摘要
Thermodynamic stability, microvoid distribution and phases transformation of natural pozzolana opal shale(POS) were studied systematically in this work. XRD analysis showed that opal-CT, including microcrystal cristobalite and tridymite, is a major component of POS. DTA and FT-IR indicated that there were many hydroxyl groups and acid sites on the surface of amorphous SiO2 materials. FE-SEM analysis exhibited amorphous SiO2 particles(opal-A) covering over stacking sequences microcrystal cristobalite and tridymite. Meanwhile, MIP analysis demonstrated that porosity and pore size distribution of POS remained uniform below 600 ℃. Because stable porous microstructure is a key factor in improving photocatalyst activity, POS is suited to preparing highly active supported.
Thermodynamic stability, microvoid distribution and phases transformation of natural pozzolana opal shale(POS) were studied systematically in this work. XRD analysis showed that opal-CT, including microcrystal cristobalite and tridymite, is a major component of POS. DTA and FT-IR indicated that there were many hydroxyl groups and acid sites on the surface of amorphous SiO2 materials. FE-SEM analysis exhibited amorphous SiO2 particles(opal-A) covering over stacking sequences microcrystal cristobalite and tridymite. Meanwhile, MIP analysis demonstrated that porosity and pore size distribution of POS remained uniform below 600 ℃. Because stable porous microstructure is a key factor in improving photocatalyst activity, POS is suited to preparing highly active supported.
基金
Funded by the National Natural Science Foundation of China(Nos.51278086,51578108)
Special Fund for Scientific Research in the Public Interest by Ministry of Water Resource of the People’s Republic of China(No.201501003)