特高压(ultra high voltage,UHV)双柱悬索拉线塔风灾风险评估是实现其性能化抗风设计的重要组成部分,基于此,提出一种适用于特高压双柱悬索拉线塔的风灾风险评估方法。首先,建立特高压双柱悬索拉线塔风灾风险评估的基本框架;随后,基于...特高压(ultra high voltage,UHV)双柱悬索拉线塔风灾风险评估是实现其性能化抗风设计的重要组成部分,基于此,提出一种适用于特高压双柱悬索拉线塔的风灾风险评估方法。首先,建立特高压双柱悬索拉线塔风灾风险评估的基本框架;随后,基于该框架开展了新疆哈密地区的风灾危险性分析,并进行特高压双柱悬索拉线塔的风灾易损性分析;最后,利用所求得的风灾危险性函数和易损性函数卷积得到结构的风灾风险函数,计算得到结构在不同性能水准下的年失效概率,并讨论风向对结构风灾风险的影响。结果表明:新疆哈密地区NE风向方位所对应的风灾危险性最大,而S风向方位对应的风灾危险性则最小,应重点关注NE方位下的结构损伤;当风速小于44 m/s时,双柱悬索拉线塔在任意风向角下发生轻微破坏的概率都很小,结构具有较强的抗风性能;双柱悬索拉线塔在NE-90°工况组合和NE-0°工况组合下的年失效概率分别为最大和最小,其变化趋势与结构风灾易损性曲线相似;不同风向组合下双柱悬索拉线塔的年失效概率都很小,结构发生风致损伤及破坏为一小概率事件。展开更多
In this paper, wind-induced vibration control of a single column tower of a cable-stayed bridge with a multi- stage pendulum mass damper (MSPMD) is investigated. Special attention is given to overcoming space limita...In this paper, wind-induced vibration control of a single column tower of a cable-stayed bridge with a multi- stage pendulum mass damper (MSPMD) is investigated. Special attention is given to overcoming space limitations for installing the control device in the tower and the effect of varying natural frequency of the towers during construction. First, the finite element model of the bridge during its construction and the basic equation of motion of the MSPMD are introduced. The equation of motion of the bridge with the MSPMD under along-wind excitation is then established. Finally, a numerical simulation and parametric study are conducted to assess the effectiveness of the control system for reducing the wind-induced vibration of the bridge towers during construction. The numerical simulation results show that the MSPMD is practical and effective for reducing the along-wind response of the single column tower, can be installed in a small area of the tower, and complies with the time-variant characteristics of the bridge during its entire construction stage.展开更多
The possibility of using a multi-stage pendulum mass damper (MSPMD) to control wind-induced vibration of a single column tower of a cable-stayed bridge during construction was studied theoretically in part I of this...The possibility of using a multi-stage pendulum mass damper (MSPMD) to control wind-induced vibration of a single column tower of a cable-stayed bridge during construction was studied theoretically in part I of this work. In this paper, the performance of the MSPMD for reducing bridge tower vibration is studied experimentally. A MSPMD model and a tower model of the bridge with geometry scaling of 1:100 were designed and manufactured. Calibration of the MSPMD model with different wire lengths is conducted to verify the analytical model of the damper. A series of tests for the uncontrolled freestanding tower, tower with cables, and tower with MSPMD model are then performed under harmonic and white noise excitations. The experimental results show that the responses of the tower model significantly decrease with the installation of the MSPMD model, which demonstrates the effectiveness of the M SPMD to mitigate the vibration of the bridge tower.展开更多
文摘特高压(ultra high voltage,UHV)双柱悬索拉线塔风灾风险评估是实现其性能化抗风设计的重要组成部分,基于此,提出一种适用于特高压双柱悬索拉线塔的风灾风险评估方法。首先,建立特高压双柱悬索拉线塔风灾风险评估的基本框架;随后,基于该框架开展了新疆哈密地区的风灾危险性分析,并进行特高压双柱悬索拉线塔的风灾易损性分析;最后,利用所求得的风灾危险性函数和易损性函数卷积得到结构的风灾风险函数,计算得到结构在不同性能水准下的年失效概率,并讨论风向对结构风灾风险的影响。结果表明:新疆哈密地区NE风向方位所对应的风灾危险性最大,而S风向方位对应的风灾危险性则最小,应重点关注NE方位下的结构损伤;当风速小于44 m/s时,双柱悬索拉线塔在任意风向角下发生轻微破坏的概率都很小,结构具有较强的抗风性能;双柱悬索拉线塔在NE-90°工况组合和NE-0°工况组合下的年失效概率分别为最大和最小,其变化趋势与结构风灾易损性曲线相似;不同风向组合下双柱悬索拉线塔的年失效概率都很小,结构发生风致损伤及破坏为一小概率事件。
基金Area Strategic Development Program inStructural Control and Intelligent Building from The HongKong Polytechnic University, and National Natural SciencFoundation of China Under Grant No. 50408011
文摘In this paper, wind-induced vibration control of a single column tower of a cable-stayed bridge with a multi- stage pendulum mass damper (MSPMD) is investigated. Special attention is given to overcoming space limitations for installing the control device in the tower and the effect of varying natural frequency of the towers during construction. First, the finite element model of the bridge during its construction and the basic equation of motion of the MSPMD are introduced. The equation of motion of the bridge with the MSPMD under along-wind excitation is then established. Finally, a numerical simulation and parametric study are conducted to assess the effectiveness of the control system for reducing the wind-induced vibration of the bridge towers during construction. The numerical simulation results show that the MSPMD is practical and effective for reducing the along-wind response of the single column tower, can be installed in a small area of the tower, and complies with the time-variant characteristics of the bridge during its entire construction stage.
基金Area Strategic Development Program in Structural Control and Intelligent Building from The Hong Kong Polytechnic UniversityNational Natural Science Foundation of China Under Grant No. 50408011
文摘The possibility of using a multi-stage pendulum mass damper (MSPMD) to control wind-induced vibration of a single column tower of a cable-stayed bridge during construction was studied theoretically in part I of this work. In this paper, the performance of the MSPMD for reducing bridge tower vibration is studied experimentally. A MSPMD model and a tower model of the bridge with geometry scaling of 1:100 were designed and manufactured. Calibration of the MSPMD model with different wire lengths is conducted to verify the analytical model of the damper. A series of tests for the uncontrolled freestanding tower, tower with cables, and tower with MSPMD model are then performed under harmonic and white noise excitations. The experimental results show that the responses of the tower model significantly decrease with the installation of the MSPMD model, which demonstrates the effectiveness of the M SPMD to mitigate the vibration of the bridge tower.