The third member of Weixinnanliu in the west of the South China Sea develops thin interbeds, and the vertical extension of fracturing fractures is excessive. Once the fractures extend vertically to the upper and lower...The third member of Weixinnanliu in the west of the South China Sea develops thin interbeds, and the vertical extension of fracturing fractures is excessive. Once the fractures extend vertically to the upper and lower aquifers, it is easy to cause water flooding of oil wells, and the effect after fracturing is not obvious. The present work aims to explore the longitudinal extension law of fractures in Low Permeability Thin Interbed Reservoir based on the finite element calculation platform. A three-dimensional expansion model of hydraulic fractures in the target reservoir was established, and the displacement, fracturing fluid viscosity, minimum horizontal principal stress difference, vertical stress, interlayer thickness, perforation point separation were studied. The interlayer distance and other factors affect the crack propagation law. The research results show that the thin interbed fractures have three forms: T-shaped fractures, through-layer fractures, and I-shaped fractures;for the target layer, the overlying stress is relatively large, and the minimum principal stress is along the horizontal direction. Vertical cracks;the farther the perforation point is or the greater the stress difference, the smaller the thickness of the interlayer required to control the fracture height;the stress difference is 3 MPa, and the distance between the perforation points exceeds 10 m, the thickness of the interlayer is required to be ≥4 m;In order to ensure that the width of the fracture in the middle spacer does not affect the placement of the proppant, it is recommended that the displacement be controlled within 3 m<sup>3</sup>/min and the viscosity of the fracturing fluid is 150 mPa·s;in addition, the thickness of the spacer required to control the fracture height is different due to different geological parameters. Different, different wells need targeted analysis.展开更多
薄互层致密砂岩储层由于层间岩性差异、纵向非均质性强等原因,导致主裂缝难以垂向扩展,提高裂缝扩展速率可有效促进裂缝穿层扩展。为研究裂缝穿层断裂过程中的率效应机制,采用人工预制水泥-砂岩试件进行了三点弯断裂试验,通过数字图像...薄互层致密砂岩储层由于层间岩性差异、纵向非均质性强等原因,导致主裂缝难以垂向扩展,提高裂缝扩展速率可有效促进裂缝穿层扩展。为研究裂缝穿层断裂过程中的率效应机制,采用人工预制水泥-砂岩试件进行了三点弯断裂试验,通过数字图像法监测了裂缝扩展至层间接触界面处时的断裂过程区(fracture process zone,FPZ)发育特征;基于断裂动力学理论,提出了考虑率效应的裂缝扩展路径预测模型。研究结果表明:低速扩展时裂缝形态曲折,FPZ呈现短、宽的现象,高速扩展时裂缝平直,FPZ呈现长、窄的特点;FPZ存在离散性,且存在相互吸引的特点,裂缝从低弹性模量岩石向高弹性模量岩石低速扩展时层间接触界面处会提前产生高应变区,导致裂缝扩展至层间接触界面处时沿层扩展,高速扩展无此现象;岩石抗拉强度与裂缝穿越单元体的平均抗拉强度呈正相关关系,低扩展速率裂缝优先沿微缺陷扩展,导致岩石抗拉强度降低,高扩展速率裂缝优先沿自相似方向扩展,穿过大量高强度单元导致岩石抗拉强度增加;裂缝与层间接触界面夹角越大,裂缝越容易穿层扩展,裂缝与层间接触界面夹角为30°时,夹角影响效果最大,夹角超过30°时影响效果逐渐下降。研究结果对水力压裂参数优化、增加水力裂缝高度、提高薄互层致密砂岩油气产量具有重要意义。展开更多
文摘The third member of Weixinnanliu in the west of the South China Sea develops thin interbeds, and the vertical extension of fracturing fractures is excessive. Once the fractures extend vertically to the upper and lower aquifers, it is easy to cause water flooding of oil wells, and the effect after fracturing is not obvious. The present work aims to explore the longitudinal extension law of fractures in Low Permeability Thin Interbed Reservoir based on the finite element calculation platform. A three-dimensional expansion model of hydraulic fractures in the target reservoir was established, and the displacement, fracturing fluid viscosity, minimum horizontal principal stress difference, vertical stress, interlayer thickness, perforation point separation were studied. The interlayer distance and other factors affect the crack propagation law. The research results show that the thin interbed fractures have three forms: T-shaped fractures, through-layer fractures, and I-shaped fractures;for the target layer, the overlying stress is relatively large, and the minimum principal stress is along the horizontal direction. Vertical cracks;the farther the perforation point is or the greater the stress difference, the smaller the thickness of the interlayer required to control the fracture height;the stress difference is 3 MPa, and the distance between the perforation points exceeds 10 m, the thickness of the interlayer is required to be ≥4 m;In order to ensure that the width of the fracture in the middle spacer does not affect the placement of the proppant, it is recommended that the displacement be controlled within 3 m<sup>3</sup>/min and the viscosity of the fracturing fluid is 150 mPa·s;in addition, the thickness of the spacer required to control the fracture height is different due to different geological parameters. Different, different wells need targeted analysis.
文摘薄互层致密砂岩储层由于层间岩性差异、纵向非均质性强等原因,导致主裂缝难以垂向扩展,提高裂缝扩展速率可有效促进裂缝穿层扩展。为研究裂缝穿层断裂过程中的率效应机制,采用人工预制水泥-砂岩试件进行了三点弯断裂试验,通过数字图像法监测了裂缝扩展至层间接触界面处时的断裂过程区(fracture process zone,FPZ)发育特征;基于断裂动力学理论,提出了考虑率效应的裂缝扩展路径预测模型。研究结果表明:低速扩展时裂缝形态曲折,FPZ呈现短、宽的现象,高速扩展时裂缝平直,FPZ呈现长、窄的特点;FPZ存在离散性,且存在相互吸引的特点,裂缝从低弹性模量岩石向高弹性模量岩石低速扩展时层间接触界面处会提前产生高应变区,导致裂缝扩展至层间接触界面处时沿层扩展,高速扩展无此现象;岩石抗拉强度与裂缝穿越单元体的平均抗拉强度呈正相关关系,低扩展速率裂缝优先沿微缺陷扩展,导致岩石抗拉强度降低,高扩展速率裂缝优先沿自相似方向扩展,穿过大量高强度单元导致岩石抗拉强度增加;裂缝与层间接触界面夹角越大,裂缝越容易穿层扩展,裂缝与层间接触界面夹角为30°时,夹角影响效果最大,夹角超过30°时影响效果逐渐下降。研究结果对水力压裂参数优化、增加水力裂缝高度、提高薄互层致密砂岩油气产量具有重要意义。