An unidirectional and bidirectional hybrid connective star network model with coupling time-delay is constructed in this paper. According to synchronization error systems, adaptive controllers for each node are struct...An unidirectional and bidirectional hybrid connective star network model with coupling time-delay is constructed in this paper. According to synchronization error systems, adaptive controllers for each node are structured by using the linear system stability method and the Lyapunov stability method. These adaptive controllers can realize the modified functional projective synchronization between each node of star network and an isolated node by argument and analysis. Finally, the corrective and effective of the adaptive controllers are illustrated by some numerical examples.展开更多
We study different types of projective synchronization (projective-anticipating, projective, and projectivelag synchronization) in a class of time-delayed chaotic systems related to optical bistable or hybrid optica...We study different types of projective synchronization (projective-anticipating, projective, and projectivelag synchronization) in a class of time-delayed chaotic systems related to optical bistable or hybrid optical bistable devices. We relax some limitations of previous work, where the scaling factor a can not be any desired value. In this paper, we achieve projective-anticipating, projective, and projective-lag synchronization without the limitation of a. A suitable controller is chosen using active control approach. Based on the Lyapunov stability theory, we derive the sufficient stability condition through theoretical analysis. The analytical results are validated by the numerical simulations using Ikeda model and Mackey-Glass model.展开更多
For the first time, we report on projective synchronization between two time delay chaotic systems with single time delays. It overcomes some limitations of the previous work, where projective synchronization has been...For the first time, we report on projective synchronization between two time delay chaotic systems with single time delays. It overcomes some limitations of the previous work, where projective synchronization has been investigated only in finite-dimensional chaotic systems, so we can achieve projective synchronization in infinitedimensional chaotic systems. We give a general method with which we can achieve projective synchronization in time-delayed chaotic systems. The method is illustrated using the famous delay-differential equations related to optical bistability. Numerical simulations fully support the analytical approach.展开更多
In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spira...In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spiral waves, which are constituted by many thin trips, are found in each layer of two identical time-delayed coupled layers, and are different from the segmented spiral waves in a water-in-oil aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) microemulsion (ME) (BZ-AOT system), which consists of many small segments. "Anti-phase spiral wave synchronization" can be realized between the first layer and the second one. For different excitable parameters, we also give the minimum values of the coupling strength to generate segmented spiral waves and the tip orbits of spiral waves in the whole bilayer.展开更多
New synchronization algorithm and analysis of its convergence rate for clock oscillators in dynamical network with time-delays are presented.A network of nodes equipped with hardware clock oscillators with bounded dri...New synchronization algorithm and analysis of its convergence rate for clock oscillators in dynamical network with time-delays are presented.A network of nodes equipped with hardware clock oscillators with bounded drift is considered.Firstly,a dynamic synchronization algorithm based on consensus control strategy,namely fast averaging synchronization algorithm (FASA),is presented to find the solutions to the synchronization problem.By FASA,each node computes the logical clock value based on its value of hardware clock and message exchange.The goal is to synchronize all the nodes' logical clocks as closely as possible.Secondly,the convergence rate of FASA is analyzed that proves it is related to the bound by a nondecreasing function of the uncertainty in message delay and network parameters.Then,FASA's convergence rate is proven by means of the robust optimal design.Meanwhile,several practical applications for FASA,especially the application to inverse global positioning system (IGPS) base station network are discussed.Finally,numerical simulation results demonstrate the correctness and efficiency of the proposed FASA.Compared FASA with traditional clock synchronization algorithms (CSAs),the convergence rate of the proposed algorithm converges faster than that of the CSAs evidently.展开更多
In this paper, the distributed synchronization of stochastic coupled neural networks with time-varying delay is concerned via randomly occurring control. We use two Bernoulli stochastic variables to describe the occur...In this paper, the distributed synchronization of stochastic coupled neural networks with time-varying delay is concerned via randomly occurring control. We use two Bernoulli stochastic variables to describe the occurrence of distributed adaptive control and updating law according to certain probabilities. The distributed adaptive control and updating law for each vertex in the network depend on the state information on each vertex’s neighborhood. Based on Lyapunov stability theory, It<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ô<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> differential equations, etc., by constructing the appropriate Lyapunov functional, we study and obtain sufficient conditions for the distributed synchronization of such networks in mean square.展开更多
The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in...The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in heterogeneous deployments.When multiple TSN networks interconnect over non-TSN networks,all devices in the network need to be syn-chronized by sharing a uniform time reference.How-ever,most non-TSN networks are best-effort.Path delay asymmetry and random noise accumulation can introduce unpredictable time errors during end-to-end time synchronization.These factors can degrade syn-chronization performance.Therefore,cross-domain time synchronization becomes a challenging issue for multiple TSN networks interconnected by non-TSN networks.This paper presents a cross-domain time synchronization scheme that follows the software-defined TSN(SD-TSN)paradigm.It utilizes a com-bined control plane constructed by a coordinate con-troller and a domain controller for centralized control and management of cross-domain time synchroniza-tion.The general operation flow of the cross-domain time synchronization process is designed.The mecha-nism of cross-domain time synchronization is revealed by introducing a synchronization model and an error compensation method.A TSN cross-domain proto-type testbed is constructed for verification.Results show that the scheme can achieve end-to-end high-precision time synchronization with accuracy and sta-bility.展开更多
The synchronization of time-delayed multi-agent networks with connected and directed topology is studied. Based on the correlative work about the agent synchronization, a modified model is presented, in which each com...The synchronization of time-delayed multi-agent networks with connected and directed topology is studied. Based on the correlative work about the agent synchronization, a modified model is presented, in which each communication receiver is distributed a delay 7. In addition, a proportional term k is introduced to modulate the delay range and to guarantee the synchronization of each agent. Two new parameters mentioned above are only correlative to the network topology, and a theorem about their connections is derived by both frequency domain method and geometric method. Finally, the theoretical result is illustrated by numerical simulations.展开更多
Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and ev...Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.展开更多
This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique...This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique, a newapproach is proposed to derive some new exponential synchronization criteria.The restriction that the control widthhas to be larger than the time delay is removed.This leads to a larger application scope for our method.Moreover, notranscendental equation is involved in the obtained result, which reduces the computational burden.Two examples aregiven to validate the theoretical results.展开更多
This paper proposes a nonlinear feedback control method to realize global exponential synchronization with channel time-delay between the Lfi system and Chen system, which are regarded as the drive system and the resp...This paper proposes a nonlinear feedback control method to realize global exponential synchronization with channel time-delay between the Lfi system and Chen system, which are regarded as the drive system and the response system respectiveiy. Some effective observers are produced to identify the unknown parameters of the Lii system. Based on the Lyapunov stability theory and linear matrix inequality technique, some sufficient conditions of global exponential synchronization of the two chaotic systems are derived. Simulation results show the effectiveness and feasibility of the proposed controller.展开更多
In this paper, we investigate the impulsive synchronization between two coupled complex networks with time- delayed dynamical nodes. Based on the Lyapunov stability, the linear feedback control and the impulsive contr...In this paper, we investigate the impulsive synchronization between two coupled complex networks with time- delayed dynamical nodes. Based on the Lyapunov stability, the linear feedback control and the impulsive control theories, the linear feedback and the impulsive controllers are designed separately. By using the generalized Barbalat's lemma, the global asymptotic impulsive synchronization of the drive-response complex networks is derived and some corresponding sufficient conditions are also obtained. Numerical examples are presented to verify the effectiveness and the correctness of the synchronization criteria.展开更多
This paper investigates the mixed Ho~ and passive projective synchronization problem for fractional-order (FO) memristor-based neural networks. Our aim is to design a controller such that, though the unavoidable phe...This paper investigates the mixed Ho~ and passive projective synchronization problem for fractional-order (FO) memristor-based neural networks. Our aim is to design a controller such that, though the unavoidable phenomena of time-delay and parameter uncertainty are fully considered, the resulting closed-loop system is asymptotically stable with a mixed H∞ and passive performance level. By combining active and adaptive control methods, a novel hybrid control strategy is designed, which can guarantee the robust stability of the closed-loop system and also ensure a mixed H∞ and passive performance level. Via the application of FO Lyapunov stability theory, the projective synchronization conditions are addressed in terms of linear matrix inequaiity techniques. Finally, two simulation examples are given to illustrate the effectiveness of the proposed method.展开更多
This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural ...This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural network are investigated.Meanwhile,based on the complex-valued inequalities of fractional-order derivatives and the stability theory of fractional-order complex-valued systems,a new adaptive controller and new complex-valued update laws are proposed to construct a synchronization control model for fractional-order complex-valued chaotic neural networks.Finally,the numerical simulation results are presented to illustrate the effectiveness of the developed synchronization scheme.展开更多
This paper propose a comprehensive data-driven prediction framework based on machine learning methods to investigate the lag synchronization phenomenon in coupled chaotic systems,particularly in cases where accurate m...This paper propose a comprehensive data-driven prediction framework based on machine learning methods to investigate the lag synchronization phenomenon in coupled chaotic systems,particularly in cases where accurate mathematical models are challenging to establish or where system equations remain unknown.The Long Short-Term Memory(LSTM)neural network is trained using time series acquired from the desynchronization system states,subsequently predicting the lag synchronization transition.In the experiments,we focus on the Lorenz system with time-varying delayed coupling,studying the effects of coupling coefficients and time delays on lag synchronization,respectively.The results indicate that with appropriate training,the machine learning model can adeptly predict the lag synchronization occurrence and transition.This study not only enhances our comprehension of complex network synchronization behaviors but also underscores the potential and practical applications of machine learning in exploring nonlinear dynamic systems.展开更多
This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a ...This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems.展开更多
This paper deals with the fixed-time adaptive time-varying matrix projective synchronization(ATVMPS)of different dimensional chaotic systems(DDCSs)with time delays and unknown parameters.Firstly,to estimate the unknow...This paper deals with the fixed-time adaptive time-varying matrix projective synchronization(ATVMPS)of different dimensional chaotic systems(DDCSs)with time delays and unknown parameters.Firstly,to estimate the unknown parameters,adaptive parameter updated laws are designed.Secondly,to realize the fixed-time ATVMPS of the time-delayed DDCSs,an adaptive delay-unrelated controller is designed,where time delays of chaotic systems are known or unknown.Thirdly,some simple fixed-time ATVMPS criteria are deduced,and the rigorous proof is provided by employing the inequality technique and Lyapunov theory.Furthermore,the settling time of fixed-time synchronization(Fix-TS)is obtained,which depends only on controller parameters and system parameters and is independent of the system’s initial states.Finally,simulation examples are presented to validate the theoretical analysis.展开更多
Time-delay effects on synchronization features of delay-coupled slow-fast van der Pol systems are investigated in the present paper. The synchronization mechanism of “slow-manifold adjustment” is firstly described o...Time-delay effects on synchronization features of delay-coupled slow-fast van der Pol systems are investigated in the present paper. The synchronization mechanism of “slow-manifold adjustment” is firstly described on the basis of geometric singular perturbation theory. Then, the impact of time delay on the structure of the slow manifold of synchronized system is obtained by using the method of stability switch, and thus, time-delay effects on synchronization features are stated. It is shown the time delay cannot qualitatively affect the synchronization mechanism, however, it can result in the drift of the optimal coupling strength.展开更多
Complex networks play a crucial role in the study of collective behavior,encompassing the analysis of dynamical properties and network topology.In real-world systems,higher-order interactions among multiple entities a...Complex networks play a crucial role in the study of collective behavior,encompassing the analysis of dynamical properties and network topology.In real-world systems,higher-order interactions among multiple entities are widespread and significantly influence collective dynamics.Here,we extend the synchronization alignment function framework to hypergraphs of arbitrary order by leveraging the multi-order Laplacian matrix to encode higher-order interactions.Our findings reveal that the upper bound of synchronous behavior is determined by the maximum eigenvalue of the multi-order Laplacian matrix.Furthermore,we decompose the contribution of each hyperedge to this eigenvalue and utilize it as a basis for designing an eigenvalue-based topology modification algorithm.This algorithm effectively enhances the upper bound of synchronous behavior without altering the total number of higher-order interactions.Our study provides new insights into dynamical optimization and topology tuning in hypergraphs,advancing the understanding of the interplay between higher-order interactions and collective dynamics.展开更多
This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Fu...This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Furthermore,it briefly reviews the notion of higher-order network topologies and shows their promising potential in application to evaluating the optimality of network synchronizability.展开更多
基金Supported by the National Natural Science Foundation of China(11161027)Natural Science Foundation of Gansu Province(1610RJZA080)the Foundation of Gansu Education Bureau(2017A-155)
文摘An unidirectional and bidirectional hybrid connective star network model with coupling time-delay is constructed in this paper. According to synchronization error systems, adaptive controllers for each node are structured by using the linear system stability method and the Lyapunov stability method. These adaptive controllers can realize the modified functional projective synchronization between each node of star network and an isolated node by argument and analysis. Finally, the corrective and effective of the adaptive controllers are illustrated by some numerical examples.
基金Supported by Research Project of Hubei Provincial Department of Education under Grant No.Q20101609Foundation of Wuhan Textile University under Grant No.105040
文摘We study different types of projective synchronization (projective-anticipating, projective, and projectivelag synchronization) in a class of time-delayed chaotic systems related to optical bistable or hybrid optical bistable devices. We relax some limitations of previous work, where the scaling factor a can not be any desired value. In this paper, we achieve projective-anticipating, projective, and projective-lag synchronization without the limitation of a. A suitable controller is chosen using active control approach. Based on the Lyapunov stability theory, we derive the sufficient stability condition through theoretical analysis. The analytical results are validated by the numerical simulations using Ikeda model and Mackey-Glass model.
文摘For the first time, we report on projective synchronization between two time delay chaotic systems with single time delays. It overcomes some limitations of the previous work, where projective synchronization has been investigated only in finite-dimensional chaotic systems, so we can achieve projective synchronization in infinitedimensional chaotic systems. We give a general method with which we can achieve projective synchronization in time-delayed chaotic systems. The method is illustrated using the famous delay-differential equations related to optical bistability. Numerical simulations fully support the analytical approach.
基金The project supported by National Natural Science Foundation of China under Grant No.10647127National Natural Science Foundation of China for Major Projects under Grant No.10335010the Natural Science Foundation of Hebei Province of China under Grant No.A2006000128
文摘In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spiral waves, which are constituted by many thin trips, are found in each layer of two identical time-delayed coupled layers, and are different from the segmented spiral waves in a water-in-oil aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) microemulsion (ME) (BZ-AOT system), which consists of many small segments. "Anti-phase spiral wave synchronization" can be realized between the first layer and the second one. For different excitable parameters, we also give the minimum values of the coupling strength to generate segmented spiral waves and the tip orbits of spiral waves in the whole bilayer.
基金Sponsored by the Cooperation Building Foundation Project of Beijing Education Committee (100070
文摘New synchronization algorithm and analysis of its convergence rate for clock oscillators in dynamical network with time-delays are presented.A network of nodes equipped with hardware clock oscillators with bounded drift is considered.Firstly,a dynamic synchronization algorithm based on consensus control strategy,namely fast averaging synchronization algorithm (FASA),is presented to find the solutions to the synchronization problem.By FASA,each node computes the logical clock value based on its value of hardware clock and message exchange.The goal is to synchronize all the nodes' logical clocks as closely as possible.Secondly,the convergence rate of FASA is analyzed that proves it is related to the bound by a nondecreasing function of the uncertainty in message delay and network parameters.Then,FASA's convergence rate is proven by means of the robust optimal design.Meanwhile,several practical applications for FASA,especially the application to inverse global positioning system (IGPS) base station network are discussed.Finally,numerical simulation results demonstrate the correctness and efficiency of the proposed FASA.Compared FASA with traditional clock synchronization algorithms (CSAs),the convergence rate of the proposed algorithm converges faster than that of the CSAs evidently.
文摘In this paper, the distributed synchronization of stochastic coupled neural networks with time-varying delay is concerned via randomly occurring control. We use two Bernoulli stochastic variables to describe the occurrence of distributed adaptive control and updating law according to certain probabilities. The distributed adaptive control and updating law for each vertex in the network depend on the state information on each vertex’s neighborhood. Based on Lyapunov stability theory, It<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ô<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> differential equations, etc., by constructing the appropriate Lyapunov functional, we study and obtain sufficient conditions for the distributed synchronization of such networks in mean square.
基金supported in part by National Key R&D Program of China(Grant No.2022YFC3803700)in part by the National Natural Science Foundation of China(Grant No.92067102)in part by the project of Beijing Laboratory of Advanced Information Networks.
文摘The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in heterogeneous deployments.When multiple TSN networks interconnect over non-TSN networks,all devices in the network need to be syn-chronized by sharing a uniform time reference.How-ever,most non-TSN networks are best-effort.Path delay asymmetry and random noise accumulation can introduce unpredictable time errors during end-to-end time synchronization.These factors can degrade syn-chronization performance.Therefore,cross-domain time synchronization becomes a challenging issue for multiple TSN networks interconnected by non-TSN networks.This paper presents a cross-domain time synchronization scheme that follows the software-defined TSN(SD-TSN)paradigm.It utilizes a com-bined control plane constructed by a coordinate con-troller and a domain controller for centralized control and management of cross-domain time synchroniza-tion.The general operation flow of the cross-domain time synchronization process is designed.The mecha-nism of cross-domain time synchronization is revealed by introducing a synchronization model and an error compensation method.A TSN cross-domain proto-type testbed is constructed for verification.Results show that the scheme can achieve end-to-end high-precision time synchronization with accuracy and sta-bility.
基金the National Natural Science Foundation of China (No. 70571017)the Research Foundation from Provincial Education Department of Zhejiang of China (No. 20070928)
文摘The synchronization of time-delayed multi-agent networks with connected and directed topology is studied. Based on the correlative work about the agent synchronization, a modified model is presented, in which each communication receiver is distributed a delay 7. In addition, a proportional term k is introduced to modulate the delay range and to guarantee the synchronization of each agent. Two new parameters mentioned above are only correlative to the network topology, and a theorem about their connections is derived by both frequency domain method and geometric method. Finally, the theoretical result is illustrated by numerical simulations.
基金Supported by the National Natural Science Foundation of China (11161027)。
文摘Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60774039,60974024,and 61074089CityU Research Enhancement Fund 9360127,CityU SRG 7002355
文摘This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique, a newapproach is proposed to derive some new exponential synchronization criteria.The restriction that the control widthhas to be larger than the time delay is removed.This leads to a larger application scope for our method.Moreover, notranscendental equation is involved in the obtained result, which reduces the computational burden.Two examples aregiven to validate the theoretical results.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. CDJZR10 17 00 02)
文摘This paper proposes a nonlinear feedback control method to realize global exponential synchronization with channel time-delay between the Lfi system and Chen system, which are regarded as the drive system and the response system respectiveiy. Some effective observers are produced to identify the unknown parameters of the Lii system. Based on the Lyapunov stability theory and linear matrix inequality technique, some sufficient conditions of global exponential synchronization of the two chaotic systems are derived. Simulation results show the effectiveness and feasibility of the proposed controller.
基金Project supported by the National Natural Science Foundation of China (Grant No.70871056)the Six Talents Peak Foundation of Jiangsu Province,China
文摘In this paper, we investigate the impulsive synchronization between two coupled complex networks with time- delayed dynamical nodes. Based on the Lyapunov stability, the linear feedback control and the impulsive control theories, the linear feedback and the impulsive controllers are designed separately. By using the generalized Barbalat's lemma, the global asymptotic impulsive synchronization of the drive-response complex networks is derived and some corresponding sufficient conditions are also obtained. Numerical examples are presented to verify the effectiveness and the correctness of the synchronization criteria.
基金Supported by National Natural Science Foundation of China under Grant Nos.U1604146,U1404610,61473115,61203047Science and Technology Research Project in Henan Province under Grant Nos.152102210273,162102410024Foundation for the University Technological Innovative Talents of Henan Province under Grant No.18HASTIT019
文摘This paper investigates the mixed Ho~ and passive projective synchronization problem for fractional-order (FO) memristor-based neural networks. Our aim is to design a controller such that, though the unavoidable phenomena of time-delay and parameter uncertainty are fully considered, the resulting closed-loop system is asymptotically stable with a mixed H∞ and passive performance level. By combining active and adaptive control methods, a novel hybrid control strategy is designed, which can guarantee the robust stability of the closed-loop system and also ensure a mixed H∞ and passive performance level. Via the application of FO Lyapunov stability theory, the projective synchronization conditions are addressed in terms of linear matrix inequaiity techniques. Finally, two simulation examples are given to illustrate the effectiveness of the proposed method.
基金Project supported by the Science and Technology Support Program of Xingtai,China(Grant No.2019ZC054)。
文摘This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural network are investigated.Meanwhile,based on the complex-valued inequalities of fractional-order derivatives and the stability theory of fractional-order complex-valued systems,a new adaptive controller and new complex-valued update laws are proposed to construct a synchronization control model for fractional-order complex-valued chaotic neural networks.Finally,the numerical simulation results are presented to illustrate the effectiveness of the developed synchronization scheme.
基金supported by the National Natural Science Foundation of China(No.52174184)。
文摘This paper propose a comprehensive data-driven prediction framework based on machine learning methods to investigate the lag synchronization phenomenon in coupled chaotic systems,particularly in cases where accurate mathematical models are challenging to establish or where system equations remain unknown.The Long Short-Term Memory(LSTM)neural network is trained using time series acquired from the desynchronization system states,subsequently predicting the lag synchronization transition.In the experiments,we focus on the Lorenz system with time-varying delayed coupling,studying the effects of coupling coefficients and time delays on lag synchronization,respectively.The results indicate that with appropriate training,the machine learning model can adeptly predict the lag synchronization occurrence and transition.This study not only enhances our comprehension of complex network synchronization behaviors but also underscores the potential and practical applications of machine learning in exploring nonlinear dynamic systems.
基金Supported by the National Natural Science Foundation of China under Grant No. 60674059
文摘This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems.
基金supported by the National Natural Science Foundation of China under Grant 61977004.This support is gratefully acknowledged.
文摘This paper deals with the fixed-time adaptive time-varying matrix projective synchronization(ATVMPS)of different dimensional chaotic systems(DDCSs)with time delays and unknown parameters.Firstly,to estimate the unknown parameters,adaptive parameter updated laws are designed.Secondly,to realize the fixed-time ATVMPS of the time-delayed DDCSs,an adaptive delay-unrelated controller is designed,where time delays of chaotic systems are known or unknown.Thirdly,some simple fixed-time ATVMPS criteria are deduced,and the rigorous proof is provided by employing the inequality technique and Lyapunov theory.Furthermore,the settling time of fixed-time synchronization(Fix-TS)is obtained,which depends only on controller parameters and system parameters and is independent of the system’s initial states.Finally,simulation examples are presented to validate the theoretical analysis.
文摘Time-delay effects on synchronization features of delay-coupled slow-fast van der Pol systems are investigated in the present paper. The synchronization mechanism of “slow-manifold adjustment” is firstly described on the basis of geometric singular perturbation theory. Then, the impact of time delay on the structure of the slow manifold of synchronized system is obtained by using the method of stability switch, and thus, time-delay effects on synchronization features are stated. It is shown the time delay cannot qualitatively affect the synchronization mechanism, however, it can result in the drift of the optimal coupling strength.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12247153,T2293771,and 12247101)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LTGY24A050002)+3 种基金the Sichuan Science and Technology Program(Grant Nos.2024NSFSC1364 and 2023NSFSC1919)the Project of Huzhou Science and Technology Bureau(Grant No.2022YZ29)the UESTCYDRI research start-up(Grant No.U03210066)the New Cornerstone Science Foundation through the Xplorer Prize。
文摘Complex networks play a crucial role in the study of collective behavior,encompassing the analysis of dynamical properties and network topology.In real-world systems,higher-order interactions among multiple entities are widespread and significantly influence collective dynamics.Here,we extend the synchronization alignment function framework to hypergraphs of arbitrary order by leveraging the multi-order Laplacian matrix to encode higher-order interactions.Our findings reveal that the upper bound of synchronous behavior is determined by the maximum eigenvalue of the multi-order Laplacian matrix.Furthermore,we decompose the contribution of each hyperedge to this eigenvalue and utilize it as a basis for designing an eigenvalue-based topology modification algorithm.This algorithm effectively enhances the upper bound of synchronous behavior without altering the total number of higher-order interactions.Our study provides new insights into dynamical optimization and topology tuning in hypergraphs,advancing the understanding of the interplay between higher-order interactions and collective dynamics.
基金Hong Kong Research Grants Council under the GRF(9043664).
文摘This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Furthermore,it briefly reviews the notion of higher-order network topologies and shows their promising potential in application to evaluating the optimality of network synchronizability.