期刊文献+

Anticipating Lag Synchronization Based on Machine Learning

基于机器学习的预测滞后同步研究
在线阅读 下载PDF
导出
摘要 This paper propose a comprehensive data-driven prediction framework based on machine learning methods to investigate the lag synchronization phenomenon in coupled chaotic systems,particularly in cases where accurate mathematical models are challenging to establish or where system equations remain unknown.The Long Short-Term Memory(LSTM)neural network is trained using time series acquired from the desynchronization system states,subsequently predicting the lag synchronization transition.In the experiments,we focus on the Lorenz system with time-varying delayed coupling,studying the effects of coupling coefficients and time delays on lag synchronization,respectively.The results indicate that with appropriate training,the machine learning model can adeptly predict the lag synchronization occurrence and transition.This study not only enhances our comprehension of complex network synchronization behaviors but also underscores the potential and practical applications of machine learning in exploring nonlinear dynamic systems. 本文对于难以建立精确数学模型的耦合混沌系统,基于机器学习方法提出一个完全由数据驱动的预测框架,研究在系统方程未知情况下耦合混沌系统的滞后同步现象,利用系统在未同步状态下的时间序列数据训练LSTM神经网络,进而预测滞后同步转迁.在实验中,特别关注时变时滞耦合Lorenz系统,分别研究其耦合系数和时滞对滞后同步的影响.结果表明,经过适当训练的机器学习模型能够有效地预测滞后同步的发生及其转变过程.该研究不仅拓展了对复杂网络同步行为的理解,还展示了机器学习在探索非线性动态系统中的潜力和应用价值.
作者 WU Yongqing BAO Xingxing 吴永庆;包星星(辽宁工程技术大学理学院,阜新123000;辽宁工程技术大学软件学院,葫芦岛125105)
出处 《数学理论与应用》 2025年第1期115-126,共12页 Mathematical Theory and Applications
基金 supported by the National Natural Science Foundation of China(No.52174184)。
关键词 Coupled chaotic system LSTM neural network Anticipating synchronization Lag synchronization 耦合混沌系统 LSTM神经网络 预测同步 滞后同步
  • 相关文献

参考文献4

二级参考文献37

  • 1刘夫云.复杂网络中的完全子图搜索算法研究[J].仪器仪表学报,2006,27(z1):925-927. 被引量:3
  • 2张培培,侯威,何阅,何大韧.淮扬菜系的网络描述[J].复杂系统与复杂性科学,2005,2(2):49-53. 被引量:11
  • 3C. Huygen( Hugenii), Horoloquim oscilatorium[ M ]. Parisiis : Aqud F. Muguct, 1673.
  • 4X. Lou, B. Cui, Asymptotic synchronization of a class of neural networks with reaction - diffusion terms and time - varying delays [ J ]. Computers and Mathematics with Applications, 2006, 52 (6 - 7) : 897 - 904.
  • 5Y. Wang, J. Cao, Synchronization of a class of delayed neural networks with reaction - diffusion terms [ J ]. Physics Letters A, 2007, 369(3) : 201 -211.
  • 6S. Li, H. Yang, X. Lou, Adaptive exponential synchronization of delayed neural networks with reaction - diffusion terms [ J ]. Chaos, Solitons & Fractals, 2009, 40 (2) : 930 - 939.
  • 7D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order(3rd Edition)[ M ]. Berlin: Springer - verlag, 2001.
  • 8Watts D. J. and Strogatz S. H. , Collective dynamics of mall -word'networks[ J ]. Nature, 1998, 393:440 - 442.
  • 9Barabasi A. L. and Albert R. , Emergence of scaling in random networks[J]. Science, 1999, 286(5439) : 509 -512.
  • 10Hajra K. B. and Sen P. , Aging in citation network[ J ]. Physica A: Statistical Mechanics and its Applications, 2005, 346 ( 1 - 2) : 44 - 48.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部