期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization 被引量:4
1
作者 Tong Zhang Shan-Jiang Wang +4 位作者 Xiao-Yang Zhang Ming Fu Yi Yang Wen Chen Dan Su 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2021年第1期35-48,共14页
Nanostructure-based broadband absorbers are prominently attractive in various research fields such as nanomaterials,nanofabrication,nanophotonics and energy utilization.A highly efficient light absorption in wider wav... Nanostructure-based broadband absorbers are prominently attractive in various research fields such as nanomaterials,nanofabrication,nanophotonics and energy utilization.A highly efficient light absorption in wider wavelength ranges makes such absorbers useful in many solar energy harvesting applications.In this review,we present recent advances of broadband absorbers which absorb light by nanostructures.We start from the mechanism and design strategies of broadband absorbers based on different materials such as carbon-based,plasmonic or dielectric materials and then reviewed recent progress of solar energy thermal utilization dependent on the superior photo-heat conversion capacity of broadband absorbers which may significantly influence the future development of solar energy utilization,seawater purification and photoelectronic device design. 展开更多
关键词 nanostructured broadband absorbers solar energy harvesting thermal utilization
原文传递
Utilization of thermal waters in Serbia and their influence to ecosystem
2
《Global Geology》 1998年第1期108-109,共2页
关键词 utilization of thermal waters in Serbia and their influence to ecosystem
在线阅读 下载PDF
Mineralogy and Thermal Analysis of Natural Pozzolana Opal Shale with Nano-pores 被引量:2
3
作者 贾援 王宝民 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期532-537,共6页
Thermodynamic stability, microvoid distribution and phases transformation of natural pozzolana opal shale(POS) were studied systematically in this work. XRD analysis showed that opal-CT, including microcrystal crist... Thermodynamic stability, microvoid distribution and phases transformation of natural pozzolana opal shale(POS) were studied systematically in this work. XRD analysis showed that opal-CT, including microcrystal cristobalite and tridymite, is a major component of POS. DTA and FT-IR indicated that there were many hydroxyl groups and acid sites on the surface of amorphous SiO2 materials. FE-SEM analysis exhibited amorphous SiO2 particles(opal-A) covering over stacking sequences microcrystal cristobalite and tridymite. Meanwhile, MIP analysis demonstrated that porosity and pore size distribution of POS remained uniform below 600 ℃. Because stable porous microstructure is a key factor in improving photocatalyst activity, POS is suited to preparing highly active supported. 展开更多
关键词 pozzolana opal shale cyclic utilization thermal analysis mineralogy analysis nano-pore
原文传递
Surface-pitted TiN nanoparticles for direct absorption solar collectors
4
作者 Heng Zhang Yuchun Cao +3 位作者 Xiaowen Chen Qihang Yang Ning Chen Xiaohu Wu 《Chinese Physics B》 2025年第6期88-96,共9页
Direct absorption solar collectors use nanofluids to absorb and convert solar radiation. Despite the limitations of the photothermal properties of these nanofluids within the absorption spectra range, modifying the su... Direct absorption solar collectors use nanofluids to absorb and convert solar radiation. Despite the limitations of the photothermal properties of these nanofluids within the absorption spectra range, modifying the surface structure of the nanoparticles can broaden their absorption spectrum, thereby significantly improving the solar thermal conversion efficiency. This paper utilizes the finite element method to investigate the influence of surface pits on the photothermal properties of plasmonic nanoparticles, considering both material composition and surface micro-nano structures. Based on the findings, a novel Ti N nanoparticle is proposed to enhance photothermal performance. This nanoparticle exhibits the lowest average reflectance(0.0145) in the 300–1100 nm wavelength range and the highest light absorption intensity across the solar spectrum, enabling highly efficient solar energy conversion. It not only reduces material costs but also effectively broadens the light absorption spectrum of spherical plasmonic nanoparticles. The distributions of the electric field, magnetic field, and energy field of the nanoparticles indicate that the combination of the “lightning rod” effect and surface plasmon resonance(SPR) significantly enhances both the electric and magnetic fields, thereby increasing the localized heating effect and improving the photothermal performance. Additionally, the number and size of the pits have a significant impact on the absorption efficiency(η_(abs)) of TiN nanoparticles. When the surface of the nanoparticles has 38 pits, η_(abs) can reach90%, with the minimum optical penetration depth(h) of the nanofluid being 7 mm and the minimum volume fraction(f_(v))being 6.95×10^(-6). This study demonstrates that nanoparticles with micro-nano structures have immense potential in solar thermal applications, particularly in the field of direct absorption solar collectors. 展开更多
关键词 solar thermal utilization plasmonic nanoparticles surface plasmon resonance direct absorption solar collector
原文传递
Development of Adsorption Steam Generator without the Fossil Fuels Consumption
5
作者 Tsuguhiko Nakagawa Takahiro Nishi +9 位作者 Yu Notoji Yoshiaki Kawakami Masayuki Tanino Yoshio Abe Kasumi Ito Kenji Marumo Toshiyuki Aoyama Yoshinori Itaya Kouichi Nakaso Jun Fukai 《Journal of Energy and Power Engineering》 2014年第4期589-595,共7页
Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand... Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand natural renewable energy source such as solar energy and to promote energy conservation. However, in high-latitude regions, it is difficult to directly and effectively use solar power due to on insufficient amount of solar radiation. If steam can be generated from warm water at less than 373 K, it is possible to obtain steam by solar water heaters from weak solar radiation and industrial waste warm water without the consumption of any fossil fuels. In this study, the authors have been developing a system which generates steam over 423 K from warm water at less than 373 K using an adsorption heat pump with zeolite. Therefore, bench-scale equipment which generates steam continuously and the experimental results are mentioned. 展开更多
关键词 Steam generation heat pump solar thermal utilization energy conservation.
在线阅读 下载PDF
Performances of an air thermal energy utilization system developed with fan-coil units in large-scale plastic tunnels covered with external blanket
6
作者 Chengji Zong Zibin Xiao +3 位作者 Weitang Song Pingzhi Wang Guifang Zhang Ming Li 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第5期56-62,共7页
To improve the problem of low temperature at night in winter due to the lack of thermal storage in large-span plastic tunnels,an air thermal energy utilization system(ATEUS)was developed with fan-coil units to heat a ... To improve the problem of low temperature at night in winter due to the lack of thermal storage in large-span plastic tunnels,an air thermal energy utilization system(ATEUS)was developed with fan-coil units to heat a large-scale plastic tunnel covered with an external blanket(LPTEB)on winter nights.The ATEUS was composed of nine fan-coil units mounted on top of the LPTEB,a water reservoir,pipes,and a water circulation pump.With the heat exchange between the air and the water flowing through the coils,the thermal energy from the air can be collected in the daytime,or the thermal energy in the water can be released into the LPTEB at night.On sunny days,the collected thermal energy from the air in the daytime(E_(c))and released thermal energy at night(E_(r))were 0.25-0.44 MJ/m^(2) and 0.24-0.38 MJ/m^(2),respectively.Used ATEUS as a heating system,its coefficient of performance(COP),which is the ratio of the heat consumption of LPTEB to the power consumption of ATEUS,ranged from 1.6-2.1.A dynamic model was also developed to simulate the water temperature(T_(w)).Based on the simulation,E_(c) and E_(r) on sunny days can be increased by 60%-73%and 38%-62%,respectively,by diminishing the heat loss of the water reservoir and increasing the indoor air temperature in the period of collecting thermal energy.Then,the COP can reach 2.6-3.8,and the developed ATEUS can be applied to heating the LPTEB in a way that conserves energy. 展开更多
关键词 large scale plastic tunnel air thermal energy utilization system energy conservation COP
原文传递
Exergy Analysis of Photo-Thermal Interaction Process between Solar Radiation Energy and Solar Receiver 被引量:1
7
作者 WANG Gang WANG Cheng CHEN Zeshao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第5期1541-1547,共7页
A unified theory of non-equilibrium radiation thermodynamics is always in search as it is meaningful for solar energy utilization.An exergy analysis of photo-thermal interaction process between the solar radiation ene... A unified theory of non-equilibrium radiation thermodynamics is always in search as it is meaningful for solar energy utilization.An exergy analysis of photo-thermal interaction process between the solar radiation energy and solar receiver is conducted in this paper.The non-equilibrium radiation thermodynamic system is described.The thermodynamic process of photo-thermal interaction between the solar radiation and solar receiver is introduced.Energy,exergy and entropy equations for the photo-thermal process are provided.Formulas for calculating the optimum receiving temperatures of the solar receiver under both non-concentration and solar concentration conditions are presented.A simple solar receiver is chosen as the calculation example to launch the exergy analysis under non-concentration condition.Furthermore,the effect analysis of solar concentration on the thermodynamic performance of the solar receiver for solar thermal utilization is carried out.The analysis results demonstrate that both the output exergy flux and efficiency of the solar receiver can be improved by increasing the solar concentration ratio during the solar thermal utilization process.The formulas and results provided in this paper may be used as a theoretical reference for the further studies of non-equilibrium radiation thermodynamic theory and solar thermal utilization. 展开更多
关键词 non-equilibrium radiation thermodynamics solar energy exergy analysis optimum receiving temperature solar thermal utilization
原文传递
Design and Performance Analysis of Flexibility Peaking System for Coal-fired Power Plant Based on Solar-Molten Salt Energy Storage
8
作者 SUN Chongbao ZHAI Rongrong +2 位作者 WANG Yutong XU Yu LI Jingwei 《Journal of Thermal Science》 2025年第4期1223-1240,共18页
As the total amount and share of new energy installed capacity continue to rise,the demand for flexible regulation capability of the power system is becoming more and more prominent.The current conventional molten sal... As the total amount and share of new energy installed capacity continue to rise,the demand for flexible regulation capability of the power system is becoming more and more prominent.The current conventional molten salt energy storage system has insufficient peaking capacity.A solar-molten salt energy storage system based on multiple heat sources is constructed in this study.The heat generated from the solar field and the steams are used for the peaking process to further enhance the peaking capacity and flexibility.The installation multi-stage steam extraction and the introduction of an external heat source significantly improve the system performance.The simulation models based on EBSILON software are developed and the effects of key parameters on performance are discussed.The feasibility of the proposed system is further evaluated in terms of exergy and economy.The results demonstrate that the proposed SF-TES-CFPP(solar field,thermal energy storage system,coal-fired power plant)system exhibits the enhancement of peaking capability and flexible operation.In comparison with the conventional TES-CFPP,the integration of solar energy into the peaking process has enabled the SF-TES-CFPP system to enhance its peaking capacity by 20.60 MW while concurrently reducing the coal consumption rate by 10.26 g/kWh.The round-trip efficiency of the whole process of the system can be up to 85.43%through the reasonable heat distribution.In addition,the exergy loss of the principal components can be diminished and the exergy efficiency of the system can be augmented by selecting an appropriate main steam extraction mass and split ratio.The economic analysis demonstrates the dynamic payback period is 9.90 years with the net present value(NPV)across the entire life cycle reaching 1.06902×10^(9)USD. 展开更多
关键词 molten salt energy storage solar thermal utilization peaking performance economic analysis exergy analysis
原文传递
A novel distributed solar refrigeration system based on evacuated U-tube solar collector and elastocaloric refrigerator
9
作者 LI Hao ZHANG HouCheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第9期2797-2810,共14页
Refrigeration challenges in regions with electricity shortages significantly decrease the quality of life for residents. In response to the prevalent refrigeration challenges in power-deficient areas, a novel distribu... Refrigeration challenges in regions with electricity shortages significantly decrease the quality of life for residents. In response to the prevalent refrigeration challenges in power-deficient areas, a novel distributed solar refrigeration system, comprising an evacuated U-tube solar collector and elastocaloric refrigerator, is theoretically introduced. Theoretical formulations for the energy efficiency and cooling power of the solar refrigeration system are presented to facilitate predictive assessments of the performance properties. Under typical conditions, the energy efficiency and cooling power of the solar refrigeration system are,respectively, 4.84% and 200.15 W. Subsequently, an extensive parameter study is conducted to comprehensively uncover key performance influencers and identify avenues for improvement. In addition, local sensitivity analyses identify that the length ratio is the top influential parameter, while the heat transfer fluid flow rate is the least sensitivity. A pragmatic case study,conducted with the weather data of Ningbo City, China, serves to empirically predict the performance of the hybrid system within the constraints of practical circumstances. 展开更多
关键词 evacuated U-tube solar collector elastocaloric refrigerator solar refrigeration solar energy thermal utilization system integration
原文传递
Potential application of a novel building-integrated solar facade water heating system in a subtropical climate:A case study for school canteen
10
作者 Wenjie Liu Xinwen Liu +3 位作者 Chongchao Pan Chunying Li Woonming Lau Yuanli Lyu 《Building Simulation》 SCIE EI CSCD 2023年第10期1987-2004,共18页
The design and potential application analysis of the novel solar-absorbing integrated facade module and its corresponding building-integrated solar facade water heating system are presented in this study.Compared with... The design and potential application analysis of the novel solar-absorbing integrated facade module and its corresponding building-integrated solar facade water heating system are presented in this study.Compared with the conventional building envelope,the main novities of the proposed facade module lie in its contributions towards the supplied water preheating to loads and the internal heat gain reduction.Besides,the proposed building-integrated solar facade water heating system broadens the combination modes of the solar thermal system and the building envelope.A dynamic model is introduced first for system design and performance prediction.To evaluate the energy-saving potential and feasibility of the implementation of the proposed facade module,this paper carried out a suitable case study by replacing the conventional facade module in the ongoing retrofitting project of a kitchen,part of the canteen of a graduate school.The detailed thermal performances of three system design options are compared in the typical winter and summer weeks and throughout the year,and then,with the preferred system design,the economic,energy,and environmental effects of the proposed system are evaluated.It was found that the system with a high flow rate of the circulating water is suggested.The annual electricity saved reaches 4175.3 kWh with yearly average thermal efficiency at 46.9%,and its corresponding cost payback time,energy payback time,and greenhouse gas payback time are 3.8,1.7,1.7 years,respectively.This study confirms the feasibility and long-term benefits of the proposed building-integrated solar facade water heating system in buildings. 展开更多
关键词 solar thermal utilization building-integrated solar water heating system novel prefabricated facade module life cycle assessment building retrofitting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部