Fe-Mo functionally graded materials(FGMs)with different composition-change rates from 100%304 stainless steel to 100%Mo along the composition gradient direction were prepared by electron beam-directed energy depositio...Fe-Mo functionally graded materials(FGMs)with different composition-change rates from 100%304 stainless steel to 100%Mo along the composition gradient direction were prepared by electron beam-directed energy deposition(EB-DED)technique,including three samples with composition mutation of 100%,composition change rate of 10%and 30%.Results show that the composition-change rate significantly affects the microstructure and mechanical properties of the samples.In the sample with abrupt change of composition,the sharp shift in composition between 304 stainless steel and Mo leads to a great difference in the microstructure and hardness near the interface between the two materials.With the increase in the number of gradient layers,the composition changes continuously along the direction of deposition height,and the microstructure morphology shows a smooth transition from 304 stainless steel to Mo,which is gradually transformed from columnar crystal to dendritic crystal.Elements Fe,Mo,and other major elements transform linearly along the gradient direction,with sufficient interlayer diffusion between the deposited layers,leading to good metallurgical bonding.The smaller the change in composition gradient,the greater the microhardness value along the deposition direction.When the composition gradient is 10%,the gradient layer exhibits higher hardness(940 HV)and excellent resistance to surface abrasion,and the overall compressive properties of the samples are better,with the compressive fracture stress in the top region reaching 750.05±14 MPa.展开更多
Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))bat...Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.展开更多
Osteoarthritis(OA)is a widespread joint disorder that has emerged as a significant global healthcare challenge.Over the past decade,advancements in material science and medicine have transformed the development of fun...Osteoarthritis(OA)is a widespread joint disorder that has emerged as a significant global healthcare challenge.Over the past decade,advancements in material science and medicine have transformed the development of functional materials aimed at addressing the complex issues associated with the diagnosis and treatment of OA.This review synthesizes the latest advancements in various types of intelligent micro-structured materials and their design principles.By examining the exceptional structural characteristics of materials with unique properties such as tailored attributes,controllability,biocompatibility,and bioactivity,we emphasize the design of composite materials for precise and early intervention in OA.This is achieved through advanced imaging techniques and machine learning-based analysis,alongside the customization of micro-structured material properties to align with the biological and mechanical requirements of specific joint tissues.This review offers an in-depth analysis of the transformative potential of advanced technologies and artificial intelligence(AI)in the development of innovative solutions for OA diagnosis and therapy.It aims to inform future research and inspire the creation of next-generation smart materials with unprecedented performance,thereby enhancing our capabilities in the prevention and treatment of OA.展开更多
Compared with other metal anodes such as lithium,sodium and potassium,carbon materials exhibit low redox potential,enhanced safety,significant low-cost advantages and decent electrochemical performance for large-scale...Compared with other metal anodes such as lithium,sodium and potassium,carbon materials exhibit low redox potential,enhanced safety,significant low-cost advantages and decent electrochemical performance for large-scale metal-ion batteries and supercapacitors.Among the various carbon precursors,low-cost coal and coal derivatives are preferred due to their unique carbon structure with high carbon content.A variety of coal-derived carbon materials have been constructed using different strategies and have been investigated for diverse electrochemical energy storage due to their specific microstructures.In the short term,the electrochemical performance of coal-derived carbon materials is normal.However,it is imperative to develop low-cost and high-performance coal-derived carbon materials in order to reduce the cost of energy storage systems.Therefore,this review focuses on the microstructure modulation strategies for coal-based derived carbon materials to further enhance their electrochemical performance through heteroatom doping,defect engineering,interlayer engineering,crystallinity regulation,pore regulation and multi-strategy synergy.In addition,this review summarizes the enhancement mechanisms for modification strategies and analyses their limitations.Furthermore,current challenges and future research directions for the development of high-performance coal-based derived carbon materials are proposed in this review.It is anticipated that through novel modification strategies,coal-derived carbon materials will exhibit electrochemical performance comparable to that of carbon materials prepared from other precursors.展开更多
Transforming materials with evolving microstructures is one of the most important classes of smart materials that have many potential technological applications, and an unconventional phase field approach based on the...Transforming materials with evolving microstructures is one of the most important classes of smart materials that have many potential technological applications, and an unconventional phase field approach based on the characteristic functions of transforming variants has been developed to simulate the formation and evolution of their microstructures. This approach is advantageous in its explicit material symmetry and energy well structure, minimal number of ma- terial coefficients, and easiness in coupling multiple physical processes and order parameters, and has been applied successfully to study the microstructures and macroscopic prop- erties of shape memory alloys, ferroelectrics, ferromagnetic shape memory alloys, and multiferroic magnetoelectric crys- tals and films with increased complexity. In this topical re- view, the formulation of this unconventional phase field approach will be introduced in details, and its applications to various transforming materials will be discussed. Some ex- amples of specific microstructures will also be presented.展开更多
Developments of soft network materials with rationally distributed wavy microstructures have enabled many promising applications in bio-integrated electronic devices,due to their abilities to reproduce precisely nonli...Developments of soft network materials with rationally distributed wavy microstructures have enabled many promising applications in bio-integrated electronic devices,due to their abilities to reproduce precisely nonlinear mechanical properties of human tissues/organs.In practical applications,the soft network materials usually serve as the encapsulation layer and/or substrate of bio-integrated electronic devices,where deterministic holes can be utilized to accommodate hard chips,thereby increasing the filling ratio of the device system.Therefore,it is essential to understand how the hole-type imperfection affects the stretchability of soft network materialswith various geometric constructions.Thiswork presents a systematic investigation of the imperfection sensitivity of mechanical properties in soft network materials consisting of horseshoe microstructures,through combined computational and experimental studies.A factor of imperfection insensitivity of stretchability is introduced to quantify the influence of hole imperfections,as compared to the case of perfect soft network materials.Such factor is shown to have different dependences on the arc angle and normalized width of horseshoe microstructures for triangular network materials.The soft triangular and Kagome network materials,especially with the arc angle in the range of(30?,60?),are found to be much more imperfection insensitive than corresponding traditional lattice materials with straight microstructures.Differently,the soft honeycomb network materials are not as imperfection insensitive as traditional honeycomb lattice materials.展开更多
The characterization of microstructure for three kinds of typical low dimensional materials,such as ultrafine particle(zero- dimension),whisker(one- dimension)and thin film(two-dimensions),has been carried out.The met...The characterization of microstructure for three kinds of typical low dimensional materials,such as ultrafine particle(zero- dimension),whisker(one- dimension)and thin film(two-dimensions),has been carried out.The methods and criteria for the characterization are investigated and introduced.Some interesting results of the characterization are reported.展开更多
The explicit representations for tensorial Fourier expansion of 3_D crystal orientation distribution functions (CODFs) are established. In comparison with that the coefficients in the mth term of the Fourier expansion...The explicit representations for tensorial Fourier expansion of 3_D crystal orientation distribution functions (CODFs) are established. In comparison with that the coefficients in the mth term of the Fourier expansion of a 3_D ODF make up just a single irreducible mth_order tensor, the coefficients in the mth term of the Fourier expansion of a 3_D CODF constitute generally so many as 2m+1 irreducible mth_order tensors. Therefore, the restricted forms of tensorial Fourier expansions of 3_D CODFs imposed by various micro_ and macro_scopic symmetries are further established, and it is shown that in most cases of symmetry the restricted forms of tensorial Fourier expansions of 3_D CODFs contain remarkably reduced numbers of mth_order irreducible tensors than the number 2m+1 . These results are based on the restricted forms of irreducible tensors imposed by various point_group symmetries, which are also thoroughly investigated in the present part in both 2_ and 3_D spaces.展开更多
In this two_part paper, a thorough investigation is made on Fourier expansions with irreducible tensorial coefficients for orientation distribution functions (ODFs) and crystal orientation distribution functions (CODF...In this two_part paper, a thorough investigation is made on Fourier expansions with irreducible tensorial coefficients for orientation distribution functions (ODFs) and crystal orientation distribution functions (CODFs), which are scalar functions defined on the unit sphere and the rotation group, respectively. Recently it has been becoming clearer and clearer that concepts of ODF and CODF play a dominant role in various micromechanically_based approaches to mechanical and physical properties of heterogeneous materials. The theory of group representations shows that a square integrable ODF can be expanded as an absolutely convergent Fourier series of spherical harmonics and these spherical harmonics can further be expressed in terms of irreducible tensors. The fundamental importance of such irreducible tensorial coefficients is that they characterize the macroscopic or overall effect of the orientation distribution of the size, shape, phase, position of the material constitutions and defects. In Part (Ⅰ), the investigation about the irreducible tensorial Fourier expansions of ODFs defined on the N_dimensional (N_D) unit sphere is carried out. Attention is particularly paid to constructing simple expressions for 2_ and 3_D irreducible tensors of any orders in accordance with the convenience of arriving at their restricted forms imposed by various point_group (the synonym of subgroup of the full orthogonal group) symmetries. In the continued work -Part (Ⅱ), the explicit expression for the irreducible tensorial expansions of CODFs is established. The restricted forms of irreducible tensors and irreducible tensorial Fourier expansions of ODFs and CODFs imposed by various point_group symmetries are derived.展开更多
This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstru...This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information.The microstructures under consideration can be classified into three categories:a medium-dense microstructure,a dense microstructure consisting of one-sized particles,and a dense microstructure consisting of two-sized particles.Subsequently,the Cosserat elastoplastic model,along with its finite element formulation,is derived using the extended Drucker-Prager yield criteria.To investigate failure behaviors,numerical simulations of granular materials with different microstructures are conducted using the ABAQUS User Element(UEL)interface.It demonstrates the capacity of the proposed model to simulate the phenomena of strain-softening and strain localization.The study investigates the influence of microscopic parameters,including contact stiffness parameters and characteristic length,on the failure behaviors of granularmaterials withmicrostructures.Additionally,the study examines themesh independence of the presented model and establishes its relationship with the characteristic length.A comparison is made between finite element simulations and discrete element simulations for a medium-dense microstructure,revealing a good agreement in results during the elastic stage.Somemacroscopic parameters describing plasticity are shown to be partially related to microscopic factors such as confining pressure and size of the representative volume element.展开更多
mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface mo...mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.展开更多
Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been wid...Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been widely investigated for the synthesis of particles, and arrays of oriented nanorods and nanotubes. In this paper, based on the ideal crystal shapes predicted by the chemical bonding theory, we have developed some potential chemical strategies to tune the microstructure of functional materials, ZnS and Nb205 nanotube arrays, MgO wiskers and nestlike spheres, and cubic phase Cu2O microcrystals were synthesized here to elucidate these strategies. We describe their controlled crystallization processes and illustrate the detailed key factors controlling their growth by examining various reaction parameters. Current results demonstrate that our designed chemical strategies for tuning microstructure of functional materials are applicable to several technologically important materials, and therefore may be used as a versatile and effective route to the controllable synthesis of other inorganic functional materials.展开更多
The microstructure and mechanical properties of steel/Al structure material produced by additive manufacturing (AM) was investigated in this work based on the cold metal transfer welding. The results show that the m...The microstructure and mechanical properties of steel/Al structure material produced by additive manufacturing (AM) was investigated in this work based on the cold metal transfer welding. The results show that the microstructure gradually changed from the steel side to the aluminum side. The microstructure in the steel layer consisted of vermiform like ferrite and anstenite structure, while in the aluminum layer the microstructure was constituted by c^-A1 grains and typical reticulate distributive Al-Si eutectic structure. Besides, a 7 y.m thickness Ni-Al intermetallic compound layer was emerged at the interface of nickel and aluminum layer. The maximum room-temperature tensile strength of the Steel-Al structure materials was found to be 54 MPa, the rupture morphology showed a brittle fracture characteristic.展开更多
Three different castables were prepared as steel-ladle purging-plug refractory materials: corundum-based low-cement castable (C-LCC), corundum-spinel-based low-cement castable (C-S-LCC), and no-cement corundum-sp...Three different castables were prepared as steel-ladle purging-plug refractory materials: corundum-based low-cement castable (C-LCC), corundum-spinel-based low-cement castable (C-S-LCC), and no-cement corundum-spinel castable (C-S-NCC) (hydratable alu- mina p-A1203 bonded). The properties of these castables were characterized with regard to water demand/flow ability, cold crushing strength (CCS), cold modulus of rupture (CMoR), permanent linear change (PLC), apparent porosity, and hot modulus of rupture (HMoR). The re- sults show the CCS/CMoR and HMoR of C-LCC and C-S-LCC are greater than those of the castable C-S-NCC. According to the micro- structure analysis, the sintering effect and the bonding type of the matrix material differ among the three castables. The calcium hexaluminate (CA6) phase in the matrix of C-LCC enhances the cold and hot mechanical strengths. In the case of C-S-LCC, the CA6 and 2CaO·2MgO·14A12O3(C2MEA14) ternary phases generated from the matrix can greatly increase the cold and hot mechanical strengths. In the case of the no-cement castable, sintering becomes difficult, resulting in a lower mechanical strength.展开更多
The bandgap,an important characteristic of the periodic structure,is dispersionrelated,which can be designed by tailoring the layout of materials within the periodic microstructures.A typical example of a periodic str...The bandgap,an important characteristic of the periodic structure,is dispersionrelated,which can be designed by tailoring the layout of materials within the periodic microstructures.A typical example of a periodic structure is phononic crystals (PnCs),which are traditionally fabricated from two-phase materials.Herein,we investigate the topologies of periodic three-phase PnCs.The microstructures of the three-phase PnCs are optimized using a two-stage genetic algorithm,and three case studies are proposed to obtain the following:(1)the maximum relative bandgap width,(2)the maximum absolute bandgap width,and (3)the max- imum bandgap at a specified frequency.More importantly,the three-phase material provides significant advantages compared to the typical two-phase materials,such as a low-frequency bandgap.This research is expected to contribute highly to vibration and noise isolation,elastic wave filters,and acoustic devices.展开更多
Simulation method was designed to divide Laguerre diagram for right circle group with different weight; out-of-core incremental algorithm for Laguerre diagram was constructed; simulation program development and visual...Simulation method was designed to divide Laguerre diagram for right circle group with different weight; out-of-core incremental algorithm for Laguerre diagram was constructed; simulation program development and visualization was done and simulation was realized in user-specified arbitrary area for simulation of metal materials microstructure, which facilitated the practical application and secondary development of Laguerre diagram in the field of material science engineering. Finally, the utilization of a developed software package exemplified the simulation application of microstructure about metal materials and proved its validity.展开更多
The effect of rare earth (RE) oxide on the microstructure and properties of TiC based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron...The effect of rare earth (RE) oxide on the microstructure and properties of TiC based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron microscope (TEM), impact test and wear test. The mechanism of RE oxide for improving the phase structure and the impact toughness was also discussed. The experimental results indicate that the microstructure of the matrix can be refined, and the micro-porous defects can be eliminated by adding RE oxide into the composite materials. The polycrystalline and amorphous phase structure is formed at the interface of cermet and matrix metal. The formed structure enhances the conjoint strength of interface. The frictional wear resistance can be improved obviously, although the microhardness of the matrix metal can not be effectively increased by adding RE oxide.展开更多
This article studies the effects of different Sn contents on the melting characteristics,microstructure,and mechanical properties of brazed joints of low-silver BAg5CuZn-0.3 wt.%La brazing material.A differential ther...This article studies the effects of different Sn contents on the melting characteristics,microstructure,and mechanical properties of brazed joints of low-silver BAg5CuZn-0.3 wt.%La brazing material.A differential thermal analyzer(HCR-1)was used to measure the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La-xSn brazing material.The results show that the addition of Sn element effect-ively reduces the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La brazing material.Microstructural characterization was con-ducted using scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffraction(XRD),etc.Analysis re-veals that progressive aggregation and precipitation of Cu-Sn intermetallic compounds occur with increasing Sn content,leading to microstructural coarsening.Notably,severe grain coarsening is observed when the Sn content reaches 4 wt.%.Shear testing of the BAg5CuZn-0.3 wt.%La-xSn brazing joints reveals a non-monotonic trend in joint strength:as Sn content increases,the shear strength initially improves but subsequently deteriorates after reaching an optimal value.展开更多
The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.T...The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.The novel structural features of GBDP(Nd,Ce)-Fe-B magnets give a version of different domain reversal processes from those of non-diffused magnets.In this work,the in-situ magnetic domain evolution of the DMP magnets was observed at elevated temperatures,and the temperature demagnetization and coercivity mechanism of the GBDP dual-main-phase(Nd,Ce)-Fe-B magnets are discussed.The results show that the shell composition of different types of grains in DMP magnets is similar,while the magnetic microstructure results indicate the Ce-rich grains tend to demagnetize first.Dy-rich shell with a high anisotropic field caused by GBDP leads to an increase in the nucleation field,which enhances the coercivity.It is found that much more grains exhibit single domain characteristics in the remanent state for GBDP dual-main-phase(Nd,Ce)-Fe-B magnets.In addition,the grains that undergo demagnetization first are Ce-rich or Nd-rich grains,which is different from that of non-diffused magnets.These results were not found in previous studies but can be intuitively characterized from the perspective of magnetic domains in this work,providing a new perspective and understanding of the performance improvement of magnetic materials.展开更多
基金National Natural Science Foundation of China(51975286)。
文摘Fe-Mo functionally graded materials(FGMs)with different composition-change rates from 100%304 stainless steel to 100%Mo along the composition gradient direction were prepared by electron beam-directed energy deposition(EB-DED)technique,including three samples with composition mutation of 100%,composition change rate of 10%and 30%.Results show that the composition-change rate significantly affects the microstructure and mechanical properties of the samples.In the sample with abrupt change of composition,the sharp shift in composition between 304 stainless steel and Mo leads to a great difference in the microstructure and hardness near the interface between the two materials.With the increase in the number of gradient layers,the composition changes continuously along the direction of deposition height,and the microstructure morphology shows a smooth transition from 304 stainless steel to Mo,which is gradually transformed from columnar crystal to dendritic crystal.Elements Fe,Mo,and other major elements transform linearly along the gradient direction,with sufficient interlayer diffusion between the deposited layers,leading to good metallurgical bonding.The smaller the change in composition gradient,the greater the microhardness value along the deposition direction.When the composition gradient is 10%,the gradient layer exhibits higher hardness(940 HV)and excellent resistance to surface abrasion,and the overall compressive properties of the samples are better,with the compressive fracture stress in the top region reaching 750.05±14 MPa.
文摘Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.
基金supported by the National Key Research and Development Program of China(No.2023YFC2509200)the National Natural Science Foundation of China(Nos.82470998,82270995,81970956)+1 种基金Zhejiang Science Foundation for Distinguished Young Scholars(LR24H140001)The Science and Technology Department of the State Administration of Traditional Chinese Medicine and the Zhejiang Provincial Administration of Traditional Chinese Medicine jointly established the Science and Technology Plan(GZY-ZJ-KJ-24086)。
文摘Osteoarthritis(OA)is a widespread joint disorder that has emerged as a significant global healthcare challenge.Over the past decade,advancements in material science and medicine have transformed the development of functional materials aimed at addressing the complex issues associated with the diagnosis and treatment of OA.This review synthesizes the latest advancements in various types of intelligent micro-structured materials and their design principles.By examining the exceptional structural characteristics of materials with unique properties such as tailored attributes,controllability,biocompatibility,and bioactivity,we emphasize the design of composite materials for precise and early intervention in OA.This is achieved through advanced imaging techniques and machine learning-based analysis,alongside the customization of micro-structured material properties to align with the biological and mechanical requirements of specific joint tissues.This review offers an in-depth analysis of the transformative potential of advanced technologies and artificial intelligence(AI)in the development of innovative solutions for OA diagnosis and therapy.It aims to inform future research and inspire the creation of next-generation smart materials with unprecedented performance,thereby enhancing our capabilities in the prevention and treatment of OA.
基金supported by the National Natural Science Foundation of China(No.22271211)the Natural Science Foundation of Shanxi Provincee(Nos.20210302123107 and 202202060301018)Huzhou Key Laboratory of Smart and Clean Energy(No.24CE03).
文摘Compared with other metal anodes such as lithium,sodium and potassium,carbon materials exhibit low redox potential,enhanced safety,significant low-cost advantages and decent electrochemical performance for large-scale metal-ion batteries and supercapacitors.Among the various carbon precursors,low-cost coal and coal derivatives are preferred due to their unique carbon structure with high carbon content.A variety of coal-derived carbon materials have been constructed using different strategies and have been investigated for diverse electrochemical energy storage due to their specific microstructures.In the short term,the electrochemical performance of coal-derived carbon materials is normal.However,it is imperative to develop low-cost and high-performance coal-derived carbon materials in order to reduce the cost of energy storage systems.Therefore,this review focuses on the microstructure modulation strategies for coal-based derived carbon materials to further enhance their electrochemical performance through heteroatom doping,defect engineering,interlayer engineering,crystallinity regulation,pore regulation and multi-strategy synergy.In addition,this review summarizes the enhancement mechanisms for modification strategies and analyses their limitations.Furthermore,current challenges and future research directions for the development of high-performance coal-based derived carbon materials are proposed in this review.It is anticipated that through novel modification strategies,coal-derived carbon materials will exhibit electrochemical performance comparable to that of carbon materials prepared from other precursors.
基金supported by the NSF (DMR-1006194 and CMMI1100339)NSFC (10972189 and 11102175)NSC(100-2628-E-002-034-MY3)
文摘Transforming materials with evolving microstructures is one of the most important classes of smart materials that have many potential technological applications, and an unconventional phase field approach based on the characteristic functions of transforming variants has been developed to simulate the formation and evolution of their microstructures. This approach is advantageous in its explicit material symmetry and energy well structure, minimal number of ma- terial coefficients, and easiness in coupling multiple physical processes and order parameters, and has been applied successfully to study the microstructures and macroscopic prop- erties of shape memory alloys, ferroelectrics, ferromagnetic shape memory alloys, and multiferroic magnetoelectric crys- tals and films with increased complexity. In this topical re- view, the formulation of this unconventional phase field approach will be introduced in details, and its applications to various transforming materials will be discussed. Some ex- amples of specific microstructures will also be presented.
基金supported by a grant from the Institute for Guo Qiang.Tsinghua University(Grant No.2019GQG1012)Y.Z.acknowledges support from the National Natural Science Foundation of China(Grant Nos.11722217 and 11921002)+1 种基金the Tsinghua University Initiative Scientific Research Program(#2019Z08QCX10)the Henry Fok Education Foundation.
文摘Developments of soft network materials with rationally distributed wavy microstructures have enabled many promising applications in bio-integrated electronic devices,due to their abilities to reproduce precisely nonlinear mechanical properties of human tissues/organs.In practical applications,the soft network materials usually serve as the encapsulation layer and/or substrate of bio-integrated electronic devices,where deterministic holes can be utilized to accommodate hard chips,thereby increasing the filling ratio of the device system.Therefore,it is essential to understand how the hole-type imperfection affects the stretchability of soft network materialswith various geometric constructions.Thiswork presents a systematic investigation of the imperfection sensitivity of mechanical properties in soft network materials consisting of horseshoe microstructures,through combined computational and experimental studies.A factor of imperfection insensitivity of stretchability is introduced to quantify the influence of hole imperfections,as compared to the case of perfect soft network materials.Such factor is shown to have different dependences on the arc angle and normalized width of horseshoe microstructures for triangular network materials.The soft triangular and Kagome network materials,especially with the arc angle in the range of(30?,60?),are found to be much more imperfection insensitive than corresponding traditional lattice materials with straight microstructures.Differently,the soft honeycomb network materials are not as imperfection insensitive as traditional honeycomb lattice materials.
文摘The characterization of microstructure for three kinds of typical low dimensional materials,such as ultrafine particle(zero- dimension),whisker(one- dimension)and thin film(two-dimensions),has been carried out.The methods and criteria for the characterization are investigated and introduced.Some interesting results of the characterization are reported.
文摘The explicit representations for tensorial Fourier expansion of 3_D crystal orientation distribution functions (CODFs) are established. In comparison with that the coefficients in the mth term of the Fourier expansion of a 3_D ODF make up just a single irreducible mth_order tensor, the coefficients in the mth term of the Fourier expansion of a 3_D CODF constitute generally so many as 2m+1 irreducible mth_order tensors. Therefore, the restricted forms of tensorial Fourier expansions of 3_D CODFs imposed by various micro_ and macro_scopic symmetries are further established, and it is shown that in most cases of symmetry the restricted forms of tensorial Fourier expansions of 3_D CODFs contain remarkably reduced numbers of mth_order irreducible tensors than the number 2m+1 . These results are based on the restricted forms of irreducible tensors imposed by various point_group symmetries, which are also thoroughly investigated in the present part in both 2_ and 3_D spaces.
文摘In this two_part paper, a thorough investigation is made on Fourier expansions with irreducible tensorial coefficients for orientation distribution functions (ODFs) and crystal orientation distribution functions (CODFs), which are scalar functions defined on the unit sphere and the rotation group, respectively. Recently it has been becoming clearer and clearer that concepts of ODF and CODF play a dominant role in various micromechanically_based approaches to mechanical and physical properties of heterogeneous materials. The theory of group representations shows that a square integrable ODF can be expanded as an absolutely convergent Fourier series of spherical harmonics and these spherical harmonics can further be expressed in terms of irreducible tensors. The fundamental importance of such irreducible tensorial coefficients is that they characterize the macroscopic or overall effect of the orientation distribution of the size, shape, phase, position of the material constitutions and defects. In Part (Ⅰ), the investigation about the irreducible tensorial Fourier expansions of ODFs defined on the N_dimensional (N_D) unit sphere is carried out. Attention is particularly paid to constructing simple expressions for 2_ and 3_D irreducible tensors of any orders in accordance with the convenience of arriving at their restricted forms imposed by various point_group (the synonym of subgroup of the full orthogonal group) symmetries. In the continued work -Part (Ⅱ), the explicit expression for the irreducible tensorial expansions of CODFs is established. The restricted forms of irreducible tensors and irreducible tensorial Fourier expansions of ODFs and CODFs imposed by various point_group symmetries are derived.
基金the National Natural Science Foundation of China through Contract/Grant Numbers 12002245,12172263 and 11772237Chongqing Jiaotong University through Contract/Grant Number F1220038.
文摘This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information.The microstructures under consideration can be classified into three categories:a medium-dense microstructure,a dense microstructure consisting of one-sized particles,and a dense microstructure consisting of two-sized particles.Subsequently,the Cosserat elastoplastic model,along with its finite element formulation,is derived using the extended Drucker-Prager yield criteria.To investigate failure behaviors,numerical simulations of granular materials with different microstructures are conducted using the ABAQUS User Element(UEL)interface.It demonstrates the capacity of the proposed model to simulate the phenomena of strain-softening and strain localization.The study investigates the influence of microscopic parameters,including contact stiffness parameters and characteristic length,on the failure behaviors of granularmaterials withmicrostructures.Additionally,the study examines themesh independence of the presented model and establishes its relationship with the characteristic length.A comparison is made between finite element simulations and discrete element simulations for a medium-dense microstructure,revealing a good agreement in results during the elastic stage.Somemacroscopic parameters describing plasticity are shown to be partially related to microscopic factors such as confining pressure and size of the representative volume element.
文摘mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.
基金the financial support of the program for the New Century Excellent Talents in University(Grant No.NCET-05-0278)the National Natural Science Foundation of China(Grant No.20471012)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.200322)the Research Fund for the Doctoral Program of Higher Education(Grant No.20040141004).
文摘Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been widely investigated for the synthesis of particles, and arrays of oriented nanorods and nanotubes. In this paper, based on the ideal crystal shapes predicted by the chemical bonding theory, we have developed some potential chemical strategies to tune the microstructure of functional materials, ZnS and Nb205 nanotube arrays, MgO wiskers and nestlike spheres, and cubic phase Cu2O microcrystals were synthesized here to elucidate these strategies. We describe their controlled crystallization processes and illustrate the detailed key factors controlling their growth by examining various reaction parameters. Current results demonstrate that our designed chemical strategies for tuning microstructure of functional materials are applicable to several technologically important materials, and therefore may be used as a versatile and effective route to the controllable synthesis of other inorganic functional materials.
基金supported by the National Natural Science Foundation of China(Grant No.51475104,51435004)the National Basic Research Program of China(2013CB035500)
文摘The microstructure and mechanical properties of steel/Al structure material produced by additive manufacturing (AM) was investigated in this work based on the cold metal transfer welding. The results show that the microstructure gradually changed from the steel side to the aluminum side. The microstructure in the steel layer consisted of vermiform like ferrite and anstenite structure, while in the aluminum layer the microstructure was constituted by c^-A1 grains and typical reticulate distributive Al-Si eutectic structure. Besides, a 7 y.m thickness Ni-Al intermetallic compound layer was emerged at the interface of nickel and aluminum layer. The maximum room-temperature tensile strength of the Steel-Al structure materials was found to be 54 MPa, the rupture morphology showed a brittle fracture characteristic.
文摘Three different castables were prepared as steel-ladle purging-plug refractory materials: corundum-based low-cement castable (C-LCC), corundum-spinel-based low-cement castable (C-S-LCC), and no-cement corundum-spinel castable (C-S-NCC) (hydratable alu- mina p-A1203 bonded). The properties of these castables were characterized with regard to water demand/flow ability, cold crushing strength (CCS), cold modulus of rupture (CMoR), permanent linear change (PLC), apparent porosity, and hot modulus of rupture (HMoR). The re- sults show the CCS/CMoR and HMoR of C-LCC and C-S-LCC are greater than those of the castable C-S-NCC. According to the micro- structure analysis, the sintering effect and the bonding type of the matrix material differ among the three castables. The calcium hexaluminate (CA6) phase in the matrix of C-LCC enhances the cold and hot mechanical strengths. In the case of C-S-LCC, the CA6 and 2CaO·2MgO·14A12O3(C2MEA14) ternary phases generated from the matrix can greatly increase the cold and hot mechanical strengths. In the case of the no-cement castable, sintering becomes difficult, resulting in a lower mechanical strength.
基金National Natural Science Foundation of China (Nos.11672187, 11302135,11502149and 51308357)Natural Science Foundation of Liaoning Province (Nos.201602572,201602573and 201602627)+1 种基金and Program for Liaoning Excellent Talents in University (LNET,No.LJQ2014019)The financial contri- butions are gratefully acknowledged.
文摘The bandgap,an important characteristic of the periodic structure,is dispersionrelated,which can be designed by tailoring the layout of materials within the periodic microstructures.A typical example of a periodic structure is phononic crystals (PnCs),which are traditionally fabricated from two-phase materials.Herein,we investigate the topologies of periodic three-phase PnCs.The microstructures of the three-phase PnCs are optimized using a two-stage genetic algorithm,and three case studies are proposed to obtain the following:(1)the maximum relative bandgap width,(2)the maximum absolute bandgap width,and (3)the max- imum bandgap at a specified frequency.More importantly,the three-phase material provides significant advantages compared to the typical two-phase materials,such as a low-frequency bandgap.This research is expected to contribute highly to vibration and noise isolation,elastic wave filters,and acoustic devices.
基金Funded by National Natural Science Foundation of China(No.50571042)the Natural Science Foundation of Gansu Province of China(Nos.1208RJZA285,1208RJZA121)Lanzhou University of Technology(No.01-0278)
文摘Simulation method was designed to divide Laguerre diagram for right circle group with different weight; out-of-core incremental algorithm for Laguerre diagram was constructed; simulation program development and visualization was done and simulation was realized in user-specified arbitrary area for simulation of metal materials microstructure, which facilitated the practical application and secondary development of Laguerre diagram in the field of material science engineering. Finally, the utilization of a developed software package exemplified the simulation application of microstructure about metal materials and proved its validity.
文摘The effect of rare earth (RE) oxide on the microstructure and properties of TiC based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron microscope (TEM), impact test and wear test. The mechanism of RE oxide for improving the phase structure and the impact toughness was also discussed. The experimental results indicate that the microstructure of the matrix can be refined, and the micro-porous defects can be eliminated by adding RE oxide into the composite materials. The polycrystalline and amorphous phase structure is formed at the interface of cermet and matrix metal. The formed structure enhances the conjoint strength of interface. The frictional wear resistance can be improved obviously, although the microhardness of the matrix metal can not be effectively increased by adding RE oxide.
基金the support from Jinhua Sanhuan Welding Materials Company LimitedSchool of Materials Science and Engineering,Nanjing University of Science and Technology.
文摘This article studies the effects of different Sn contents on the melting characteristics,microstructure,and mechanical properties of brazed joints of low-silver BAg5CuZn-0.3 wt.%La brazing material.A differential thermal analyzer(HCR-1)was used to measure the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La-xSn brazing material.The results show that the addition of Sn element effect-ively reduces the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La brazing material.Microstructural characterization was con-ducted using scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffraction(XRD),etc.Analysis re-veals that progressive aggregation and precipitation of Cu-Sn intermetallic compounds occur with increasing Sn content,leading to microstructural coarsening.Notably,severe grain coarsening is observed when the Sn content reaches 4 wt.%.Shear testing of the BAg5CuZn-0.3 wt.%La-xSn brazing joints reveals a non-monotonic trend in joint strength:as Sn content increases,the shear strength initially improves but subsequently deteriorates after reaching an optimal value.
基金supported by the National Key Research and Development Program of China(Nos.2021YFB3503003,2021YFB3503100,and 2022YFB3505401).
文摘The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.The novel structural features of GBDP(Nd,Ce)-Fe-B magnets give a version of different domain reversal processes from those of non-diffused magnets.In this work,the in-situ magnetic domain evolution of the DMP magnets was observed at elevated temperatures,and the temperature demagnetization and coercivity mechanism of the GBDP dual-main-phase(Nd,Ce)-Fe-B magnets are discussed.The results show that the shell composition of different types of grains in DMP magnets is similar,while the magnetic microstructure results indicate the Ce-rich grains tend to demagnetize first.Dy-rich shell with a high anisotropic field caused by GBDP leads to an increase in the nucleation field,which enhances the coercivity.It is found that much more grains exhibit single domain characteristics in the remanent state for GBDP dual-main-phase(Nd,Ce)-Fe-B magnets.In addition,the grains that undergo demagnetization first are Ce-rich or Nd-rich grains,which is different from that of non-diffused magnets.These results were not found in previous studies but can be intuitively characterized from the perspective of magnetic domains in this work,providing a new perspective and understanding of the performance improvement of magnetic materials.