For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging ...For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward.展开更多
To achieve high power rating and low current harmonics of motor drive,this paper develops a dual three-phase open-winding permanent magnet synchronous motor(DTP-OW-PMSM)drive with the DC-link voltage ratio of 2:1:1.Ba...To achieve high power rating and low current harmonics of motor drive,this paper develops a dual three-phase open-winding permanent magnet synchronous motor(DTP-OW-PMSM)drive with the DC-link voltage ratio of 2:1:1.Based on this topology,this paper proposes a DTP four-level space vector pulse width modulation(DTP-FL SVPWM)strategy.First,two identical three-phase four-level space vector diagrams are constructed and divided.Then,three adjacent vectors nearest to the reference vector in each diagram are selected for the vector synthesis to guarantee high modulation precision and low switching frequency.Furthermore,to avoid the modulation error caused by the voltage deviation,the proposed DTP-FL SVPWM strategy is further optimized through unified duty ratio compensation(UDRC).The effectiveness of the proposed strategy is verified through experiments.展开更多
The dual three-phase PMSM(DTP-PMSM)drives have received wide attention at high-power high-efficiency applications due to their merits of high output current ability and copper-loss-free field excitation.Meanwhile,the ...The dual three-phase PMSM(DTP-PMSM)drives have received wide attention at high-power high-efficiency applications due to their merits of high output current ability and copper-loss-free field excitation.Meanwhile,the DTPPMSM drive provides higher fault-tolerant capability for highreliability applications,e.g.,pumps and actuators in aircraft.For high-power drives with limited switching frequencies and highspeed drives with large fundamental frequencies,the ratio of switching frequency to fundamental frequency,i.e.,the carrier ratio,is usually below 15,which would significantly degrade the control performance.The purpose of this paper is to review the recent work on the modulation and control schemes for improving the operation performance of DTP-PMSM drives with low carrier ratios.Specifically,three categories of methods,i.e.,the space vector modulation based control,the model predictive control(MPC),and the optimized pulse pattern(OPP)based control are reviewed with principles and performance.In addition,brief discussions regarding the comparison and future trends are presented for low-carrier-ratio(LCR)modulation and control schemes of DTP-PMSM drives.展开更多
The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inve...The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inverter works under more complicated conditions with different principles for special winding back EMFs, position signals of hall sensors, and the given mode of switches. The ideal steady driving principles of the inverter for the motor are given. The working state with asymmetric winding back EMFs, inaccurate position signals of hall sensors, and the changing input voltage is analyzed. Finally, experimental results vertify that the given anal ysis is correct.展开更多
The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control str...The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control strategy is presented, which is composed of an inner loop of capacitor current feedforward, an outer loop of grid-current feedforward and feedforward of grid voltage. The limitations and steps of parameters design for LCL filter are analyzed. Meanwhile, the capacitor current loop is employed to damp the resonant peak caused by the LCL filter and enhance the stability. The properties of different controllers are analyzed and compared, thereinto quasi-proportional-rasonant (PR) controller realizes the control with zero steady-state error of AC variables in static coordinates. In order to suppress the current distortion effected by the background harmonics in grid voltage, the feed-forward function is calculated for the grid-connected inverter with an LCL filter. After simplifying the block diagram, a full-feedforward control strategy for grid voltage is proposed. Theoretical analysis and Matlab/Simulink simulation results show that the proposed method has the advantages of high steady accuracy, fast dynamic response and strong robustness.展开更多
The new three-phase 5-level current-source inverter (CSI) proposed in this paper was developed by connecting three separate single-phase 5-level CSIs in series, and its operational principle was analyzed. There are tw...The new three-phase 5-level current-source inverter (CSI) proposed in this paper was developed by connecting three separate single-phase 5-level CSIs in series, and its operational principle was analyzed. There are two major problems existing in current-source multilevel inverters, one is the complex PWM control method (2-logic to 3-logic conversion), and the other is the problem of current-unbalance between different levels. A simple current-balance control method via DC current feedback is applied in each single-phase 5-level CSI cell to implement the current-balance control between different levels. And to reduce the output current harmonics, POD PWM control technique was used. Simulation and experimental results showed that this new three-phase 5-level CSI topology operates correctly.展开更多
Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified M...Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified MPC for dual three-phase permanent magnet synchronous motor(DTPPMSM).The novelty of this method is the decomposition of prediction function and the switching optimization algorithm.Based on the decomposition of prediction function,the current increment vector is obtained,which is employed to select the optimal voltage vector and calculate the duty cycle.Then,the computation burden can be reduced and the current tracking performance can be maintained.Additionally,the switching optimization algorithm was proposed to optimize the voltage vector action sequence,which results in lower switching frequency.Hence,this control strategy can not only reduce the computation burden and switching frequency,but also maintain the steady-state and dynamic performance.The simulation and experimental results are presented to verify the feasibility of the proposed strategy.展开更多
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
Instabilities in grid-connected inverters can arise from a number of sources, including mismatched parameters, grid impedance, faults, and feedback delays. Park’s transformation provides accurate control over reactiv...Instabilities in grid-connected inverters can arise from a number of sources, including mismatched parameters, grid impedance, faults, and feedback delays. Park’s transformation provides accurate control over reactive and active (real) power. This enhances the overall efficiency of the system by enabling operators to control reactive power compensation and optimize energy flow. In dynamic settings, this guarantees greater system stability and faster response times. The current paper aims to improve the grid system by utilizing the dq0 controller. The current work focuses on the analysis based on simulations and theory, where the state space equation serves as the basis for dq-axis current decoupling. A MATLAB platform was used to simulate the complete system. TDH values of 2.45%, or less than 5%, in the given results are acceptable. The suggested controller was hence appropriate for grid system applications.展开更多
In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response w...In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up, the starting voltage prediction control and the current feed-forward control are proposed and used, which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method.展开更多
This paper presents a new inverter based on three-phase Boost/Buck-boost single-stage inverter. The basic configuration of the new topology and their fundamental principle are firstly introduced, the method of design ...This paper presents a new inverter based on three-phase Boost/Buck-boost single-stage inverter. The basic configuration of the new topology and their fundamental principle are firstly introduced, the method of design double-loop controller and sliding mode controller are clarified, analyzed and compared in the following. Finally the validity and feasibility of the new topology are tested by simulation. The results indicate that regulation of the voltage transfer ratio and output frequency can be realized optionally by the new converter, furthermore the harmonic distortion of waveform is low. So the inherent drawback of low voltage transfer ratio of traditional converter is effectively settled. This study may provide inspiration for further engineering application.展开更多
Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth le...Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth leg of the three-phase four-leg inverter so the three-phase four-leg inverter can work with unbalanced load. This paper presents a Z-source three-phase four-leg inverter which combines a Z-source network with three-phase four-leg inverter. The circuit uses simple SPWM modulation technique and the fourth bridge arm uses fully compensated control method. The inverter can maintain a symmetrical output voltage when the proposed scheme under the unbalanced load.展开更多
Complementary inverter is the basic unit for logic circuits,but the inverters based on full oxide thin-film transistors(TFTs)are still very limited.The next challenge is to realize complementary inverters using homoge...Complementary inverter is the basic unit for logic circuits,but the inverters based on full oxide thin-film transistors(TFTs)are still very limited.The next challenge is to realize complementary inverters using homogeneous oxide semiconduc-tors.Herein,we propose the design of complementary inverter based on full ZnO TFTs.Li-N dual-doped ZnO(ZnO:(Li,N))acts as the p-type channel and Al-doped ZnO(ZnO:Al)serves as the n-type channel for fabrication of TFTs,and then the complemen-tary inverter is produced with p-and n-type ZnO TFTs.The homogeneous ZnO-based complementary inverter has typical volt-age transfer characteristics with the voltage gain of 13.34 at the supply voltage of 40 V.This work may open the door for the development of oxide complementary inverters for logic circuits.展开更多
With the development of high-frequency and highvoltagetraction machines(TM)incorporating hairpin windings(HW)and SiC inverters for electric vehicles(EV),both theinterturn voltage stress and temperature within HW are r...With the development of high-frequency and highvoltagetraction machines(TM)incorporating hairpin windings(HW)and SiC inverters for electric vehicles(EV),both theinterturn voltage stress and temperature within HW are rising,increasing the risk of partial discharge(PD),and presentingsignificant challenges to insulation safety.Therefore,this paperaddresses this issue and proposes potential solutions.Firstly,thepaper examines an 8-pole,48-slot,6-layer HW TM to highlightthe unique characteristics of this winding structure,and explainsthe uneven distribution of interturn voltage stress andtemperature.Subsequently,a high-frequency equivalent circuitmodel of the HW TM prototype is developed.The error ofsimulation and experiment is only 5.7%,which proves theaccuracy of the model.Then,an improved HW scheme isproposed to lower the maximum voltage stress by 29.3%.Furthermore,the temperature distribution of HW TM isanalyzed to facilitate a detailed examination of the impact oftemperature on insulation PD.Finally,the partial dischargeinception voltage(PDIV)of interturn insulation,consideringtemperature effects,is calculated and verified throughexperiment.The paper proposes a reliability-oriented designmethod and process for HW TM.It demonstrates that thereliability-oriented design can achieve PD-free performance inthe design stage of HW.展开更多
ZVS(zero voltage switching) PWM(pulse width modulation) inverters have attracted much attention recently. The basic idea is to use ZVS circuit as the main circuit of inverter resonance at the beginning of every ca...ZVS(zero voltage switching) PWM(pulse width modulation) inverters have attracted much attention recently. The basic idea is to use ZVS circuit as the main circuit of inverter resonance at the beginning of every carrier period so that each power device can commutate when voltage of the main circuit's DC bus line is zero. To ensure the resonant circuit to operate properly, sawtooth with alternate slope (positive or negative) is used as carrier. But the time of zero voltage vectors with such PWM pattern is greatly different from traditional hard-switching PWM pattern. This paper discusses the locus of flux linkage under soft-switching PWM pattern by using space voltage vector. It is pointed out that, under the hard-switching PWM pattern, speed of flux linkage is adjusted by zero space voltage vector. When soft-switching PWM pattern is used, however, effective time of space voltage vector varies considerably, sometimes even without zero space voltage vector. Therefore non-zero space voltage vector has been used to make the speed of flux linkage locus equal to that of hard-switching PWM pattern. The cause of current distortion in soft-switching PWM inverters is also discussed. Based on the flux linkage locus circle, corresponding compensation methods are proposed. Experimental results show that the described method can effectively improve output current waveform of inverter.展开更多
This paper presents the design and implementation of a 3 kVA three-phase active T-type neutral-point clamped (NPC) inverter with GaN power devices for low-voltage microgrids. The designed inverter is used in a battery...This paper presents the design and implementation of a 3 kVA three-phase active T-type neutral-point clamped (NPC) inverter with GaN power devices for low-voltage microgrids. The designed inverter is used in a battery-based energy system (BESS) for power conversion optimization in applications to low-voltage microgrids. A modular design method has been developed for the design and implementation of the AT-NPC inverter. Experimental verification has been carried out based on a 3-kW three-phase T-Type NPC grid-connected inverter. FPGA based digital control technique has been developed for the current control of the three-level three-phase grid inverter. A maximum efficiency of 98.49% has been achieved within a load range from 50% to 75%.展开更多
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
This paper proposes a new Predictive Direct Power Control(P-DPC) solution for three-phase grid-connected inverters, which combines direct power control strategy with the predictive control strategy and space vector pu...This paper proposes a new Predictive Direct Power Control(P-DPC) solution for three-phase grid-connected inverters, which combines direct power control strategy with the predictive control strategy and space vector pulse width modulation(SVPWM), obtaining both high transient performance and a constant switching frequency. This control solution can achieve decoupling control for active and reactive power and an adjustable power factor. Meanwhile, the grid-connected current can approximately be sinusoidal. The feasibility and advantages of the control strategy are verified by the simulation and experiment compared with another existing P-DPC.展开更多
This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (f...This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (finite set-model predictive control) strategy for a three-phase VSI for RES (renewable energy systems) applications is implemented. The renewable energy systems model is used in this paper to investigate the system performance when power is supplied to resistive-inductive load. With three different cases, the evaluation of the system is done. Firstly, the robustness of control strategy under variable DC-Link is done in terms of the THD (total harmonic distortion). Secondly, with one prediction step, the system performance is tested using different sampling time, and lastly, the dynamic response of the system with step change in the amplitude of the reference is investigated. The simulations and result analyses are carried out using Matlab/Simulink to test the effectiveness and robustness of FS-MPC for two-level VSI with AC filter for resistive-inductive load supplied by a renewable energy system.展开更多
基金funded by Tsinghua University-Weichai Power Intelligent Manufacturing Joint Research Institute (WCDL-GH-2022-0131)。
文摘For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward.
基金supported in part by the National Natural Science Foundation of China under Grant 62303333in part by the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone under Grant HZQB-KCZYB-2020083.
文摘To achieve high power rating and low current harmonics of motor drive,this paper develops a dual three-phase open-winding permanent magnet synchronous motor(DTP-OW-PMSM)drive with the DC-link voltage ratio of 2:1:1.Based on this topology,this paper proposes a DTP four-level space vector pulse width modulation(DTP-FL SVPWM)strategy.First,two identical three-phase four-level space vector diagrams are constructed and divided.Then,three adjacent vectors nearest to the reference vector in each diagram are selected for the vector synthesis to guarantee high modulation precision and low switching frequency.Furthermore,to avoid the modulation error caused by the voltage deviation,the proposed DTP-FL SVPWM strategy is further optimized through unified duty ratio compensation(UDRC).The effectiveness of the proposed strategy is verified through experiments.
基金supported by the National Key Research and Development Program of China under the grant of 2022YFB3403100。
文摘The dual three-phase PMSM(DTP-PMSM)drives have received wide attention at high-power high-efficiency applications due to their merits of high output current ability and copper-loss-free field excitation.Meanwhile,the DTPPMSM drive provides higher fault-tolerant capability for highreliability applications,e.g.,pumps and actuators in aircraft.For high-power drives with limited switching frequencies and highspeed drives with large fundamental frequencies,the ratio of switching frequency to fundamental frequency,i.e.,the carrier ratio,is usually below 15,which would significantly degrade the control performance.The purpose of this paper is to review the recent work on the modulation and control schemes for improving the operation performance of DTP-PMSM drives with low carrier ratios.Specifically,three categories of methods,i.e.,the space vector modulation based control,the model predictive control(MPC),and the optimized pulse pattern(OPP)based control are reviewed with principles and performance.In addition,brief discussions regarding the comparison and future trends are presented for low-carrier-ratio(LCR)modulation and control schemes of DTP-PMSM drives.
文摘The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inverter works under more complicated conditions with different principles for special winding back EMFs, position signals of hall sensors, and the given mode of switches. The ideal steady driving principles of the inverter for the motor are given. The working state with asymmetric winding back EMFs, inaccurate position signals of hall sensors, and the changing input voltage is analyzed. Finally, experimental results vertify that the given anal ysis is correct.
基金National Natural Science Foundation of China(No.51767014)China Railway Corporation of Science and Technology Research and Development Projects(No.2016J010-C)
文摘The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control strategy is presented, which is composed of an inner loop of capacitor current feedforward, an outer loop of grid-current feedforward and feedforward of grid voltage. The limitations and steps of parameters design for LCL filter are analyzed. Meanwhile, the capacitor current loop is employed to damp the resonant peak caused by the LCL filter and enhance the stability. The properties of different controllers are analyzed and compared, thereinto quasi-proportional-rasonant (PR) controller realizes the control with zero steady-state error of AC variables in static coordinates. In order to suppress the current distortion effected by the background harmonics in grid voltage, the feed-forward function is calculated for the grid-connected inverter with an LCL filter. After simplifying the block diagram, a full-feedforward control strategy for grid voltage is proposed. Theoretical analysis and Matlab/Simulink simulation results show that the proposed method has the advantages of high steady accuracy, fast dynamic response and strong robustness.
基金Project (No. 50477033) supported by the National Natural Science Foundation of China
文摘The new three-phase 5-level current-source inverter (CSI) proposed in this paper was developed by connecting three separate single-phase 5-level CSIs in series, and its operational principle was analyzed. There are two major problems existing in current-source multilevel inverters, one is the complex PWM control method (2-logic to 3-logic conversion), and the other is the problem of current-unbalance between different levels. A simple current-balance control method via DC current feedback is applied in each single-phase 5-level CSI cell to implement the current-balance control between different levels. And to reduce the output current harmonics, POD PWM control technique was used. Simulation and experimental results showed that this new three-phase 5-level CSI topology operates correctly.
基金supported by the National Natural Science Foundation of China under Grant 5227705。
文摘Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified MPC for dual three-phase permanent magnet synchronous motor(DTPPMSM).The novelty of this method is the decomposition of prediction function and the switching optimization algorithm.Based on the decomposition of prediction function,the current increment vector is obtained,which is employed to select the optimal voltage vector and calculate the duty cycle.Then,the computation burden can be reduced and the current tracking performance can be maintained.Additionally,the switching optimization algorithm was proposed to optimize the voltage vector action sequence,which results in lower switching frequency.Hence,this control strategy can not only reduce the computation burden and switching frequency,but also maintain the steady-state and dynamic performance.The simulation and experimental results are presented to verify the feasibility of the proposed strategy.
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
文摘Instabilities in grid-connected inverters can arise from a number of sources, including mismatched parameters, grid impedance, faults, and feedback delays. Park’s transformation provides accurate control over reactive and active (real) power. This enhances the overall efficiency of the system by enabling operators to control reactive power compensation and optimize energy flow. In dynamic settings, this guarantees greater system stability and faster response times. The current paper aims to improve the grid system by utilizing the dq0 controller. The current work focuses on the analysis based on simulations and theory, where the state space equation serves as the basis for dq-axis current decoupling. A MATLAB platform was used to simulate the complete system. TDH values of 2.45%, or less than 5%, in the given results are acceptable. The suggested controller was hence appropriate for grid system applications.
基金supported by the Shanghai Education Committee Scientific Research Subsidization (Grant No.05AZ30)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060280018)
文摘In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up, the starting voltage prediction control and the current feed-forward control are proposed and used, which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method.
文摘This paper presents a new inverter based on three-phase Boost/Buck-boost single-stage inverter. The basic configuration of the new topology and their fundamental principle are firstly introduced, the method of design double-loop controller and sliding mode controller are clarified, analyzed and compared in the following. Finally the validity and feasibility of the new topology are tested by simulation. The results indicate that regulation of the voltage transfer ratio and output frequency can be realized optionally by the new converter, furthermore the harmonic distortion of waveform is low. So the inherent drawback of low voltage transfer ratio of traditional converter is effectively settled. This study may provide inspiration for further engineering application.
文摘Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth leg of the three-phase four-leg inverter so the three-phase four-leg inverter can work with unbalanced load. This paper presents a Z-source three-phase four-leg inverter which combines a Z-source network with three-phase four-leg inverter. The circuit uses simple SPWM modulation technique and the fourth bridge arm uses fully compensated control method. The inverter can maintain a symmetrical output voltage when the proposed scheme under the unbalanced load.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LZ24E020001).
文摘Complementary inverter is the basic unit for logic circuits,but the inverters based on full oxide thin-film transistors(TFTs)are still very limited.The next challenge is to realize complementary inverters using homogeneous oxide semiconduc-tors.Herein,we propose the design of complementary inverter based on full ZnO TFTs.Li-N dual-doped ZnO(ZnO:(Li,N))acts as the p-type channel and Al-doped ZnO(ZnO:Al)serves as the n-type channel for fabrication of TFTs,and then the complemen-tary inverter is produced with p-and n-type ZnO TFTs.The homogeneous ZnO-based complementary inverter has typical volt-age transfer characteristics with the voltage gain of 13.34 at the supply voltage of 40 V.This work may open the door for the development of oxide complementary inverters for logic circuits.
基金supported by the Project of National Natural Science Foundation of China under Grant 52407060 and 52422704supported by Liaoning Province science and technology plan doctoral project under Grant 2023-BSBA-255.
文摘With the development of high-frequency and highvoltagetraction machines(TM)incorporating hairpin windings(HW)and SiC inverters for electric vehicles(EV),both theinterturn voltage stress and temperature within HW are rising,increasing the risk of partial discharge(PD),and presentingsignificant challenges to insulation safety.Therefore,this paperaddresses this issue and proposes potential solutions.Firstly,thepaper examines an 8-pole,48-slot,6-layer HW TM to highlightthe unique characteristics of this winding structure,and explainsthe uneven distribution of interturn voltage stress andtemperature.Subsequently,a high-frequency equivalent circuitmodel of the HW TM prototype is developed.The error ofsimulation and experiment is only 5.7%,which proves theaccuracy of the model.Then,an improved HW scheme isproposed to lower the maximum voltage stress by 29.3%.Furthermore,the temperature distribution of HW TM isanalyzed to facilitate a detailed examination of the impact oftemperature on insulation PD.Finally,the partial dischargeinception voltage(PDIV)of interturn insulation,consideringtemperature effects,is calculated and verified throughexperiment.The paper proposes a reliability-oriented designmethod and process for HW TM.It demonstrates that thereliability-oriented design can achieve PD-free performance inthe design stage of HW.
基金Project supported by Shanghai Leading AcademicDisciplineProject (Grant No .T0103) ,and Shanghai Post Doctoral ScientificResearch Project (Grant No .05R214122)
文摘ZVS(zero voltage switching) PWM(pulse width modulation) inverters have attracted much attention recently. The basic idea is to use ZVS circuit as the main circuit of inverter resonance at the beginning of every carrier period so that each power device can commutate when voltage of the main circuit's DC bus line is zero. To ensure the resonant circuit to operate properly, sawtooth with alternate slope (positive or negative) is used as carrier. But the time of zero voltage vectors with such PWM pattern is greatly different from traditional hard-switching PWM pattern. This paper discusses the locus of flux linkage under soft-switching PWM pattern by using space voltage vector. It is pointed out that, under the hard-switching PWM pattern, speed of flux linkage is adjusted by zero space voltage vector. When soft-switching PWM pattern is used, however, effective time of space voltage vector varies considerably, sometimes even without zero space voltage vector. Therefore non-zero space voltage vector has been used to make the speed of flux linkage locus equal to that of hard-switching PWM pattern. The cause of current distortion in soft-switching PWM inverters is also discussed. Based on the flux linkage locus circle, corresponding compensation methods are proposed. Experimental results show that the described method can effectively improve output current waveform of inverter.
文摘This paper presents the design and implementation of a 3 kVA three-phase active T-type neutral-point clamped (NPC) inverter with GaN power devices for low-voltage microgrids. The designed inverter is used in a battery-based energy system (BESS) for power conversion optimization in applications to low-voltage microgrids. A modular design method has been developed for the design and implementation of the AT-NPC inverter. Experimental verification has been carried out based on a 3-kW three-phase T-Type NPC grid-connected inverter. FPGA based digital control technique has been developed for the current control of the three-level three-phase grid inverter. A maximum efficiency of 98.49% has been achieved within a load range from 50% to 75%.
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
基金supported by the national 863 program (2011AA050204)
文摘This paper proposes a new Predictive Direct Power Control(P-DPC) solution for three-phase grid-connected inverters, which combines direct power control strategy with the predictive control strategy and space vector pulse width modulation(SVPWM), obtaining both high transient performance and a constant switching frequency. This control solution can achieve decoupling control for active and reactive power and an adjustable power factor. Meanwhile, the grid-connected current can approximately be sinusoidal. The feasibility and advantages of the control strategy are verified by the simulation and experiment compared with another existing P-DPC.
文摘This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (finite set-model predictive control) strategy for a three-phase VSI for RES (renewable energy systems) applications is implemented. The renewable energy systems model is used in this paper to investigate the system performance when power is supplied to resistive-inductive load. With three different cases, the evaluation of the system is done. Firstly, the robustness of control strategy under variable DC-Link is done in terms of the THD (total harmonic distortion). Secondly, with one prediction step, the system performance is tested using different sampling time, and lastly, the dynamic response of the system with step change in the amplitude of the reference is investigated. The simulations and result analyses are carried out using Matlab/Simulink to test the effectiveness and robustness of FS-MPC for two-level VSI with AC filter for resistive-inductive load supplied by a renewable energy system.