Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
In response to the challenges associated with the traditional synthesis process of hymenidin,such as complex reaction steps,low yields,high costs,and environmental concerns,the synthesis process has been significantly...In response to the challenges associated with the traditional synthesis process of hymenidin,such as complex reaction steps,low yields,high costs,and environmental concerns,the synthesis process has been significantly enhanced by optimizing reaction conditions,screening for efficient catalysts,and incorporating the concepts of green chemistry.The optimized process has significantly improved the synthesis efficiency and product quality of hymenidin,reduced production costs,and minimized environmental pollution,thereby providing robust support for its industrial production and broad application.展开更多
In mass spectrometry, fragments with a mass higher than the original molecular ion provide valuable insights into the molecular structure and can guide the assembly and disassembly processes for chemical synthesis. He...In mass spectrometry, fragments with a mass higher than the original molecular ion provide valuable insights into the molecular structure and can guide the assembly and disassembly processes for chemical synthesis. Here, we report such an example and following up by modifying the solvothermal reaction conditions (temperature and time) it is possible to isolate the high mass species in crystalline form. [Zn_(4)L_(4)Cl_(4)] (Zn_(4)L_(4), L = N-methylbenzimidazole-2-methanolate) has a boat-like Zn_(4)O_(4) core but electrospray ionization mass spectrometry (ESI-MS) of the solution of its crystals shows higher mass peaks of Zn_(5)L_(5), Zn_(5)L_(6) and Zn_(6)L_(6) species. Thus, both disassembly and reassembly are highly probable processes. Consequently, [Zn(HL)_(2)Cl_(2)] (Zn1, L = N-methylbenzimidazole-2-methanolate), [Zn_(4)L_(6)Cl_(2)] (Zn_(4)L_(6), L = N-methylbenzimidazole-2-methanolate) and [Zn_(6)L_(6)Cl_(4)(CH_(3)O)_(2)] (Zn_(6)L_(6), L = N-methylbenzimidazole-2-methanolate) were prepared. The results of multistage ESI-MS of their dissolved crystals led to a proposed mechanism of their formation in the gas phase as follows: [Zn_(3)L_(4)] through [ZnL] → [ZnL(HL)] → [Zn(HL)_(2)] → [Zn_(2)L] → [Zn_(2)L_(2)] → [Zn_(2)L_(3)]. The mechanism was derived in conjunction with Gibbs free energies calculated using DFT of the fragments observed in the ESI-MS of Zn_(4)L_(4), Zn_(4)L_(6) and Zn_(6)L_(6). This work reveals the complex of chemical reactions, involving fragmentation and unexpected combination, under mass spectrometry condition which allows one to synthesize the observed transients, leading to mechanism of formation by correlation of solid-state/solution structural information.展开更多
Local strong seismic activity shows the potential to closely follow a renewal process,which is inconsistent with the overall seismic activity that aligns with the Poisson process.Given that existing methods for synthe...Local strong seismic activity shows the potential to closely follow a renewal process,which is inconsistent with the overall seismic activity that aligns with the Poisson process.Given that existing methods for synthesizing stochastic seismic event sets cannot control local seismic activity,a method based on Monte Carlo simulations has been developed for synthesizing random seismic event sets where local strong earthquakes satisfy the renewal process.This method can synthesize seismic activities in a statistical area where the overall activity conforms to the Poisson process and the major seismic activities in local potential sources or faults follow the renewal process.This paper presents long-and short-scale approaches.The long-scale earthquake catalogs are suitable for reflecting the sequential characteristics of seismic activities.Meanwhile,the short-scale catalogs focus on the impacts of specific earthquake events within a group for a detailed understanding of hazards under certain conditions,making them suitable for studies on specific earthquake sequences and geological areas or situations requiring high temporal resolution.In the applications of shortscale sequences,we find that the equivalent occurrence rate method may overestimate the seismic hazard.This synthesis method for earthquake catalogs can simulate realistic seismic activities,thereby enhancing the accuracy of hazard analysis results and is suitable for seismic hazard analysis and earthquake insurance rate setting.展开更多
[Objectives]To explore the synthetic process of PD-L1 small molecule inhibitors,focusing on optimizing key reaction conditions and synthetic routes.[Methods]By analyzing the pharmacophore design of PD-L1 small molecul...[Objectives]To explore the synthetic process of PD-L1 small molecule inhibitors,focusing on optimizing key reaction conditions and synthetic routes.[Methods]By analyzing the pharmacophore design of PD-L1 small molecule inhibitors and combining the optimization of synthetic methods and the improvement of reaction conditions,an efficient synthetic process was developed.[Results]Through optimization of reaction conditions,not only were the purity and yield of the products improved,but the inhibitory activity of the compounds was also significantly enhanced.Some compounds demonstrated strong anti-tumor effects in both in vitro and in vivo models.[Conclusions]This study aims to provide theoretical support and technical guidance for the efficient synthesis of small molecule inhibitors,offering new ideas and practical foundations for drug development in tumor immunotherapy.展开更多
The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of th...The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of the material,and also studies effects of doping elemental Sb,Te and their doping seqence on the properties of the material.The result shows that excessively high temperature and elongated holding time of solid-state reaction are harmful,there is a range of particle size to ensure optimum properties and the doping sequence of Sb or Te without influencing the properties.展开更多
Potassium bismuth titanate nanosized powders were prepared by the hydrothermal method using Ti(C_4H_9O)_4 and Bi(NO_3)_3·5H_2O as raw materials in alkaline solution.The phase composition,particle size and morphol...Potassium bismuth titanate nanosized powders were prepared by the hydrothermal method using Ti(C_4H_9O)_4 and Bi(NO_3)_3·5H_2O as raw materials in alkaline solution.The phase composition,particle size and morphology of the powders were studied by XRD and TEM analysis.The results showed that the powders were well crystallized and dispersed.The crystal phase of the powders was K_(0.5)Bi_(0.5)TiO_3 with the grain size of about 50 nm~100 nm.Hydrothermal temperature and alkaline concentrations had great effects on the phase composition and morphology of the resultant powders.Pure K_(0.5)Bi_(0.5)TiO_3 powders could be synthesized at 170℃~180℃with KOH concentration of 8 mol/L~12 mol/L.展开更多
On board processing(OBP) satellite systems have obtained more and more attentions in recent years because of their high efficiency and performance.However,the OBP transponders are very sensitive to the high energy par...On board processing(OBP) satellite systems have obtained more and more attentions in recent years because of their high efficiency and performance.However,the OBP transponders are very sensitive to the high energy particles in the space radiation environments.Single event upset(SEU)is one of the major radiation effects,which influences the satellite reliability greatly.Triple modular redundancy(TMR) is a classic and efficient method to mask SEUs.However,TMR uses three identical modules and a comparison logic,the circuit size becomes unacceptable,especially in the resource limited environments such as OBP systems.Considering that,a new SEU-tolerant method based on residue code and high-level synthesis(HLS) is proposed,and the new method is applied to FIR filters,which are typical structures in the OBP systems.The simulation results show that,for an applicable HLS scheduling scheme,area reduction can be reduced by 48.26%compared to TMR,while fault missing rate is 0.15%.展开更多
The potential of powder metallurgy processing for the manufacture of Al?SrB6 composites was explored. Al4Sr particles fractured extensively during the ball milling of Al?15Sr/Al?4B powder mixtures. There was no intera...The potential of powder metallurgy processing for the manufacture of Al?SrB6 composites was explored. Al4Sr particles fractured extensively during the ball milling of Al?15Sr/Al?4B powder mixtures. There was no interaction between the Al4Sr and AlB2 compounds across the section of the aluminium grains in the as-milled state. SrB6 formed, when the ball milled powder blends were subsequently annealed at sufficiently high temperatures. Ball milling for 1 h was sufficient for SrB6 to become the major constituent in powder blends annealed at 700 °C while it took 2 h of ball milling for powder blends annealed at 600 °C. Higher annealing temperatures and longer ball milling time encouraged the formation of the SrB6 compound while the latter made a great impact on the microstructural features of the Al?SrB6 composite. The SrB6 compound particles were much smaller and more uniformly distributed across the aluminium matrix grains in powder grains ball milled for 2 h before the annealing treatments at 600 °C and 700 °C.展开更多
Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical prope...Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability.展开更多
For the first time in the world advanced multi layered Red Mud and MWCNTs (ARMC) based EMI shielding material has been developed at CSIR-AMPRI, Bhopal. Red mud provides oxides of titanium and iron as precursor and the...For the first time in the world advanced multi layered Red Mud and MWCNTs (ARMC) based EMI shielding material has been developed at CSIR-AMPRI, Bhopal. Red mud provides oxides of titanium and iron as precursor and the MWCNTs provides electrical conductivity characteristics necessary for making desired EMI shielding materials. The novel process involves unique designing of chemical compositions and mineralogical phases of red mud, MWCNTs together with appropriate additive and solvent which results in the simultaneous and synergistic chemical reactions among various constituents thereby forming tailored precursor powder. Further, the ceramic processing of tailored precursor powder in appropriate environment enables formation of advanced ARMC shielding material having a variety of ceramic phases with multi elemental compositions and multi layered crystal structures. The synthesized material was characterized by various techniques namely XRD, PL, FESEM, EDXA. The reflection loss (R. L.) of the sample was calculated based on the measured complex permittivity and permeability. The advanced ARMC material with thickness t = 1.5 mm showed a minimum R. L. of -35.5 Db at 14.0 GHz with a response band width of 1.8 GHz. Thus, the developed advanced ARMC material acts as a good EMI wave absorber.展开更多
The well-densified Ni3Al-0.5B-5Cr alloy was fabricated by self-propagation high-temperature synthesis and extrusion technique. Microstructure examination shows that the synthesized alloy has fine microstructure and co...The well-densified Ni3Al-0.5B-5Cr alloy was fabricated by self-propagation high-temperature synthesis and extrusion technique. Microstructure examination shows that the synthesized alloy has fine microstructure and contains Ni3Al, Al2O3, Ni3B and Cr3Ni2 phases. Moreover, the self-propagation high-temperature synthesis and extrusion lead to great deformation and recrystallization in the alloy, which helps to refine the microstructure and weaken the misorientation. In addition, the subsequent extrusion procedure redistributes the Al2O3 particles and eliminates the γ-Ni phase. Compared with the alloy synthesized without extrusion, the Ni3Al-0.5B-5Cr alloy fabricated by self-propagation high-temperature synthesis and extrusion has better room temperature mechanical properties, which should be ascribed to the microstructure evolution.展开更多
ZrO2 nanoparticles were prepared under high temperature and high pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. The effects of synthesis parameters, such as the concentratio...ZrO2 nanoparticles were prepared under high temperature and high pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. The effects of synthesis parameters, such as the concentration of starting solution, pH of starting solution, reaction temperature and time, were discussed. The results show that the ZrO2 nanoparticles are obtained at 230-270 ℃. The average size and size distribution of the synthesized particles are below 10 nm and narrow, respectively. The XRD pattern shows that the synthesized particles are composed of crystalline. The synthesis of ZrO2 nanosized crystalline particles is possible under glycothermal conditions in ethylene glycol solution.展开更多
A method to synthesize anticancer drug N-( 4- hydroxyphenyl) retinamide (4-HPR)on a large scale is described. It consists of the preferred steps of reacting all-trans retinoic acid with thionyl chloride to form re...A method to synthesize anticancer drug N-( 4- hydroxyphenyl) retinamide (4-HPR)on a large scale is described. It consists of the preferred steps of reacting all-trans retinoic acid with thionyl chloride to form retinoyl chloride and then reacting with triethylamine to generate retinoyl ammonium salt which in turn is reacted with p-aminophenol to eventually produce 4-HPR. This process can overcome many scale-up challenges that exist in the methods reported in the literature and provide an easy, mild and high yield route for large scale synthesis of 4-HPR. Moreover, the effects of the molar ratios of the reagents on the yield are examined. The best molar ratios are a 2.0 molar equivalence of thionyl chloride and a 3.0 molar equivalence of paminophenol to retinoic acid, and the total yield is 80. 7%.展开更多
The precursor precipitation of InVO4 was synthesized by co-precipitation using indium trichloride (InCl3), ammonium metavanadate (NH4VO3) and ammonia (NH3·H2O) as raw materials. The InVO4 sols with orthorhombic p...The precursor precipitation of InVO4 was synthesized by co-precipitation using indium trichloride (InCl3), ammonium metavanadate (NH4VO3) and ammonia (NH3·H2O) as raw materials. The InVO4 sols with orthorhombic phase were obtained by hydrothermal treatment (the precursor precipitation solution at 423 K, for 4 h). The precursor and sol of InVO4 were characterized by X-ray diffraction (XRD), Fourier Transform Infra-red spectra (FT-IR), scanning electron microscopy (SEM) measurements. The XRD patterns indicate that the InVO4 precursor is amorphous phase, InVO4 sol contains orthorhombic InVO4 nanocrystals. The results also reveal that the pH value of the reaction mixture and reaction temperature play important roles to the target phase. InVO4-TiO2 thin films on glass slides were prepared by the dip-coating method from the composite sol. The photocatalytic properties of the InVO4-TiO2 thin films were investigated by the photocatalytic degradation of methyl orange solution. The results indicate that it has better photocatalytic activities than pure TiO2 thin films or pure InVO4 thin films with UV light.展开更多
The nanosized Ba(CoxNb1-x)O3(BCN) particles were prepared under high temperature and pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. Ba(CoxNb1-x)O3 powders were obtained in t...The nanosized Ba(CoxNb1-x)O3(BCN) particles were prepared under high temperature and pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. Ba(CoxNb1-x)O3 powders were obtained in the temperature range of 170-210 ℃ for 6 h. The results show that the average size of the synthesized particles increases with increasing reaction temperature. The average size of the synthesized particles is about 10 nm. The crystalline phase of the synthesized particles is found to be Ba(CoxNb1-x)O3. Ceramics derived from the nano BCN powders could achieve high sintering density at a relatively low sintering temperature.展开更多
This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hy...This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hydroxide-carbonate nanoparticles with various morphologies(i.e.,nanorods,nanosheets,and nanocubes) were successfully synthesized,and Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt-hydroxide-carbonate precursors.The results suggest that the cobalt source is a key factor for controlling the morphology of cobalt-hydroxide-carbonate at relatively low hydrothermal temperatures(≤ 140℃).Nanorods can be synthesized in CoCl2 solution,while Co(NO3)2 solution promotes the formation of nanosheets.Further increasing the synthesis temperature(higher than 140 ℃) results in the formation of nanocubes in either Co(NO3)2 or CoCl2 solution.The reaction time only affects the size of the obtained nanoparticles.The presence of CTAB could improve the uniformity and dispersion of particles.Co3O4 nanosheets showed much higher catalytic activity for CO oxidation than nanorods and nanocubes because it has more abundant Co^(3+) on the surface,much higher reducibility,and better oxygen desorption capacity.展开更多
Flowerlike LiFePO4 particles self-assembled by plate-like crystals with about 200 nm thickness were prepared by the poly(ethylene glycol)-assisted hydrothermal synthesis. Poly(ethylene glycol) in the hydrothermal ...Flowerlike LiFePO4 particles self-assembled by plate-like crystals with about 200 nm thickness were prepared by the poly(ethylene glycol)-assisted hydrothermal synthesis. Poly(ethylene glycol) in the hydrothermal system played an important role in reducing the thickness of the plate-like LiFePO4 crystals as a co-solvent and forming the flower- like structure as a soft template. The flowerlike LiFePO4 exhibits high discharge capacity of 140 mAh/g and shows quite good cycling performance in the lithium-ion batteries. Con- sidering that the conductive carbon in the obtained LiFePO4 is negligible, the excellent cell performance suggests that the flowerlike LiFePO4 is a promising cathode material for the lithium-ion batteries.展开更多
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes...Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.展开更多
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.
文摘In response to the challenges associated with the traditional synthesis process of hymenidin,such as complex reaction steps,low yields,high costs,and environmental concerns,the synthesis process has been significantly enhanced by optimizing reaction conditions,screening for efficient catalysts,and incorporating the concepts of green chemistry.The optimized process has significantly improved the synthesis efficiency and product quality of hymenidin,reduced production costs,and minimized environmental pollution,thereby providing robust support for its industrial production and broad application.
基金supported by the BAGUI Talent Program in Guangxi Province(No.2019AC26001),and the National Natural Science Foundation of China(No.22171075,U23A2080).
文摘In mass spectrometry, fragments with a mass higher than the original molecular ion provide valuable insights into the molecular structure and can guide the assembly and disassembly processes for chemical synthesis. Here, we report such an example and following up by modifying the solvothermal reaction conditions (temperature and time) it is possible to isolate the high mass species in crystalline form. [Zn_(4)L_(4)Cl_(4)] (Zn_(4)L_(4), L = N-methylbenzimidazole-2-methanolate) has a boat-like Zn_(4)O_(4) core but electrospray ionization mass spectrometry (ESI-MS) of the solution of its crystals shows higher mass peaks of Zn_(5)L_(5), Zn_(5)L_(6) and Zn_(6)L_(6) species. Thus, both disassembly and reassembly are highly probable processes. Consequently, [Zn(HL)_(2)Cl_(2)] (Zn1, L = N-methylbenzimidazole-2-methanolate), [Zn_(4)L_(6)Cl_(2)] (Zn_(4)L_(6), L = N-methylbenzimidazole-2-methanolate) and [Zn_(6)L_(6)Cl_(4)(CH_(3)O)_(2)] (Zn_(6)L_(6), L = N-methylbenzimidazole-2-methanolate) were prepared. The results of multistage ESI-MS of their dissolved crystals led to a proposed mechanism of their formation in the gas phase as follows: [Zn_(3)L_(4)] through [ZnL] → [ZnL(HL)] → [Zn(HL)_(2)] → [Zn_(2)L] → [Zn_(2)L_(2)] → [Zn_(2)L_(3)]. The mechanism was derived in conjunction with Gibbs free energies calculated using DFT of the fragments observed in the ESI-MS of Zn_(4)L_(4), Zn_(4)L_(6) and Zn_(6)L_(6). This work reveals the complex of chemical reactions, involving fragmentation and unexpected combination, under mass spectrometry condition which allows one to synthesize the observed transients, leading to mechanism of formation by correlation of solid-state/solution structural information.
基金funded by the National Key Research and Development Program of China(2022YFC3003502)。
文摘Local strong seismic activity shows the potential to closely follow a renewal process,which is inconsistent with the overall seismic activity that aligns with the Poisson process.Given that existing methods for synthesizing stochastic seismic event sets cannot control local seismic activity,a method based on Monte Carlo simulations has been developed for synthesizing random seismic event sets where local strong earthquakes satisfy the renewal process.This method can synthesize seismic activities in a statistical area where the overall activity conforms to the Poisson process and the major seismic activities in local potential sources or faults follow the renewal process.This paper presents long-and short-scale approaches.The long-scale earthquake catalogs are suitable for reflecting the sequential characteristics of seismic activities.Meanwhile,the short-scale catalogs focus on the impacts of specific earthquake events within a group for a detailed understanding of hazards under certain conditions,making them suitable for studies on specific earthquake sequences and geological areas or situations requiring high temporal resolution.In the applications of shortscale sequences,we find that the equivalent occurrence rate method may overestimate the seismic hazard.This synthesis method for earthquake catalogs can simulate realistic seismic activities,thereby enhancing the accuracy of hazard analysis results and is suitable for seismic hazard analysis and earthquake insurance rate setting.
文摘[Objectives]To explore the synthetic process of PD-L1 small molecule inhibitors,focusing on optimizing key reaction conditions and synthetic routes.[Methods]By analyzing the pharmacophore design of PD-L1 small molecule inhibitors and combining the optimization of synthetic methods and the improvement of reaction conditions,an efficient synthetic process was developed.[Results]Through optimization of reaction conditions,not only were the purity and yield of the products improved,but the inhibitory activity of the compounds was also significantly enhanced.Some compounds demonstrated strong anti-tumor effects in both in vitro and in vivo models.[Conclusions]This study aims to provide theoretical support and technical guidance for the efficient synthesis of small molecule inhibitors,offering new ideas and practical foundations for drug development in tumor immunotherapy.
文摘The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of the material,and also studies effects of doping elemental Sb,Te and their doping seqence on the properties of the material.The result shows that excessively high temperature and elongated holding time of solid-state reaction are harmful,there is a range of particle size to ensure optimum properties and the doping sequence of Sb or Te without influencing the properties.
文摘Potassium bismuth titanate nanosized powders were prepared by the hydrothermal method using Ti(C_4H_9O)_4 and Bi(NO_3)_3·5H_2O as raw materials in alkaline solution.The phase composition,particle size and morphology of the powders were studied by XRD and TEM analysis.The results showed that the powders were well crystallized and dispersed.The crystal phase of the powders was K_(0.5)Bi_(0.5)TiO_3 with the grain size of about 50 nm~100 nm.Hydrothermal temperature and alkaline concentrations had great effects on the phase composition and morphology of the resultant powders.Pure K_(0.5)Bi_(0.5)TiO_3 powders could be synthesized at 170℃~180℃with KOH concentration of 8 mol/L~12 mol/L.
基金Supported by the National S&T Major Project(No.2011ZX03003-003-01,2011ZX03004-004)the National Basic Research Program of China(No.2012CB316002)
文摘On board processing(OBP) satellite systems have obtained more and more attentions in recent years because of their high efficiency and performance.However,the OBP transponders are very sensitive to the high energy particles in the space radiation environments.Single event upset(SEU)is one of the major radiation effects,which influences the satellite reliability greatly.Triple modular redundancy(TMR) is a classic and efficient method to mask SEUs.However,TMR uses three identical modules and a comparison logic,the circuit size becomes unacceptable,especially in the resource limited environments such as OBP systems.Considering that,a new SEU-tolerant method based on residue code and high-level synthesis(HLS) is proposed,and the new method is applied to FIR filters,which are typical structures in the OBP systems.The simulation results show that,for an applicable HLS scheduling scheme,area reduction can be reduced by 48.26%compared to TMR,while fault missing rate is 0.15%.
文摘The potential of powder metallurgy processing for the manufacture of Al?SrB6 composites was explored. Al4Sr particles fractured extensively during the ball milling of Al?15Sr/Al?4B powder mixtures. There was no interaction between the Al4Sr and AlB2 compounds across the section of the aluminium grains in the as-milled state. SrB6 formed, when the ball milled powder blends were subsequently annealed at sufficiently high temperatures. Ball milling for 1 h was sufficient for SrB6 to become the major constituent in powder blends annealed at 700 °C while it took 2 h of ball milling for powder blends annealed at 600 °C. Higher annealing temperatures and longer ball milling time encouraged the formation of the SrB6 compound while the latter made a great impact on the microstructural features of the Al?SrB6 composite. The SrB6 compound particles were much smaller and more uniformly distributed across the aluminium matrix grains in powder grains ball milled for 2 h before the annealing treatments at 600 °C and 700 °C.
基金supported by the Key Project of Natural Science Foundation of Ningxia(NZ13010)the National Natural Science Foundation of China(21366025)~~
文摘Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability.
文摘For the first time in the world advanced multi layered Red Mud and MWCNTs (ARMC) based EMI shielding material has been developed at CSIR-AMPRI, Bhopal. Red mud provides oxides of titanium and iron as precursor and the MWCNTs provides electrical conductivity characteristics necessary for making desired EMI shielding materials. The novel process involves unique designing of chemical compositions and mineralogical phases of red mud, MWCNTs together with appropriate additive and solvent which results in the simultaneous and synergistic chemical reactions among various constituents thereby forming tailored precursor powder. Further, the ceramic processing of tailored precursor powder in appropriate environment enables formation of advanced ARMC shielding material having a variety of ceramic phases with multi elemental compositions and multi layered crystal structures. The synthesized material was characterized by various techniques namely XRD, PL, FESEM, EDXA. The reflection loss (R. L.) of the sample was calculated based on the measured complex permittivity and permeability. The advanced ARMC material with thickness t = 1.5 mm showed a minimum R. L. of -35.5 Db at 14.0 GHz with a response band width of 1.8 GHz. Thus, the developed advanced ARMC material acts as a good EMI wave absorber.
基金Project (2012CB933600) supported by the National Basic Research Program of ChinaProject (2011AA030104) supported by the National High-tech Research and Development Program of ChinaProject (JC200903170498A) supported by the Science and Technology Research Foundation of Shenzhen Bureau of Science and Technology & Information, China
文摘The well-densified Ni3Al-0.5B-5Cr alloy was fabricated by self-propagation high-temperature synthesis and extrusion technique. Microstructure examination shows that the synthesized alloy has fine microstructure and contains Ni3Al, Al2O3, Ni3B and Cr3Ni2 phases. Moreover, the self-propagation high-temperature synthesis and extrusion lead to great deformation and recrystallization in the alloy, which helps to refine the microstructure and weaken the misorientation. In addition, the subsequent extrusion procedure redistributes the Al2O3 particles and eliminates the γ-Ni phase. Compared with the alloy synthesized without extrusion, the Ni3Al-0.5B-5Cr alloy fabricated by self-propagation high-temperature synthesis and extrusion has better room temperature mechanical properties, which should be ascribed to the microstructure evolution.
基金supported by the Ministry of Education,Science Technology (MEST) and Korea Industrial Technology Foundation (KOTEF) through the Human Resource Training Project for Regional Innovation
文摘ZrO2 nanoparticles were prepared under high temperature and high pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. The effects of synthesis parameters, such as the concentration of starting solution, pH of starting solution, reaction temperature and time, were discussed. The results show that the ZrO2 nanoparticles are obtained at 230-270 ℃. The average size and size distribution of the synthesized particles are below 10 nm and narrow, respectively. The XRD pattern shows that the synthesized particles are composed of crystalline. The synthesis of ZrO2 nanosized crystalline particles is possible under glycothermal conditions in ethylene glycol solution.
文摘A method to synthesize anticancer drug N-( 4- hydroxyphenyl) retinamide (4-HPR)on a large scale is described. It consists of the preferred steps of reacting all-trans retinoic acid with thionyl chloride to form retinoyl chloride and then reacting with triethylamine to generate retinoyl ammonium salt which in turn is reacted with p-aminophenol to eventually produce 4-HPR. This process can overcome many scale-up challenges that exist in the methods reported in the literature and provide an easy, mild and high yield route for large scale synthesis of 4-HPR. Moreover, the effects of the molar ratios of the reagents on the yield are examined. The best molar ratios are a 2.0 molar equivalence of thionyl chloride and a 3.0 molar equivalence of paminophenol to retinoic acid, and the total yield is 80. 7%.
基金Project (20030056001) supported by the Doctor Foundation of Ministry of Education of China
文摘The precursor precipitation of InVO4 was synthesized by co-precipitation using indium trichloride (InCl3), ammonium metavanadate (NH4VO3) and ammonia (NH3·H2O) as raw materials. The InVO4 sols with orthorhombic phase were obtained by hydrothermal treatment (the precursor precipitation solution at 423 K, for 4 h). The precursor and sol of InVO4 were characterized by X-ray diffraction (XRD), Fourier Transform Infra-red spectra (FT-IR), scanning electron microscopy (SEM) measurements. The XRD patterns indicate that the InVO4 precursor is amorphous phase, InVO4 sol contains orthorhombic InVO4 nanocrystals. The results also reveal that the pH value of the reaction mixture and reaction temperature play important roles to the target phase. InVO4-TiO2 thin films on glass slides were prepared by the dip-coating method from the composite sol. The photocatalytic properties of the InVO4-TiO2 thin films were investigated by the photocatalytic degradation of methyl orange solution. The results indicate that it has better photocatalytic activities than pure TiO2 thin films or pure InVO4 thin films with UV light.
基金supported by the Ministry of Education,Science Technology (MEST) and Korea Industrial Technology Foundation (KOTEF) through the Human Resource Training Project for Regional Innovation
文摘The nanosized Ba(CoxNb1-x)O3(BCN) particles were prepared under high temperature and pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. Ba(CoxNb1-x)O3 powders were obtained in the temperature range of 170-210 ℃ for 6 h. The results show that the average size of the synthesized particles increases with increasing reaction temperature. The average size of the synthesized particles is about 10 nm. The crystalline phase of the synthesized particles is found to be Ba(CoxNb1-x)O3. Ceramics derived from the nano BCN powders could achieve high sintering density at a relatively low sintering temperature.
基金supported by the National Natural Science Foundation of China (51374004,51204083)the Candidate Talents Training Fund of Yun-nan Province (2012HB009,2014HB006)+2 种基金the Applied Basic Research Program of Yunnan Province (2014FB123)a School-Enterprise Cooperation Project from Jinchuan Corporation (Jinchuan 201115)the Talents Training Program of Kunming University of Science and Technology (KKZ3201352038)~~
文摘This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hydroxide-carbonate nanoparticles with various morphologies(i.e.,nanorods,nanosheets,and nanocubes) were successfully synthesized,and Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt-hydroxide-carbonate precursors.The results suggest that the cobalt source is a key factor for controlling the morphology of cobalt-hydroxide-carbonate at relatively low hydrothermal temperatures(≤ 140℃).Nanorods can be synthesized in CoCl2 solution,while Co(NO3)2 solution promotes the formation of nanosheets.Further increasing the synthesis temperature(higher than 140 ℃) results in the formation of nanocubes in either Co(NO3)2 or CoCl2 solution.The reaction time only affects the size of the obtained nanoparticles.The presence of CTAB could improve the uniformity and dispersion of particles.Co3O4 nanosheets showed much higher catalytic activity for CO oxidation than nanorods and nanocubes because it has more abundant Co^(3+) on the surface,much higher reducibility,and better oxygen desorption capacity.
基金This work was supported Science Foundation of China by the National Natural (No.21006033).
文摘Flowerlike LiFePO4 particles self-assembled by plate-like crystals with about 200 nm thickness were prepared by the poly(ethylene glycol)-assisted hydrothermal synthesis. Poly(ethylene glycol) in the hydrothermal system played an important role in reducing the thickness of the plate-like LiFePO4 crystals as a co-solvent and forming the flower- like structure as a soft template. The flowerlike LiFePO4 exhibits high discharge capacity of 140 mAh/g and shows quite good cycling performance in the lithium-ion batteries. Con- sidering that the conductive carbon in the obtained LiFePO4 is negligible, the excellent cell performance suggests that the flowerlike LiFePO4 is a promising cathode material for the lithium-ion batteries.
文摘Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.