental results.TES offer a modest 2%improve-ment in peak performance,though they slightly narrow the optimal tip-speed ratio zone.Despite this,the potential noise reduction and performance gains make TES a valuable addition to VAWT designs,especially in urban settings.
基金Supported by the Human and Social Science Foundation of China Education Ministry(11YJC850004)National Philosophy and Social Science Project(13BJY145)Art Science Planning Project of Jiangxi Province(YG2013004)
文摘Flagstaff Urban Trails System(FUTS) is a city-wide network of non-motorized, shared-use pathways that are used by bicyclists, walkers, hikers, runners, and other users for both recreation and transportation. FUTS totals 79.2 km in Flagstaff, the Flagstaff government approved the fi rst plan in 1988, and FUTS Trail Priority Evaluation 2011 outlined the evaluation criteria, trail rankings and ranking results The new FUTS Master Plan shows about 130-km planned trails, and creates an ultimate trail system about 210 km. FUTS management organization and Transportation Tax Program is the key to keep the successful works of FUTS. Status quo of China National Trails System(CNTS) is reviewed as: scenic areas have relatively sound trail systems, but there is no any standard system; green corridors within the urban and rural system become popular, but there is no connection system. The development of China National Trails System can be promoted in 3 aspects: establishing national trails system, planning and design trails comprehensively, stressing daily operation and management.