Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion...Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality.展开更多
Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face o...Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face of nickel foam(NF).The specific structure of the as-prepared FeOOH@CoMoO_(4)/NF-400s provided pronounced porosity and extensive surface area,enhancing rapid electron transport and exposing abundant active sites to improve catalytic reactions.Furthermore,the introduction of FeOOH,which induces electron transfer from FeOOH to CoMoO_(4),confirms their strong electronic interaction,thereby leading to an accelerated surface catalytic reaction.Consequently,the constructed FeOOH@CoMoO_(4)/NF-400s heterostructure demonstrated exceptional oxygen evolu-tion reaction(OER)activity,requiring an overpotential of 199 mV to deliver the current density of 10 mA·cm^(-2),cou-pled with the superior Tafel slope value of 49.56 mV·dec^(-1)and outstanding stability over 20 h under the current densities of both 10 and 100 mA·cm^(-2).展开更多
Existing Chinese named entity recognition(NER)research utilises 1D lexicon-based sequence labelling frameworks,which can only recognise flat entities.While lexicons serve as prior knowledge and enhance semantic inform...Existing Chinese named entity recognition(NER)research utilises 1D lexicon-based sequence labelling frameworks,which can only recognise flat entities.While lexicons serve as prior knowledge and enhance semantic information,they also pose completeness and resource requirements limitations.This paper proposes a template-based classification(TC)model to avoid lexicon issues and to identify nested entities.Template-based classification provides a template word for each entity type,which utilises contrastive learning to integrate the common characteristics among entities with the same category.Contrastive learning makes template words the centre points of their category in the vector space,thus improving generalisation ability.Additionally,TC presents a 2D tablefilling label scheme that classifies entities based on the attention distribution of template words.The proposed novel decoder algorithm enables TC recognition of both flat and nested entities simultaneously.Experimental results show that TC achieves the state-ofthe-art performance on five Chinese datasets.展开更多
In the present work,the high uniform 6-inch single-crystalline AlN template is successfully achieved by high temperature annealing technique,which opens up the path towards industrial application in power device.Moreo...In the present work,the high uniform 6-inch single-crystalline AlN template is successfully achieved by high temperature annealing technique,which opens up the path towards industrial application in power device.Moreover,the outstanding crystalline-quality is confirmed by Rutherford backscattering spectrometry(RBS).In accompanied with the results from X-ray diffraction,the RBS results along both[0001]and[1213]reveal that the in-plane lattice is effectively reordered by high temperature annealing.In addition,the constantΦ_(epi)angle between[0001]and[1213]at different depths of 31.54°confirms the uniform compressive strain inside the AlN region.Benefitting from the excellent crystalline quality of AlN template,we can epitaxially grow the enhanced-mode high electron mobility transistor(HEMT)with a graded AlGaN buffer as thin as only~300 nm.Such an ultra-thin AlGaN buffer layer results in the wafer-bow as low as 18.1μm in 6-inch wafer scale.The fabricated HEMT devices with 16μm-L_(GD)exhibits a threshold voltage(V_(TH))of 1.1 V and a high OFF-state breakdown voltage(V_(BD))over 1400 V.Furthermore,after 200 V high-voltage OFF-state stress,the current collapse is only 13.6%.Therefore,the advantages of both 6-inch size and excellent crystallinity announces the superiority of single-crystalline AlN template in low-cost electrical power applications.展开更多
The Mg−1Zn−1Sn and Mg−1Zn−1Sn−0.2Ca alloy scaffolds were prepared via infiltration casting using 3D-printed Ti templates to achieve complete and accurate control of the pore structure.The results indicate that the act...The Mg−1Zn−1Sn and Mg−1Zn−1Sn−0.2Ca alloy scaffolds were prepared via infiltration casting using 3D-printed Ti templates to achieve complete and accurate control of the pore structure.The results indicate that the actual porosity and pore size of the prepared P model for each pore size are greater than the designed values.The addition of Ca changes the second phase of the alloy from Mg_(2)Sn to CaMgSn and refines its microstructure.The compressive yield strength and compressive modulus of the Mg−1Zn−1Sn−0.2Ca alloy scaffold reach 32.61 MPa and 0.23 GPa,respectively.The corrosion current density is measured at 14.64μA/cm^(2),with an instantaneous corrosion rate of 0.335 mm/a.Both scaffolds exhibit excellent biocompatibility and no cytotoxicity.Additionally,the antibacterial effects of both alloys on E.coli are greater than 97.81%.These results indicate that Mg alloy scaffolds have great potential for clinical applications.展开更多
The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a ...The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a template-oriented strategy coupled with multi-heteroatom modification is proposed to precisely synthesize a three-dimensional boron/nitrogen-rich carbon nanoflake-interconnected micro/nano superstructure,referred to as BNPC.The hierarchically porous framework of BNPC shares short channels for fast Zn2+transport,increased adsorption-site accessibility,and structural robustness.Additionally,the boron/nitrogen incorporation effect significantly augments Zn2+adsorption capability and more distinctive pseudocapacitive nature,notably enhancing Zn-ion storage and transmission kinetics by performing the dual-storage mechanism of the electric double-layer capacitance and Faradaic redox process in BNPC cathode.These merits contribute to a high capacity(143.7 mAh g^(-1)at 0.2 A g^(-1))and excellent rate capability(84.5 mAh g^(-1)at 30 A g^(-1))of BNPC-based aqueous ZHC,and the ZHC still shows an ultrahigh capacity of 108.5 mAh g^(-1)even under a high BNPC mass loading of 12 mg cm^(-2).More critically,the BNPC-based flexible device also sustains notable cyclability over 30,000 cycles and low-rate self-discharge of 2.13 mV h-1 along with a preeminent energy output of 117.15 Wh kg^(-1)at a power density of 163.15Wkg^(-1),favoring a creditable applicability in modern electronics.In/ex-situ analysis and theoretical calculations elaborately elucidate the enhanced charge storage mechanism in depth.The findings offer a promising platform for the development of advanced carbon cathodes and corresponding electrochemical devices.展开更多
With the rapid development of Internet of things technology,the efficiency of data transmission between devices has been significantly improved.However,the open network environment also poses serious security risks.Th...With the rapid development of Internet of things technology,the efficiency of data transmission between devices has been significantly improved.However,the open network environment also poses serious security risks.This paper proposes an innovative fingerprint template protection scheme,which generates key streams through an improved fourdimensional superchaotic system(4CSCS),uses the space-filling property of Hilbert curves to achieve pixel scrambling,and introduces dynamic DNA encoding to improve encryption.Experimental results show that this scheme has a large key space 2^(528),encrypts image information entropy of more than 7.9970,and shows excellent performance in defending against statistical attacks and differential attacks.Compared with existing methods,this scheme has significant advantages in terms of encryption performance and security,and provides a reliable protection mechanism for fingerprint authentication systems in the Internet of things environment.展开更多
Biometric template protection is essential for finger-based authentication systems,as template tampering and adversarial attacks threaten the security.This paper proposes a DCT-based fragile watermarking scheme incorp...Biometric template protection is essential for finger-based authentication systems,as template tampering and adversarial attacks threaten the security.This paper proposes a DCT-based fragile watermarking scheme incorporating AI-based tamper detection to improve the integrity and robustness of finger authentication.The system was tested against NIST SD4 and Anguli fingerprint datasets,wherein 10,000 watermarked fingerprints were employed for training.The designed approach recorded a tamper detection rate of 98.3%,performing 3–6%better than current DCT,SVD,and DWT-based watermarking approaches.The false positive rate(≤1.2%)and false negative rate(≤1.5%)were much lower compared to previous research,which maintained high reliability for template change detection.The system showed real-time performance,averaging 12–18 ms processing time per template,and is thus suitable for real-world biometric authentication scenarios.Quality analysis of fingerprints indicated that NFIQ scores were enhanced from 2.07 to 1.81,reflecting improved minutiae clarity and ridge structure preservation.The approach also exhibited strong resistance to compression and noise distortions,with the improvements in PSNR being 2 dB(JPEG compression Q=80)and the SSIM values rising by 3%–5%under noise attacks.Comparative assessment demonstrated that training with NIST SD4 data greatly improved the ridge continuity and quality of fingerprints,resulting in better match scores(260–295)when tested against Bozorth3.Smaller batch sizes(batch=2)also resulted in improved ridge clarity,whereas larger batch sizes(batch=8)resulted in distortions.The DCNN-based tamper detection model supported real-time classification,which greatly minimized template exposure to adversarial attacks and synthetic fingerprint forgeries.Results demonstrate that fragile watermarking with AI indeed greatly enhances fingerprint security,providing privacy-preserving biometric authentication with high robustness,accuracy,and computational efficiency.展开更多
Corn starch was used as a templating agent,and an oxide mixture containing alumina,magnesia,zirconia and yttria was added in the sol-gel state.After slip casting,curing at 85℃,drying and sintering,high-performance po...Corn starch was used as a templating agent,and an oxide mixture containing alumina,magnesia,zirconia and yttria was added in the sol-gel state.After slip casting,curing at 85℃,drying and sintering,high-performance porous alumina ceramics were obtained.The properties of the porous alumina ceramics were analyzed by means of SEM,XRD,flexural strength and porosity.The research findings showed that,when the starch content was 1 wt%,the prepared ceramic mainly consisted of four phases:α-Al_(2)O_(3),MgAl_(2)O_(4),ZrO,and YSZ.The flexural strength reached 157.27 MPa,the flexural strength of the green body was about 3 MPa,and the porosity was around 30%.展开更多
The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile ...The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile self-sacrifice template method is developed to prepare FeS encapsulated into N,S co-doped carbon(FeS/NSC)composite using melamine-cyanuric acid(MCA)supermolecule as a multifunctional template precursor.The function of MCA supermolecule for material synthesis is explored,revealing its special function as a dispersant,dopant and pore-forming agent.Furthermore,the effect of Fe source dosage on the morphology,structure and composition of the final products is explored.The resultant FeS/NSC-0.1(where 0.1 represents the mass of added Fe source)exhibits the most optimal proportion,characterized by a good dispersion status of FeS within the NSC matrix,effective N,S co-doping and ample porosity.Benefiting from these merits,the FeS/NSC-0.1 anode demonstrates significantly improved cycling stability and rate capability when compared to the counterparts.Undoubtedly,this work offers a universal method to produce advanced transition metal sulfide/carbon composite electrodes for energy storage and conversion systems.展开更多
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts...Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.展开更多
Constructing controllable thermal conduction networks is the key to efficiently improve thermal conductivities of polymer composites.In this work,graphite oxide(GO)and functionalized carbon nanotubes(f-CNTs)are combin...Constructing controllable thermal conduction networks is the key to efficiently improve thermal conductivities of polymer composites.In this work,graphite oxide(GO)and functionalized carbon nanotubes(f-CNTs)are combined to prepare“Line-Plane”-like hetero-structured thermally conductive GO@f-CNTs fillers,which are then performed to construct controllable 3D GO@f-CNTs thermal conduction networks via selfsacrificing template method based on oxalic acid.Subsequently,thermally conductive GO@f-CNTs/polydimethylsiloxane(PDMS)composites are fabricated via casting method.When the size of oxalic acid is 0.24 mm and the volume fraction of GO@f-CNTs is 60 vol%,GO@f-CNTs/PDMS composites present the optimal thermal conductivity coefficient(λ,4.00 W·m^(-1)·K^(-1)),about 20 times that of theλof neat PDMS(0.20 W·m^(-1)·K^(-1)),also much higher than theλ(2.44 W·m^(-1)·K^(-1))of GO/f-CNTs/PDMS composites with the same amount of randomly dispersed fillers.Meanwhile,the obtained GO@f-CNTs/PDMS composites have excellent thermal stability,whoseλdeviation is only about 3%after 500 thermal cycles(20-200℃).展开更多
The swift advancement of electronics technology has led to a burgeoning interest in multifunctionaliz-ing electromagnetic wave(EMW)absorption materials as a prospective avenue for future development.However,the effect...The swift advancement of electronics technology has led to a burgeoning interest in multifunctionaliz-ing electromagnetic wave(EMW)absorption materials as a prospective avenue for future development.However,the effective integration of diverse functions within a single material continues to present chal-lenges.This work successfully fabricated a three-dimensional(3D)porous Co_(6)Mo_(6)C_(2)/Mo_(2)C@NC frame-work with carbon microspheres through uncomplicated freeze-drying and high-temperature pyrolysis techniques.The resultant magnetic bimetallic carbide(Co_(6)Mo_(6)C_(2) and Mo_(2)C)nanoparticles are uniformly and densely embedded within the carbon layer,facilitated jointly by a rigid template(molybdenum salt)and a flexible template(glucose),thus realizing an exceptional dual loss mechanism involving dielectric and magnetic components.The establishment of the 3D porous conductive network enhances EMW ab-sorption through multiple reflections and scattering mechanisms.Impressively,the Co_(6)Mo_(6)C_(2)/Mo_(2)C@NC framework attains remarkable EMW absorption characteristics with ultralightweight(0.1567 g cm^(-3)),ul-trathin matching thickness(1.7 mm),and robust absorption(reflection loss R_(L) value of-65.89 dB).Fur-thermore,it achieves a noteworthy effective absorption bandwidth(EAB,R_(L)≤-10 dB)spanning 6.4 GHz,ensuring complete absorption of 100%within the X band(8-12 GHz)at a matching thickness of 2 mm.In addition,the Co_(6)Mo_(6)C_(2)/Mo_(2)C@NC framework exhibits pronounced hydrophobicity and magnetic respon-siveness,bestowing upon it appealing attributes including self-cleaning,flame retardancy,and thermal insulation,on par with those observed in commercial products.The radar cross-sectional area(RSC)re-duction value of the Co_(6)Mo_(6)C_(2)/Mo_(2)C@NC framework can reach 35.2 dB m^(2) by RSC simulation,which can effectively lower the likelihood of detection by radar detectors for the target.This study presents a viable strategy for the advancement of novel lightweight and multifunctional materials that demonstrate exceptional performance in absorbing electromagnetic waves.展开更多
Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assist...Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assisted method to induce graphitic nanodomains and micro-mesopores into nitrogen-doped carbons.This study elucidates that these graphitic nanodomains are beneficial for Na+storage.The obtained N-doped carbon(As8Mg)electrode achieved a reversible capacity of 254 mA h g^(-1)at 0.1 A g^(-1).Moreover,the As8Mg-based SIC device achieves high combinations of power/energy densities(53 W kg^(-1)at 224 Wh kg^(-1)and 10410 W kg^(-1)at 51 Wh kg^(-1))with outstanding cycle stability(99.7%retention over 600 cycles at 0.2 A g^(-1)).Our findings provide insights into optimizing carbon’s microstructure to boost sodium storage in the pseudocapacitive mode.展开更多
Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibilit...Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved.展开更多
As an ultra-wide bandgap semiconductor,diamond garners significant interest due to its exceptional physical properties^([1–3]).These superior characteristics make diamonds highly promising for applications in power e...As an ultra-wide bandgap semiconductor,diamond garners significant interest due to its exceptional physical properties^([1–3]).These superior characteristics make diamonds highly promising for applications in power electronics^([4]),deep-ultraviolet detectors^([5]),high-energy particle detectors^([6]),and quantum devices based on color centers^([7]).展开更多
Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applic...Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applications.In this work,we propose to explore piezoelectric anisotropy and domain engineering in compositionµstructure-controlled textured ceramics to resolve this issue.[001]c-textured 0.94(Bi_(0.5) Na_(0.5))TiO_(3)–0.06BaTiO_(3)(0.94BNT-0.06BT)ceramics with Lotgering factor F_(001)-91% were fabricated through homoepitaxial templated grain growth(TGG)via using 0.94BNT-0.06BT microplatelet templates.The textured samples exhibited more ordered domains with facilitated domain switching behavior,being consistent with saturated high polarization achieved at lower electric fields.Increasing F_(001) to above 60%enables rapid enhancement of piezoelectric response.Notably,compared to non-textured counterpart,the maximally textured ceramics exhibited-236%enhanced piezoelectric coefficient(d_(33)-302 pC/N)and-280% enhanced piezoelectric voltage coefficient(g_(33)-49.8×10^(−3)Vm/N),together with slightly increased depolarization temperature(T_(d)-106℃).Moreover,those values are approaching or even higher than the single-crystal values.This work not only provides important guidelines for design and synthesis of novel textured ceramics with improved comprehensive electrical properties,but also can expand application fields of BNT-based ceramics.展开更多
BACKGROUND There is still considerable heterogeneity regarding which features of cryptoglandular anal fistula on magnetic resonance imaging(MRI)and endoanal ultrasound(EAUS)are relevant to surgical decision-making.As ...BACKGROUND There is still considerable heterogeneity regarding which features of cryptoglandular anal fistula on magnetic resonance imaging(MRI)and endoanal ultrasound(EAUS)are relevant to surgical decision-making.As a con-sequence,the quality and completeness of the report are highly dependent on the training and experience of the examiners.AIM To develop a structured MRI and EAUS template(SMART)reporting the minimum dataset of information for the treatment of anal fistulas.METHODS This modified Delphi survey based on the RAND-UCLA appropriateness for consensus-building was conducted between May and August 2023.One hundred and fifty-one articles selected from a systematic review of the lite-rature formed the database to generate the evidence-based statements for the Delphi study.Fourteen questions were anonymously voted by an interdisciplinary multidisciplinary group for a maximum of three iterative rounds.The degree of agreement was scored on a numeric 0–10 scale.Group consensus was defined as a score≥8 for≥80%of the panelists.RESULTS Eleven scientific societies(3 radiological and 8 surgical)endorsed the study.After three rounds of voting,the experts(69 colorectal surgeons,23 radiologists,2 anatomists,and 1 gastroenterologist)achieved consensus for 12 of 14 statements(85.7%).Based on the results of the Delphi process,the six following features of anal fistulas were included in the SMART:Primary tract,secondary extension,internal opening,presence of collection,coexisting le-sions,and sphincters morphology.CONCLUSION A structured template,SMART,was developed to standardize imaging reporting of fistula-in-ano in a simple,systematic,time-efficient way,providing the minimum dataset of information and visual diagram useful to refer-ring physicians.展开更多
Quantitative prediction of reservoir properties(e.g., gas saturation, porosity, and shale content) of tight reservoirs is of great significance for resource evaluation and well placements. However, the complex pore st...Quantitative prediction of reservoir properties(e.g., gas saturation, porosity, and shale content) of tight reservoirs is of great significance for resource evaluation and well placements. However, the complex pore structures, poor pore connectivity, and uneven fluid distribution of tight sandstone reservoirs make the correlation between reservoir parameters and elastic properties more complicated and thus pose a major challenge in seismic reservoir characterization. We have developed a partially connected double porosity model to calculate elastic properties by considering the pore structure and connectivity, and to analyze these factors' influences on the elastic behaviors of tight sandstone reservoirs. The modeling results suggest that the bulk modulus is likely to be affected by the pore connectivity coefficient, while the shear modulus is sensitive to the volumetric fraction of stiff pores. By comparing the model predictions with the acoustic measurements of the dry and saturated quartz sandstone samples, the volumetric fraction of stiff pores and the pore connectivity coefficient can be determined. Based on the calibrated model, we have constructed a 3D rock physics template that accounts for the reservoir properties' impacts on the P-wave impedance, S-wave impedance, and density. The template combined with Bayesian inverse theory is used to quantify gas saturation, porosity, clay content, and their corresponding uncertainties from elastic parameters. The application of well-log and seismic data demonstrates that our 3D rock physics template-based probabilistic inversion approach performs well in predicting the spatial distribution of high-quality tight sandstone reservoirs in southwestern China.展开更多
The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of...The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of defining the semantic template of relation manually is particularly prominent in the extraction effect because it can obtain the deep semantic information of relation.However,this method has some problems,such as relying on expert experience and poor portability.Inspired by the rule-based entity relation extraction method,this paper proposes a joint entity relation extraction model based on a relation semantic template automatically constructed,which is abbreviated as RSTAC.This model refines the extraction rules of relation semantic templates from relation corpus through dependency parsing and realizes the automatic construction of relation semantic templates.Based on the relation semantic template,the process of relation classification and triplet extraction is constrained,and finally,the entity relation triplet is obtained.The experimental results on the three major Chinese datasets of DuIE,SanWen,and FinRE showthat the RSTAC model successfully obtains rich deep semantics of relation,improves the extraction effect of entity relation triples,and the F1 scores are increased by an average of 0.96% compared with classical joint extraction models such as CasRel,TPLinker,and RFBFN.展开更多
基金financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2023b0145)the Scientific Research Innovation Project of Graduate School of South China Normal University(2024KYLX047)financial support from the Australian Research Council,Centre for Materials Science,Queensland University of Technology.
文摘Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality.
文摘Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face of nickel foam(NF).The specific structure of the as-prepared FeOOH@CoMoO_(4)/NF-400s provided pronounced porosity and extensive surface area,enhancing rapid electron transport and exposing abundant active sites to improve catalytic reactions.Furthermore,the introduction of FeOOH,which induces electron transfer from FeOOH to CoMoO_(4),confirms their strong electronic interaction,thereby leading to an accelerated surface catalytic reaction.Consequently,the constructed FeOOH@CoMoO_(4)/NF-400s heterostructure demonstrated exceptional oxygen evolu-tion reaction(OER)activity,requiring an overpotential of 199 mV to deliver the current density of 10 mA·cm^(-2),cou-pled with the superior Tafel slope value of 49.56 mV·dec^(-1)and outstanding stability over 20 h under the current densities of both 10 and 100 mA·cm^(-2).
基金Sichuan Provincial Science and Technology Support Program,Grant/Award Number:2023YFG0151National Natural Science Foundation of China,Grant/Award Numbers:U22B2061,U2336204。
文摘Existing Chinese named entity recognition(NER)research utilises 1D lexicon-based sequence labelling frameworks,which can only recognise flat entities.While lexicons serve as prior knowledge and enhance semantic information,they also pose completeness and resource requirements limitations.This paper proposes a template-based classification(TC)model to avoid lexicon issues and to identify nested entities.Template-based classification provides a template word for each entity type,which utilises contrastive learning to integrate the common characteristics among entities with the same category.Contrastive learning makes template words the centre points of their category in the vector space,thus improving generalisation ability.Additionally,TC presents a 2D tablefilling label scheme that classifies entities based on the attention distribution of template words.The proposed novel decoder algorithm enables TC recognition of both flat and nested entities simultaneously.Experimental results show that TC achieves the state-ofthe-art performance on five Chinese datasets.
基金supported by the National Key R&D Program of China(No.2022YFE0140100)the National Natural Science Foundation of China(Nos.52273271 and 62321004)partly supported by the Key R&D Program of Guangdong Province(No.2020B01074003)。
文摘In the present work,the high uniform 6-inch single-crystalline AlN template is successfully achieved by high temperature annealing technique,which opens up the path towards industrial application in power device.Moreover,the outstanding crystalline-quality is confirmed by Rutherford backscattering spectrometry(RBS).In accompanied with the results from X-ray diffraction,the RBS results along both[0001]and[1213]reveal that the in-plane lattice is effectively reordered by high temperature annealing.In addition,the constantΦ_(epi)angle between[0001]and[1213]at different depths of 31.54°confirms the uniform compressive strain inside the AlN region.Benefitting from the excellent crystalline quality of AlN template,we can epitaxially grow the enhanced-mode high electron mobility transistor(HEMT)with a graded AlGaN buffer as thin as only~300 nm.Such an ultra-thin AlGaN buffer layer results in the wafer-bow as low as 18.1μm in 6-inch wafer scale.The fabricated HEMT devices with 16μm-L_(GD)exhibits a threshold voltage(V_(TH))of 1.1 V and a high OFF-state breakdown voltage(V_(BD))over 1400 V.Furthermore,after 200 V high-voltage OFF-state stress,the current collapse is only 13.6%.Therefore,the advantages of both 6-inch size and excellent crystallinity announces the superiority of single-crystalline AlN template in low-cost electrical power applications.
基金the financial support for this work from the National Natural Science Foundation of China(Nos.52171241,52373251,52201301,51801137)Natural Science Foundation of Tianjin City,China(No.22JCQNJC00750)Tianjin University of Technology Graduate Research Innovation Project,China(No.YJ2235)。
文摘The Mg−1Zn−1Sn and Mg−1Zn−1Sn−0.2Ca alloy scaffolds were prepared via infiltration casting using 3D-printed Ti templates to achieve complete and accurate control of the pore structure.The results indicate that the actual porosity and pore size of the prepared P model for each pore size are greater than the designed values.The addition of Ca changes the second phase of the alloy from Mg_(2)Sn to CaMgSn and refines its microstructure.The compressive yield strength and compressive modulus of the Mg−1Zn−1Sn−0.2Ca alloy scaffold reach 32.61 MPa and 0.23 GPa,respectively.The corrosion current density is measured at 14.64μA/cm^(2),with an instantaneous corrosion rate of 0.335 mm/a.Both scaffolds exhibit excellent biocompatibility and no cytotoxicity.Additionally,the antibacterial effects of both alloys on E.coli are greater than 97.81%.These results indicate that Mg alloy scaffolds have great potential for clinical applications.
基金Natural Science Foundation of Xinjiang Uygur Autonomous Region,Grant/Award Number:2023D01C11National Natural Science Foundation of China,Grant/Award Numbers:22369019,U2003216+2 种基金Special Projects on Regional Collaborative Innovation-SCO Science and Technology Partnership Program,International Science and Technology Cooperation Program,Grant/Award Number:2022E01020Tianshan Talent Training Program,Grant/Award Number:2023TSYCLJ0019National Key Research and Development Program of China,Grant/Award Numbers:2022YFB4101600,2022YFB4101601。
文摘The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a template-oriented strategy coupled with multi-heteroatom modification is proposed to precisely synthesize a three-dimensional boron/nitrogen-rich carbon nanoflake-interconnected micro/nano superstructure,referred to as BNPC.The hierarchically porous framework of BNPC shares short channels for fast Zn2+transport,increased adsorption-site accessibility,and structural robustness.Additionally,the boron/nitrogen incorporation effect significantly augments Zn2+adsorption capability and more distinctive pseudocapacitive nature,notably enhancing Zn-ion storage and transmission kinetics by performing the dual-storage mechanism of the electric double-layer capacitance and Faradaic redox process in BNPC cathode.These merits contribute to a high capacity(143.7 mAh g^(-1)at 0.2 A g^(-1))and excellent rate capability(84.5 mAh g^(-1)at 30 A g^(-1))of BNPC-based aqueous ZHC,and the ZHC still shows an ultrahigh capacity of 108.5 mAh g^(-1)even under a high BNPC mass loading of 12 mg cm^(-2).More critically,the BNPC-based flexible device also sustains notable cyclability over 30,000 cycles and low-rate self-discharge of 2.13 mV h-1 along with a preeminent energy output of 117.15 Wh kg^(-1)at a power density of 163.15Wkg^(-1),favoring a creditable applicability in modern electronics.In/ex-situ analysis and theoretical calculations elaborately elucidate the enhanced charge storage mechanism in depth.The findings offer a promising platform for the development of advanced carbon cathodes and corresponding electrochemical devices.
文摘With the rapid development of Internet of things technology,the efficiency of data transmission between devices has been significantly improved.However,the open network environment also poses serious security risks.This paper proposes an innovative fingerprint template protection scheme,which generates key streams through an improved fourdimensional superchaotic system(4CSCS),uses the space-filling property of Hilbert curves to achieve pixel scrambling,and introduces dynamic DNA encoding to improve encryption.Experimental results show that this scheme has a large key space 2^(528),encrypts image information entropy of more than 7.9970,and shows excellent performance in defending against statistical attacks and differential attacks.Compared with existing methods,this scheme has significant advantages in terms of encryption performance and security,and provides a reliable protection mechanism for fingerprint authentication systems in the Internet of things environment.
文摘Biometric template protection is essential for finger-based authentication systems,as template tampering and adversarial attacks threaten the security.This paper proposes a DCT-based fragile watermarking scheme incorporating AI-based tamper detection to improve the integrity and robustness of finger authentication.The system was tested against NIST SD4 and Anguli fingerprint datasets,wherein 10,000 watermarked fingerprints were employed for training.The designed approach recorded a tamper detection rate of 98.3%,performing 3–6%better than current DCT,SVD,and DWT-based watermarking approaches.The false positive rate(≤1.2%)and false negative rate(≤1.5%)were much lower compared to previous research,which maintained high reliability for template change detection.The system showed real-time performance,averaging 12–18 ms processing time per template,and is thus suitable for real-world biometric authentication scenarios.Quality analysis of fingerprints indicated that NFIQ scores were enhanced from 2.07 to 1.81,reflecting improved minutiae clarity and ridge structure preservation.The approach also exhibited strong resistance to compression and noise distortions,with the improvements in PSNR being 2 dB(JPEG compression Q=80)and the SSIM values rising by 3%–5%under noise attacks.Comparative assessment demonstrated that training with NIST SD4 data greatly improved the ridge continuity and quality of fingerprints,resulting in better match scores(260–295)when tested against Bozorth3.Smaller batch sizes(batch=2)also resulted in improved ridge clarity,whereas larger batch sizes(batch=8)resulted in distortions.The DCNN-based tamper detection model supported real-time classification,which greatly minimized template exposure to adversarial attacks and synthetic fingerprint forgeries.Results demonstrate that fragile watermarking with AI indeed greatly enhances fingerprint security,providing privacy-preserving biometric authentication with high robustness,accuracy,and computational efficiency.
文摘Corn starch was used as a templating agent,and an oxide mixture containing alumina,magnesia,zirconia and yttria was added in the sol-gel state.After slip casting,curing at 85℃,drying and sintering,high-performance porous alumina ceramics were obtained.The properties of the porous alumina ceramics were analyzed by means of SEM,XRD,flexural strength and porosity.The research findings showed that,when the starch content was 1 wt%,the prepared ceramic mainly consisted of four phases:α-Al_(2)O_(3),MgAl_(2)O_(4),ZrO,and YSZ.The flexural strength reached 157.27 MPa,the flexural strength of the green body was about 3 MPa,and the porosity was around 30%.
基金supported by the Science Technology Talents Lifting Project of Hunan Province(No.2022TJ-N16)the Natural Science Foundation of Hunan Province(Nos.2024JJ4022,2023JJ30277,2025JJ60382)+3 种基金the China Postdoctoral Fellowship Program(GZC20233205)the Scientifc Research Fund of Hunan Provincial Education Department,China(No.24B0270)the National Natural Science Foundation of China(No.32201646)the Key Project of Jiangxi Provincial Research and Development Program(No.20243BBI91001).
文摘The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile self-sacrifice template method is developed to prepare FeS encapsulated into N,S co-doped carbon(FeS/NSC)composite using melamine-cyanuric acid(MCA)supermolecule as a multifunctional template precursor.The function of MCA supermolecule for material synthesis is explored,revealing its special function as a dispersant,dopant and pore-forming agent.Furthermore,the effect of Fe source dosage on the morphology,structure and composition of the final products is explored.The resultant FeS/NSC-0.1(where 0.1 represents the mass of added Fe source)exhibits the most optimal proportion,characterized by a good dispersion status of FeS within the NSC matrix,effective N,S co-doping and ample porosity.Benefiting from these merits,the FeS/NSC-0.1 anode demonstrates significantly improved cycling stability and rate capability when compared to the counterparts.Undoubtedly,this work offers a universal method to produce advanced transition metal sulfide/carbon composite electrodes for energy storage and conversion systems.
基金the support from the CIPHER Project(IIID 2018-008)funded by the Commission on Higher Education-Philippine California Advanced Research Institutes(CHED-PCARI)。
文摘Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.
基金financially supported by the National Natural Science Foundation of China(No.51973173)Technological Base Scientific Research Projects(Highly Thermally Conductive Nonmetal Materials)+3 种基金Natural Science Foundation of Chongqing,China(No.2023NSCQ-MSX2547)Shaanxi Province Key Research and Development Plan Project(No.2023-YBGY-461)Fundamental Research Funds for the Central Universities,the Innovation Capability Support Program of Shaanxi(No.2024RS-CXTD-57)financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars。
文摘Constructing controllable thermal conduction networks is the key to efficiently improve thermal conductivities of polymer composites.In this work,graphite oxide(GO)and functionalized carbon nanotubes(f-CNTs)are combined to prepare“Line-Plane”-like hetero-structured thermally conductive GO@f-CNTs fillers,which are then performed to construct controllable 3D GO@f-CNTs thermal conduction networks via selfsacrificing template method based on oxalic acid.Subsequently,thermally conductive GO@f-CNTs/polydimethylsiloxane(PDMS)composites are fabricated via casting method.When the size of oxalic acid is 0.24 mm and the volume fraction of GO@f-CNTs is 60 vol%,GO@f-CNTs/PDMS composites present the optimal thermal conductivity coefficient(λ,4.00 W·m^(-1)·K^(-1)),about 20 times that of theλof neat PDMS(0.20 W·m^(-1)·K^(-1)),also much higher than theλ(2.44 W·m^(-1)·K^(-1))of GO/f-CNTs/PDMS composites with the same amount of randomly dispersed fillers.Meanwhile,the obtained GO@f-CNTs/PDMS composites have excellent thermal stability,whoseλdeviation is only about 3%after 500 thermal cycles(20-200℃).
基金This work was supported by the National Natural Science Foun-dation of China(No.22269010)the Jiangxi Provincial Natural Sci-ence Foundation(No.20224BAB214021)+3 种基金the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province(No.20212BCJ23020)the Science and Technology Project of Jiangxi Provincial Department of Education(No.GJJ211305)the Opening Project of National Engineering Research Center for Do-mestic&Building Ceramics(No.GXZX2302)the Graduate In-novation Fund of Jiangxi Province(YC2023-S799).
文摘The swift advancement of electronics technology has led to a burgeoning interest in multifunctionaliz-ing electromagnetic wave(EMW)absorption materials as a prospective avenue for future development.However,the effective integration of diverse functions within a single material continues to present chal-lenges.This work successfully fabricated a three-dimensional(3D)porous Co_(6)Mo_(6)C_(2)/Mo_(2)C@NC frame-work with carbon microspheres through uncomplicated freeze-drying and high-temperature pyrolysis techniques.The resultant magnetic bimetallic carbide(Co_(6)Mo_(6)C_(2) and Mo_(2)C)nanoparticles are uniformly and densely embedded within the carbon layer,facilitated jointly by a rigid template(molybdenum salt)and a flexible template(glucose),thus realizing an exceptional dual loss mechanism involving dielectric and magnetic components.The establishment of the 3D porous conductive network enhances EMW ab-sorption through multiple reflections and scattering mechanisms.Impressively,the Co_(6)Mo_(6)C_(2)/Mo_(2)C@NC framework attains remarkable EMW absorption characteristics with ultralightweight(0.1567 g cm^(-3)),ul-trathin matching thickness(1.7 mm),and robust absorption(reflection loss R_(L) value of-65.89 dB).Fur-thermore,it achieves a noteworthy effective absorption bandwidth(EAB,R_(L)≤-10 dB)spanning 6.4 GHz,ensuring complete absorption of 100%within the X band(8-12 GHz)at a matching thickness of 2 mm.In addition,the Co_(6)Mo_(6)C_(2)/Mo_(2)C@NC framework exhibits pronounced hydrophobicity and magnetic respon-siveness,bestowing upon it appealing attributes including self-cleaning,flame retardancy,and thermal insulation,on par with those observed in commercial products.The radar cross-sectional area(RSC)re-duction value of the Co_(6)Mo_(6)C_(2)/Mo_(2)C@NC framework can reach 35.2 dB m^(2) by RSC simulation,which can effectively lower the likelihood of detection by radar detectors for the target.This study presents a viable strategy for the advancement of novel lightweight and multifunctional materials that demonstrate exceptional performance in absorbing electromagnetic waves.
基金the China Scholarship Council for financial supportthe Max Planck Society for financial supportOpen Access funding enabled and organized by Projekt DEAL
文摘Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assisted method to induce graphitic nanodomains and micro-mesopores into nitrogen-doped carbons.This study elucidates that these graphitic nanodomains are beneficial for Na+storage.The obtained N-doped carbon(As8Mg)electrode achieved a reversible capacity of 254 mA h g^(-1)at 0.1 A g^(-1).Moreover,the As8Mg-based SIC device achieves high combinations of power/energy densities(53 W kg^(-1)at 224 Wh kg^(-1)and 10410 W kg^(-1)at 51 Wh kg^(-1))with outstanding cycle stability(99.7%retention over 600 cycles at 0.2 A g^(-1)).Our findings provide insights into optimizing carbon’s microstructure to boost sodium storage in the pseudocapacitive mode.
基金supported by a grant from the Basic Science Research Program through the National Research Foundation(NRF)(2021R1F1A1063634)funded by the Ministry of Science and ICT(MSIT),Republic of KoreaThe authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/13/40)+2 种基金Also,the authors are thankful to Prince Satam bin Abdulaziz University for supporting this study via funding from Prince Satam bin Abdulaziz University project number(PSAU/2024/R/1445)This work was also supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R54)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3608600)the Beijing Municipal Science and Technology Commission(Grant No.Z181100004418009)the National Natural Science Foundation of China(Grant No.61927806)。
文摘As an ultra-wide bandgap semiconductor,diamond garners significant interest due to its exceptional physical properties^([1–3]).These superior characteristics make diamonds highly promising for applications in power electronics^([4]),deep-ultraviolet detectors^([5]),high-energy particle detectors^([6]),and quantum devices based on color centers^([7]).
基金financial support from the National Natural Science Foundation of China(Nos.52072092 and 51922083)the Natural Science Foundation of Heilongjiang Province(No.YQ2019E026)the Fundamental Research Funds for the Central Universities(No.HIT.OCEF.2021018).
文摘Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applications.In this work,we propose to explore piezoelectric anisotropy and domain engineering in compositionµstructure-controlled textured ceramics to resolve this issue.[001]c-textured 0.94(Bi_(0.5) Na_(0.5))TiO_(3)–0.06BaTiO_(3)(0.94BNT-0.06BT)ceramics with Lotgering factor F_(001)-91% were fabricated through homoepitaxial templated grain growth(TGG)via using 0.94BNT-0.06BT microplatelet templates.The textured samples exhibited more ordered domains with facilitated domain switching behavior,being consistent with saturated high polarization achieved at lower electric fields.Increasing F_(001) to above 60%enables rapid enhancement of piezoelectric response.Notably,compared to non-textured counterpart,the maximally textured ceramics exhibited-236%enhanced piezoelectric coefficient(d_(33)-302 pC/N)and-280% enhanced piezoelectric voltage coefficient(g_(33)-49.8×10^(−3)Vm/N),together with slightly increased depolarization temperature(T_(d)-106℃).Moreover,those values are approaching or even higher than the single-crystal values.This work not only provides important guidelines for design and synthesis of novel textured ceramics with improved comprehensive electrical properties,but also can expand application fields of BNT-based ceramics.
文摘BACKGROUND There is still considerable heterogeneity regarding which features of cryptoglandular anal fistula on magnetic resonance imaging(MRI)and endoanal ultrasound(EAUS)are relevant to surgical decision-making.As a con-sequence,the quality and completeness of the report are highly dependent on the training and experience of the examiners.AIM To develop a structured MRI and EAUS template(SMART)reporting the minimum dataset of information for the treatment of anal fistulas.METHODS This modified Delphi survey based on the RAND-UCLA appropriateness for consensus-building was conducted between May and August 2023.One hundred and fifty-one articles selected from a systematic review of the lite-rature formed the database to generate the evidence-based statements for the Delphi study.Fourteen questions were anonymously voted by an interdisciplinary multidisciplinary group for a maximum of three iterative rounds.The degree of agreement was scored on a numeric 0–10 scale.Group consensus was defined as a score≥8 for≥80%of the panelists.RESULTS Eleven scientific societies(3 radiological and 8 surgical)endorsed the study.After three rounds of voting,the experts(69 colorectal surgeons,23 radiologists,2 anatomists,and 1 gastroenterologist)achieved consensus for 12 of 14 statements(85.7%).Based on the results of the Delphi process,the six following features of anal fistulas were included in the SMART:Primary tract,secondary extension,internal opening,presence of collection,coexisting le-sions,and sphincters morphology.CONCLUSION A structured template,SMART,was developed to standardize imaging reporting of fistula-in-ano in a simple,systematic,time-efficient way,providing the minimum dataset of information and visual diagram useful to refer-ring physicians.
基金supported by the National Natural Science Foundation of China (42104121)the Scientific Research and Technology Development Project of the CNPC (2021DJ0606)。
文摘Quantitative prediction of reservoir properties(e.g., gas saturation, porosity, and shale content) of tight reservoirs is of great significance for resource evaluation and well placements. However, the complex pore structures, poor pore connectivity, and uneven fluid distribution of tight sandstone reservoirs make the correlation between reservoir parameters and elastic properties more complicated and thus pose a major challenge in seismic reservoir characterization. We have developed a partially connected double porosity model to calculate elastic properties by considering the pore structure and connectivity, and to analyze these factors' influences on the elastic behaviors of tight sandstone reservoirs. The modeling results suggest that the bulk modulus is likely to be affected by the pore connectivity coefficient, while the shear modulus is sensitive to the volumetric fraction of stiff pores. By comparing the model predictions with the acoustic measurements of the dry and saturated quartz sandstone samples, the volumetric fraction of stiff pores and the pore connectivity coefficient can be determined. Based on the calibrated model, we have constructed a 3D rock physics template that accounts for the reservoir properties' impacts on the P-wave impedance, S-wave impedance, and density. The template combined with Bayesian inverse theory is used to quantify gas saturation, porosity, clay content, and their corresponding uncertainties from elastic parameters. The application of well-log and seismic data demonstrates that our 3D rock physics template-based probabilistic inversion approach performs well in predicting the spatial distribution of high-quality tight sandstone reservoirs in southwestern China.
基金supported by the National Natural Science Foundation of China(Nos.U1804263,U1736214,62172435)the Zhongyuan Science and Technology Innovation Leading Talent Project(No.214200510019).
文摘The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of defining the semantic template of relation manually is particularly prominent in the extraction effect because it can obtain the deep semantic information of relation.However,this method has some problems,such as relying on expert experience and poor portability.Inspired by the rule-based entity relation extraction method,this paper proposes a joint entity relation extraction model based on a relation semantic template automatically constructed,which is abbreviated as RSTAC.This model refines the extraction rules of relation semantic templates from relation corpus through dependency parsing and realizes the automatic construction of relation semantic templates.Based on the relation semantic template,the process of relation classification and triplet extraction is constrained,and finally,the entity relation triplet is obtained.The experimental results on the three major Chinese datasets of DuIE,SanWen,and FinRE showthat the RSTAC model successfully obtains rich deep semantics of relation,improves the extraction effect of entity relation triples,and the F1 scores are increased by an average of 0.96% compared with classical joint extraction models such as CasRel,TPLinker,and RFBFN.