期刊文献+
共找到280,478篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing Deepfake Detection:Proactive Forensics Techniques Using Digital Watermarking
1
作者 Zhimao Lai Saad Arif +2 位作者 Cong Feng Guangjun Liao Chuntao Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期73-102,共30页
With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed... With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics. 展开更多
关键词 deepfake proactive forensics digital watermarking TRACEABILITY detection techniques
在线阅读 下载PDF
Key techniques for precise measuring gas content in deep coal mine:In-situ pressure-and gas-preserved coring 被引量:1
2
作者 Ju Li Jianan Li +4 位作者 Tianyu Wang Guikang Liu Zhiqiang He Cong Li Heping Xie 《International Journal of Mining Science and Technology》 2025年第4期589-607,共19页
Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the... Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the integrity of gas content within samples and are often constrained by estimation errors inherent in empirical formulas,which results in inaccurate gas content measurements.This study introduces a lightweight,in-situ pressure-and gas-preserved corer designed to collect coal samples under the pressure conditions at the sampling point,effectively preventing gas loss during transfer and significantly improving measurement accuracy.Additionally,a gas migration model for deep coal mines was developed to elucidate gas migration characteristics under pressure-preserved coring conditions.The model offers valuable insights for optimizing coring parameters,demonstrating that both minimizing the coring hole diameter and reducing the pressure difference between the coring-point pressure and the original pore pressure can effectively improve the precision of gas content measurements.Coring tests conducted at an experimental base validated the performance of the corer and its effectiveness in sample collection.Furthermore,successful horizontal coring tests conducted in an underground coal mine roadway demonstrated that the measured gas content using pressure-preserved coring was 34%higher than that obtained through open sampling methods. 展开更多
关键词 Pressure-and gas-preserved coring deep coal mines coring Gas migration model In-situ gas content
在线阅读 下载PDF
Advanced Techniques for Dynamic Malware Detection and Classification in Digital Security Using Deep Learning
3
作者 Taher Alzahrani 《Computers, Materials & Continua》 2025年第6期4575-4606,共32页
The rapid evolution of malware presents a critical cybersecurity challenge,rendering traditional signature-based detection methods ineffective against novel variants.This growing threat affects individuals,organizatio... The rapid evolution of malware presents a critical cybersecurity challenge,rendering traditional signature-based detection methods ineffective against novel variants.This growing threat affects individuals,organizations,and governments,highlighting the urgent need for robust malware detection mechanisms.Conventional machine learning-based approaches rely on static and dynamicmalware analysis and often struggle to detect previously unseen threats due to their dependency on predefined signatures.Although machine learning algorithms(MLAs)offer promising detection capabilities,their reliance on extensive feature engineering limits real-time applicability.Deep learning techniques mitigate this issue by automating feature extraction but may introduce computational overhead,affecting deployment efficiency.This research evaluates classical MLAs and deep learningmodels to enhance malware detection performance across diverse datasets.The proposed approach integrates a novel text and imagebased detection framework,employing an optimized Support Vector Machine(SVM)for textual data analysis and EfficientNet-B0 for image-based malware classification.Experimental analysis,conducted across multiple train-test splits over varying timescales,demonstrates 99.97%accuracy on textual datasets using SVM and 96.7%accuracy on image-based datasets with EfficientNet-B0,significantly improving zero-day malware detection.Furthermore,a comparative analysis with existing competitive techniques,such as Random Forest,XGBoost,and CNN-based(Convolutional Neural Network)classifiers,highlights the superior performance of the proposed model in terms of accuracy,efficiency,and robustness. 展开更多
关键词 Machine learning EffiicientNet B0 malimg dataset XceptionNet malware detection deep learning techniques support vector machines(SVM)
在线阅读 下载PDF
Deep Learning⁃Based Speech Emotion Recognition: Leveraging Diverse Datasets and Augmentation Techniques for Robust Modeling
4
作者 Ayush Porwal Praveen Kumar Tyagi +1 位作者 Ajay Sharma Dheeraj Kumar Agarwal 《Journal of Harbin Institute of Technology(New Series)》 2025年第3期54-65,共12页
In recent years,Speech Emotion Recognition(SER)has developed into an essential instrument for interpreting human emotions from auditory data.The proposed research focuses on the development of a SER system employing d... In recent years,Speech Emotion Recognition(SER)has developed into an essential instrument for interpreting human emotions from auditory data.The proposed research focuses on the development of a SER system employing deep learning and multiple datasets containing samples of emotive speech.The primary objective of this research endeavor is to investigate the utilization of Convolutional Neural Networks(CNNs)in the process of sound feature extraction.Stretching,pitch manipulation,and noise injection are a few of the techniques utilized in this study to improve the data quality.Feature extraction methods including Zero Crossing Rate,Chroma_stft,Mel⁃scale Frequency Cepstral Coefficients(MFCC),Root Mean Square(RMS),and Mel⁃Spectogram are used to train a model.By using these techniques,audio signals can be transformed into recognized features that can be utilized to train the model.Ultimately,the study produces a thorough evaluation of the models performance.When this method was applied,the model achieved an impressive accuracy of 94.57%on the test dataset.The proposed work was also validated on the EMO⁃BD and IEMOCAP datasets.These consist of further data augmentation,feature engineering,and hyperparameter optimization.By following these development paths,SER systems will be able to be implemented in real⁃world scenarios with greater accuracy and resilience. 展开更多
关键词 voice signal emotion recognition deep learning CNN
在线阅读 下载PDF
A Comparative Study of Data Representation Techniques for Deep Learning-Based Classification of Promoter and Histone-Associated DNA Regions
5
作者 Sarab Almuhaideb Najwa Altwaijry +2 位作者 Isra Al-Turaiki Ahmad Raza Khan Hamza Ali Rizvi 《Computers, Materials & Continua》 2025年第11期3095-3128,共34页
Many bioinformatics applications require determining the class of a newly sequenced Deoxyribonucleic acid(DNA)sequence,making DNA sequence classification an integral step in performing bioinformatics analysis,where la... Many bioinformatics applications require determining the class of a newly sequenced Deoxyribonucleic acid(DNA)sequence,making DNA sequence classification an integral step in performing bioinformatics analysis,where large biomedical datasets are transformed into valuable knowledge.Existing methods rely on a feature extraction step and suffer from high computational time requirements.In contrast,newer approaches leveraging deep learning have shown significant promise in enhancing accuracy and efficiency.In this paper,we investigate the performance of various deep learning architectures:Convolutional Neural Network(CNN),CNN-Long Short-Term Memory(CNNLSTM),CNN-Bidirectional Long Short-Term Memory(CNN-BiLSTM),Residual Network(ResNet),and InceptionV3 for DNA sequence classification.Various numerical and visual data representation techniques are utilized to represent the input datasets,including:label encoding,k-mer sentence encoding,k-mer one-hot vector,Frequency Chaos Game Representation(FCGR)and 5-Color Map(ColorSquare).Three datasets are used for the training of the models including H3,H4 and DNA Sequence Dataset(Yeast,Human,Arabidopsis Thaliana).Experiments are performed to determine which combination of DNA representation and deep learning architecture yields improved performance for the classification task.Our results indicate that using a hybrid CNN-LSTM neural network trained on DNA sequences represented as one-hot encoded k-mer sequences yields the best performance,achieving an accuracy of 92.1%. 展开更多
关键词 DNA sequence classification deep learning data visualization
在线阅读 下载PDF
Statistical study of auroral variability under different solar wind conditions based on classification using deep learning techniques
6
作者 ZhiYuan Shang ZhongHua Yao +6 位作者 Jian Liu LinLi Xu Yan Xu BinZheng Zhang RuiLong Guo Yuan Yu Yong Wei 《Earth and Planetary Physics》 2025年第6期1163-1170,共8页
In this investigation,we meticulously annotated a corpus of 21,174 auroral images captured by the THEMIS All-Sky Imager across diverse temporal instances.These images were categorized using an array of descriptors suc... In this investigation,we meticulously annotated a corpus of 21,174 auroral images captured by the THEMIS All-Sky Imager across diverse temporal instances.These images were categorized using an array of descriptors such as'arc','ab'(aurora but bright),'cloudy','diffuse','discrete',and'clear'.Subsequently,we utilized a state-of-the-art convolutional neural network,ConvNeXt(Convolutional Neural Network Next),deploying deep learning techniques to train the model on a dataset classified into six distinct categories.Remarkably,on the test set our methodology attained an accuracy of 99.4%,a performance metric closely mirroring human visual observation,thereby underscoring the classifier’s competence in paralleling human perceptual accuracy.Building upon this foundation,we embarked on the identification of large-scale auroral optical data,meticulously quantifying the monthly occurrence and Magnetic Local Time(MLT)variations of auroras from stations at different latitudes:RANK(high-latitude),FSMI(mid-latitude),and ATHA(low-latitude),under different solar wind conditions.This study paves the way for future explorations into the temporal variations of auroral phenomena in diverse geomagnetic contexts. 展开更多
关键词 aurora classification deep learning user graphical interface
在线阅读 下载PDF
A Survey of Deep Learning for Time Series Forecasting:Theories,Datasets,and State-of-the-Art Techniques
7
作者 Gaoyong Lu Yang Ou +5 位作者 Zhihong Wang Yingnan Qu Yingsheng Xia Dibin Tang Igor Kotenko Wei Li 《Computers, Materials & Continua》 2025年第11期2403-2441,共39页
Deep learning(DL)has revolutionized time series forecasting(TSF),surpassing traditional statistical methods(e.g.,ARIMA)and machine learning techniques in modeling complex nonlinear dynamics and long-term dependencies ... Deep learning(DL)has revolutionized time series forecasting(TSF),surpassing traditional statistical methods(e.g.,ARIMA)and machine learning techniques in modeling complex nonlinear dynamics and long-term dependencies prevalent in real-world temporal data.This comprehensive survey reviews state-of-the-art DL architectures forTSF,focusing on four core paradigms:(1)ConvolutionalNeuralNetworks(CNNs),adept at extracting localized temporal features;(2)Recurrent Neural Networks(RNNs)and their advanced variants(LSTM,GRU),designed for sequential dependency modeling;(3)Graph Neural Networks(GNNs),specialized for forecasting structured relational data with spatial-temporal dependencies;and(4)Transformer-based models,leveraging self-attention mechanisms to capture global temporal patterns efficiently.We provide a rigorous analysis of the theoretical underpinnings,recent algorithmic advancements(e.g.,TCNs,attention mechanisms,hybrid architectures),and practical applications of each framework,supported by extensive benchmark datasets(e.g.,ETT,traffic flow,financial indicators)and standardized evaluation metrics(MAE,MSE,RMSE).Critical challenges,including handling irregular sampling intervals,integrating domain knowledge for robustness,and managing computational complexity,are thoroughly discussed.Emerging research directions highlighted include diffusion models for uncertainty quantification,hybrid pipelines combining classical statistical and DL techniques for enhanced interpretability,quantile regression with Transformers for riskaware forecasting,and optimizations for real-time deployment.This work serves as an essential reference,consolidating methodological innovations,empirical resources,and future trends to bridge the gap between theoretical research and practical implementation needs for researchers and practitioners in the field. 展开更多
关键词 Time series forecasting deep learning TRANSFORMER neural network
在线阅读 下载PDF
Chinese DeepSeek: Performance of Various Oversampling Techniques on Public Perceptions Using Natural Language Processing
8
作者 Anees Ara Muhammad Mujahid +2 位作者 Amal Al-Rasheed Shaha Al-Otaibi Tanzila Saba 《Computers, Materials & Continua》 2025年第8期2717-2731,共15页
DeepSeek Chinese artificial intelligence(AI)open-source model,has gained a lot of attention due to its economical training and efficient inference.DeepSeek,a model trained on large-scale reinforcement learning without... DeepSeek Chinese artificial intelligence(AI)open-source model,has gained a lot of attention due to its economical training and efficient inference.DeepSeek,a model trained on large-scale reinforcement learning without supervised fine-tuning as a preliminary step,demonstrates remarkable reasoning capabilities of performing a wide range of tasks.DeepSeek is a prominent AI-driven chatbot that assists individuals in learning and enhances responses by generating insightful solutions to inquiries.Users possess divergent viewpoints regarding advanced models like DeepSeek,posting both their merits and shortcomings across several social media platforms.This research presents a new framework for predicting public sentiment to evaluate perceptions of DeepSeek.To transform the unstructured data into a suitable manner,we initially collect DeepSeek-related tweets from Twitter and subsequently implement various preprocessing methods.Subsequently,we annotated the tweets utilizing the Valence Aware Dictionary and sentiment Reasoning(VADER)methodology and the lexicon-driven TextBlob.Next,we classified the attitudes obtained from the purified data utilizing the proposed hybrid model.The proposed hybrid model consists of long-term,shortterm memory(LSTM)and bidirectional gated recurrent units(BiGRU).To strengthen it,we include multi-head attention,regularizer activation,and dropout units to enhance performance.Topic modeling employing KMeans clustering and Latent Dirichlet Allocation(LDA),was utilized to analyze public behavior concerning DeepSeek.The perceptions demonstrate that 82.5%of the people are positive,15.2%negative,and 2.3%neutral using TextBlob,and 82.8%positive,16.1%negative,and 1.2%neutral using the VADER analysis.The slight difference in results ensures that both analyses concur with their overall perceptions and may have distinct views of language peculiarities.The results indicate that the proposed model surpassed previous state-of-the-art approaches. 展开更多
关键词 deepSeek PREDICTION natural language processing deep learning analysis TextBlob imbalance data
在线阅读 下载PDF
Evaluation of State-of-the-Art Deep Learning Techniques for Plant Disease and Pest Detection
9
作者 MD Tausif Mallick Saptarshi Banerjee +2 位作者 Nityananda Thakur Himadri Nath Saha Amlan Chakrabarti 《Computers, Materials & Continua》 2025年第10期121-180,共60页
Addressing plant diseases and pests is not just crucial;it’s a matter of utmost importance for enhancing crop production and preventing economic losses. Recent advancements in artificial intelligence, machine learnin... Addressing plant diseases and pests is not just crucial;it’s a matter of utmost importance for enhancing crop production and preventing economic losses. Recent advancements in artificial intelligence, machine learning, and deep learning have revolutionised the precision and efficiency of this process, surpassing the limitations of manual identification. This study comprehensively reviews modern computer-based techniques, including recent advances in artificial intelligence, for detecting diseases and pests through images. This paper uniquely categorises methodologies into hyperspectral imaging, non-visualisation techniques, visualisation approaches, modified deep learning architectures, and transformer models, helping researchers gain detailed, insightful understandings. The exhaustive survey of recent works and comparative studies in this domain guides researchers in selecting appropriate and advanced state-of-the-art methods for plant disease and pest detection. Additionally, this paper highlights the consistent superiority of modern AI-based approaches, which often outperform older image analysis methods in terms of speed and accuracy. Further, this survey focuses on the efficiency of vision transformers against well-known deep learning architectures like MobileNetV3, which shows that Hierarchical Vision Transformer (HvT) can achieve accuracy upwards of 99.3% in plant disease detection. The study concludes by addressing the challenges of designing the systems, proposing potential solutions, and outlining directions for future research in this field. 展开更多
关键词 Image processing machine learning deep learning vision transformer pest and disease detection
在线阅读 下载PDF
URLLC Service in UAV Rate-Splitting Multiple Access: Adapting Deep Learning Techniques for Wireless Network
10
作者 Reem Alkanhel Abuzar B.M.Adam +3 位作者 Samia Allaoua Chelloug Dina S.M.Hassan Mohammed Saleh Ali Muthanna Ammar Muthanna 《Computers, Materials & Continua》 2025年第7期607-624,共18页
The 3GPP standard defines the requirements for next-generation wireless networks,with particular attention to Ultra-Reliable Low-Latency Communications(URLLC),critical for applications such as Unmanned Aerial Vehicles... The 3GPP standard defines the requirements for next-generation wireless networks,with particular attention to Ultra-Reliable Low-Latency Communications(URLLC),critical for applications such as Unmanned Aerial Vehicles(UAVs).In this context,Non-Orthogonal Multiple Access(NOMA)has emerged as a promising technique to improve spectrum efficiency and user fairness by allowing multiple users to share the same frequency resources.However,optimizing key parameters–such as beamforming,rate allocation,and UAV trajectory–presents significant challenges due to the nonconvex nature of the problem,especially under stringent URLLC constraints.This paper proposes an advanced deep learning-driven approach to address the resulting complex optimization challenges.We formulate a downlink multiuser UAV,Rate-Splitting Multiple Access(RSMA),and Multiple Input Multiple Output(MIMO)system aimed at maximizing the achievable rate under stringent constraints,including URLLC quality-of-service(QoS),power budgets,rate allocations,and UAV trajectory limitations.Due to the highly nonconvex nature of the optimization problem,we introduce a novel distributed deep reinforcement learning(DRL)framework based on dual-agent deep deterministic policy gradient(DA-DDPG).The proposed framework leverages inception-inspired and deep unfolding architectures to improve feature extraction and convergence in beamforming and rate allocation.For UAV trajectory optimization,we design a dedicated actor-critic agent using a fully connected deep neural network(DNN),further enhanced through incremental learning.Simulation results validate the effectiveness of our approach,demonstrating significant performance gains over existing methods and confirming its potential for real-time URLLC in next-generation UAV communication networks. 展开更多
关键词 deep learning quality-of-service(QoS) rate-splitting multiple access(RSMA) unmanned aerial vehicle(UAV) ultra-reliable low-latency communication(URLLC)
在线阅读 下载PDF
Enhanced Wheat Disease Detection Using Deep Learning and Explainable AI Techniques
11
作者 Hussam Qushtom Ahmad Hasasneh Sari Masri 《Computers, Materials & Continua》 2025年第7期1379-1395,共17页
This study presents an enhanced convolutional neural network(CNN)model integrated with Explainable Artificial Intelligence(XAI)techniques for accurate prediction and interpretation of wheat crop diseases.The aim is to... This study presents an enhanced convolutional neural network(CNN)model integrated with Explainable Artificial Intelligence(XAI)techniques for accurate prediction and interpretation of wheat crop diseases.The aim is to streamline the detection process while offering transparent insights into the model’s decision-making to support effective disease management.To evaluate the model,a dataset was collected from wheat fields in Kotli,Azad Kashmir,Pakistan,and tested across multiple data splits.The proposed model demonstrates improved stability,faster conver-gence,and higher classification accuracy.The results show significant improvements in prediction accuracy and stability compared to prior works,achieving up to 100%accuracy in certain configurations.In addition,XAI methods such as Local Interpretable Model-agnostic Explanations(LIME)and Shapley Additive Explanations(SHAP)were employed to explain the model’s predictions,highlighting the most influential features contributing to classification decisions.The combined use of CNN and XAI offers a dual benefit:strong predictive performance and clear interpretability of outcomes,which is especially critical in real-world agricultural applications.These findings underscore the potential of integrating deep learning models with XAI to advance automated plant disease detection.The study offers a precise,reliable,and interpretable solution for improving wheat production and promoting agricultural sustainability.Future extensions of this work may include scaling the dataset across broader regions and incorporating additional modalities such as environmental data to enhance model robustness and generalization. 展开更多
关键词 Convolutional neural network(CNN) wheat crop disease deep learning disease detection shapley additive explanations(SHAP) local interpretable model-agnostic explanations(LIME)
在线阅读 下载PDF
基于RPA+DeepSeek的企业信息核查审计机器人研究——以ND会计师事务所市监局项目为例 被引量:3
12
作者 程平 唐涔芮 +1 位作者 胥尧 林定逢 《会计之友》 北大核心 2025年第12期107-114,共8页
传统企业信息核查审计工作因流程冗长、效率低、准确性不足及人力消耗大等问题,制约了核查质量和效率。文章以ND会计师事务所市场监督管理局项目为例,提出结合RPA与Deep Seek大模型的技术创新方案,推动核查审计工作的数字化转型。通过... 传统企业信息核查审计工作因流程冗长、效率低、准确性不足及人力消耗大等问题,制约了核查质量和效率。文章以ND会计师事务所市场监督管理局项目为例,提出结合RPA与Deep Seek大模型的技术创新方案,推动核查审计工作的数字化转型。通过构建涵盖应用层、服务层、数据层和基础设施层的审计机器人框架模型,实现从文件识别到报告生成的全流程自动化。Deep Seek大模型凭借其自然语言处理能力和本地化部署优势,提升非结构化数据处理效率和信息抽取精准度;RPA技术通过自动化流程执行,减少人工干预和错误风险。研究表明,RPA与Deep Seek大模型的深度融合显著提高了核查效率与准确性,降低了人力成本,为审计智能化转型提供了技术支撑。实际应用中需重点关注技术集成与业务流程适配、模型性能优化、数据安全与合规性保障,以及人员技术培训与转型支持。 展开更多
关键词 RPA deep Seek 企业信息核查 数字化转型 审计机器人
在线阅读 下载PDF
Deep Seek技术驱动下的童书出版智能化生产范式转型 被引量:1
13
作者 陈苗苗 应莹 《出版广角》 北大核心 2025年第5期64-71,共8页
在数字化浪潮冲击下,传统童书出版业面临选题策划失准、创作滞后、编辑断层、营销低效等结构性困境,亟须通过智能化转型重构生产范式。以Deep Seek多模态大模型为技术框架,系统解析其如何通过动态用户画像、多模态内容生成、智能校对与... 在数字化浪潮冲击下,传统童书出版业面临选题策划失准、创作滞后、编辑断层、营销低效等结构性困境,亟须通过智能化转型重构生产范式。以Deep Seek多模态大模型为技术框架,系统解析其如何通过动态用户画像、多模态内容生成、智能校对与知识图谱、强化学习决策等技术模块,深度赋能童书出版选题策划、作者创作、编辑加工、营销发行全链路智能化升级。童书出版机构在转型过程中面临选题依赖数据遮蔽儿童需求、技术理性消解作者原创性、编辑职能被技术侵蚀、营销发行同质化等挑战,需构建童书出版智能化转型的方法论框架,助力童书出版产业在数字时代重塑核心竞争力。 展开更多
关键词 deep Seek 童书出版 智能化 生产范式
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
14
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 deep Q Networks 深度强化学习 智能交通
在线阅读 下载PDF
DeepSeek赋能基础教育高质量发展(笔谈) 被引量:13
15
作者 罗生全 李霓 +6 位作者 宋萑 荣晴 李洪修 王萌萌 雷浩 马玉林 曾文婕 《天津师范大学学报(基础教育版)》 北大核心 2025年第3期1-14,共14页
数字化赋能基础教育,是实现教育高质量发展的必然趋势。DeepSeek作为我国自主研发的人工智能系统,其在教育领域的多模态处理能力和个性化学习支持功能,为基础教育高质量发展提供了新的技术支撑。具体可从以下几方面着力:一是教师能力提... 数字化赋能基础教育,是实现教育高质量发展的必然趋势。DeepSeek作为我国自主研发的人工智能系统,其在教育领域的多模态处理能力和个性化学习支持功能,为基础教育高质量发展提供了新的技术支撑。具体可从以下几方面着力:一是教师能力提升应着重将培养模式向“思维发展导向”转型、实践场域向“技术嵌入型”重构、制度环境创新向弹性化动态化转变等;二是基础教育课程改革要以数据智能推动个性化教学的规模化、人机协同重构师生互动的深度、人文关怀守护教育本质的温度;三是应对课程知识形态变化需重塑知识选择标准、重构知识组织方式、规范知识表达过程、提升教师数字素养;四是DeepSeek驱动的教师教材使用需基于“思维过程可视化——文化认知与伦理嵌入——生成性交互积累”的三维智能要素,教师要创造性地理解教材、特色化地运用教材、协同化地反思教材使用等;五是DeepSeek赋能深度学习评价需关注评价指标生成的众智叠加、评价方法的教学融入和评价数据处理中的算力支持,以此促进学生的深度学习不断增值。 展开更多
关键词 deepSeek 数字化赋能 教育强国 基础教育课程改革 教师能力 课程知识形态 教师教材使用 深度学习评价
在线阅读 下载PDF
DeepSeek对教育范式的变革与影响 被引量:3
16
作者 李青 杨晋 +2 位作者 易海成 尤著宏 原嫄 《高等建筑教育》 2025年第4期1-12,共12页
生成式人工智能(GAI)技术正在重新定义教育领域的教学与学习方式。自OpenAI发布ChatGPT以来,GAI技术快速发展,应用场景逐渐从文本生成扩展到更复杂的推理与创作。中国深度求索公司推出的DeepSeek模型进一步推动了这一技术在教育中的应用... 生成式人工智能(GAI)技术正在重新定义教育领域的教学与学习方式。自OpenAI发布ChatGPT以来,GAI技术快速发展,应用场景逐渐从文本生成扩展到更复杂的推理与创作。中国深度求索公司推出的DeepSeek模型进一步推动了这一技术在教育中的应用。DeepSeek通过优化推理流程、提高计算效率、提供个性化学习路径,突破了传统教育模式的局限,促进了教育理念的转型。从知识传授向能力培养、从标准化教育向个性化教育转变,DeepSeek不仅推动了教学内容和方法的创新,还促进了教育公平和个性化教学的实现。然而,随着技术的快速发展,教育领域面临诸多风险,包括知识准确性、隐性偏见、数据隐私和学生自主学习能力等问题。探讨了DeepSeek在教育变革中的潜力与挑战,分析其在推动教育理念和教学模式重塑过程中的优势与风险,并提出相应的应对策略。最后,强调教育机构、教师和技术供应商的合作,确保AI技术在推动教育数字化转型的同时,保持人文关怀与教育目标的完整性,以培养具备创新能力、批判性思维和社会责任感的未来公民。 展开更多
关键词 人工智能 教育理念 教学模式 深度融合
在线阅读 下载PDF
技术革命周期与我国算力竞争战略选择——基于DeepSeek复杂经济系统的思考 被引量:5
17
作者 黄晓野 代栓平 李克 《工业技术经济》 北大核心 2025年第4期25-31,共7页
算力是信息化、数字化、智能化时代的新质生产力,是大国博弈利器。算力竞争战略选择关乎一国能否抓住新技术新产业革命机遇,实现综合国力跃迁式增长。以技术-经济范式模型为理论依据,结合全球人工智能发展实践,本文提出我国目前处于算... 算力是信息化、数字化、智能化时代的新质生产力,是大国博弈利器。算力竞争战略选择关乎一国能否抓住新技术新产业革命机遇,实现综合国力跃迁式增长。以技术-经济范式模型为理论依据,结合全球人工智能发展实践,本文提出我国目前处于算力技术革命从导入期过渡到展开期的关键节点,算力发展战略重点应从算力基础设施转移至算力经济领域。高质量算力经济通过整体配置社会资源引领我国进入算力技术革命展开期,充分释放算力市场潜力。以DeepSeek为代表的自主可控产业链、创新性创业主体、经济生态赋能、经济逻辑引导技术创新、因地制宜发展中国式算力经济的复杂算力经济系统,为算力经济高质量发展提供了示范效应。伴随算力市场的扩张,需要提前完善算力市场机制并拓展市场功能。本文认为,应关注“杰文斯悖论(Jevons Paradox)”前瞻性布局与高质量算力经济匹配的算力设施建设;积极完善研发引领长期盈利的竞争机制,以集成创新驱动算力经济,推动完善价值共创机制,壮大算力商品市场和匹配市场。 展开更多
关键词 算力 技术革命周期 算力经济 竞争战略 deepSeek 复杂经济系统 杰文斯悖论 新质生产力
在线阅读 下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data 被引量:4
18
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
Adaptable and Dynamic Access Control Decision-Enforcement Approach Based on Multilayer Hybrid Deep Learning Techniques in BYOD Environment
19
作者 Aljuaid Turkea Ayedh M Ainuddin Wahid Abdul Wahab Mohd Yamani Idna Idris 《Computers, Materials & Continua》 SCIE EI 2024年第9期4663-4686,共24页
Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control sy... Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control systems,such as Attribute-Based Access Control(ABAC)and Role-Based Access Control(RBAC),are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and resources.This paper proposes a method for enforcing access decisions that is adaptable and dynamic,based on multilayer hybrid deep learning techniques,particularly the Tabular Deep Neural Network Tabular DNN method.This technique transforms all input attributes in an access request into a binary classification(allow or deny)using multiple layers,ensuring accurate and efficient access decision-making.The proposed solution was evaluated using the Kaggle Amazon access control policy dataset and demonstrated its effectiveness by achieving a 94%accuracy rate.Additionally,the proposed solution enhances the implementation of access decisions based on a variety of resource and user attributes while ensuring privacy through indirect communication with the Policy Administration Point(PAP).This solution significantly improves the flexibility of access control systems,making themmore dynamic and adaptable to the evolving needs ofmodern organizations.Furthermore,it offers a scalable approach to manage the complexities associated with the BYOD environment,providing a robust framework for secure and efficient access management. 展开更多
关键词 BYOD security access control access control decision-enforcement deep learning neural network techniques TabularDNN MULTILAYER dynamic adaptable FLEXIBILITY bottlenecks performance policy conflict
在线阅读 下载PDF
Machine Learning Techniques Using Deep Instinctive Encoder-Based Feature Extraction for Optimized Breast Cancer Detection
20
作者 Vaishnawi Priyadarshni Sanjay Kumar Sharma +2 位作者 Mohammad Khalid Imam Rahmani Baijnath Kaushik Rania Almajalid 《Computers, Materials & Continua》 SCIE EI 2024年第2期2441-2468,共28页
Breast cancer(BC)is one of the leading causes of death among women worldwide,as it has emerged as the most commonly diagnosed malignancy in women.Early detection and effective treatment of BC can help save women’s li... Breast cancer(BC)is one of the leading causes of death among women worldwide,as it has emerged as the most commonly diagnosed malignancy in women.Early detection and effective treatment of BC can help save women’s lives.Developing an efficient technology-based detection system can lead to non-destructive and preliminary cancer detection techniques.This paper proposes a comprehensive framework that can effectively diagnose cancerous cells from benign cells using the Curated Breast Imaging Subset of the Digital Database for Screening Mammography(CBIS-DDSM)data set.The novelty of the proposed framework lies in the integration of various techniques,where the fusion of deep learning(DL),traditional machine learning(ML)techniques,and enhanced classification models have been deployed using the curated dataset.The analysis outcome proves that the proposed enhanced RF(ERF),enhanced DT(EDT)and enhanced LR(ELR)models for BC detection outperformed most of the existing models with impressive results. 展开更多
关键词 Autoencoder breast cancer deep neural network convolutional neural network image processing machine learning deep learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部