Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption o...Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.展开更多
为了应对海量分布式资源分层分布接入柔性配电网给无功优化引入的不确定性,提出了基于概率场景驱动的柔性配电网分布式无功优化方法。首先,以最小化系统损耗为目标建立了柔性配电网无功优化模型,其次,综合考虑1-范数和∞-范数的置信约束...为了应对海量分布式资源分层分布接入柔性配电网给无功优化引入的不确定性,提出了基于概率场景驱动的柔性配电网分布式无功优化方法。首先,以最小化系统损耗为目标建立了柔性配电网无功优化模型,其次,综合考虑1-范数和∞-范数的置信约束,构建基于概率场景模糊集的柔性配电网分布鲁棒无功优化模型。在此基础上,以分布式优化模型为外部框架,采用一致性加速梯度交替方向乘子法(alternating direction method of multipliers,ADMM)进行全局协调与更新迭代求解,以各子区域分布鲁棒优化模型为内部框架,采用列与约束生成(column and constraint generation,CCG)算法求解。基于改进的IEEE-33节点系统的算例仿真结果表明,所提出的柔性配电网分布式无功优化方法具有较好的收敛性,兼顾了经济性和鲁棒性的平衡。展开更多
Solving optimization problems plays a vital role in ensuring the secure and economic operation of distribution systems.To enhance computational efficiency,this paper proposes a general simplification and acceleration ...Solving optimization problems plays a vital role in ensuring the secure and economic operation of distribution systems.To enhance computational efficiency,this paper proposes a general simplification and acceleration method for distribution system optimization problems.Firstly,the capacity boundary and voltage boundary model of distribution systems are established.The relative position between the two boundaries reflects the strength of capacity and voltage constraints,leading to the definition of two critical feeder lengths(CFLs)to quantify these strengths.Secondly,simplification criteria and an acceleration method are proposed.Given a distribution system,if the distance from the end load/DG node to the slack bus is less than the corresponding CFL,we can conclude that the capacity constraints are stricter than the voltage constraints.Then,the distribution system can be simplified by adopting DC power flow model or disregarding the voltage constraints.After that,the reference value tables of CFL are presented.Finally,the effectiveness of the proposed method is verified by exemplifying the method in network reconfiguration and reactive power optimization problems.By implementing the proposed acceleration method,a significant reduction in computation time is achieved while ensuring accuracy.This method applies to most urban distribution systems in optimization problems involving power flow equations or voltage constraints.展开更多
基金support of The National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201)。
文摘Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.
文摘随着配电网中分布式光伏(distributed photovoltaic,DPV)大量并网,电压越限和电压波动越来越严重,考虑新型电能质量治理装置的电压无功优化协调控制方法需要进一步完善,以适应电网的新变化。该文考虑了新型柔性有载调压变压器(on-load tap changer,OLTC)的电能质量调节作用,提出一种两阶段电压无功优化协调控制方法,其中一阶段为日前小时级调度阶段,根据分布式光伏和负荷的预测数据,通过潮流计算和迭代优化,获取DPV的有功出力结果、柔性OLTC分接头和电容器组的投切结果;二阶段为分钟级无功优化阶段,在第一阶段的基础上,考虑柔性OLTC和DPV的无功出力特性,调节装备无功出力的同时修正第一阶段电容器组投切组合,进一步降低各个节点最大电压偏差,使配电网电压分布更合理。搭建了IEEE33节点配电系统仿真模型,所提出的考虑柔性OLTC的两阶段电压无功优化协调控制方法能够在常规经济性最优目标下的88.07%DPV消纳水平基础上提高9.29%,同时满足全节点全时段电压偏差小于0.1pu,综合经济性提高7.8%,结果证明了所提方法的合理性和有效性。
文摘为了应对海量分布式资源分层分布接入柔性配电网给无功优化引入的不确定性,提出了基于概率场景驱动的柔性配电网分布式无功优化方法。首先,以最小化系统损耗为目标建立了柔性配电网无功优化模型,其次,综合考虑1-范数和∞-范数的置信约束,构建基于概率场景模糊集的柔性配电网分布鲁棒无功优化模型。在此基础上,以分布式优化模型为外部框架,采用一致性加速梯度交替方向乘子法(alternating direction method of multipliers,ADMM)进行全局协调与更新迭代求解,以各子区域分布鲁棒优化模型为内部框架,采用列与约束生成(column and constraint generation,CCG)算法求解。基于改进的IEEE-33节点系统的算例仿真结果表明,所提出的柔性配电网分布式无功优化方法具有较好的收敛性,兼顾了经济性和鲁棒性的平衡。
基金supported by the National Natural Science Foundation of China(No.52177105).
文摘Solving optimization problems plays a vital role in ensuring the secure and economic operation of distribution systems.To enhance computational efficiency,this paper proposes a general simplification and acceleration method for distribution system optimization problems.Firstly,the capacity boundary and voltage boundary model of distribution systems are established.The relative position between the two boundaries reflects the strength of capacity and voltage constraints,leading to the definition of two critical feeder lengths(CFLs)to quantify these strengths.Secondly,simplification criteria and an acceleration method are proposed.Given a distribution system,if the distance from the end load/DG node to the slack bus is less than the corresponding CFL,we can conclude that the capacity constraints are stricter than the voltage constraints.Then,the distribution system can be simplified by adopting DC power flow model or disregarding the voltage constraints.After that,the reference value tables of CFL are presented.Finally,the effectiveness of the proposed method is verified by exemplifying the method in network reconfiguration and reactive power optimization problems.By implementing the proposed acceleration method,a significant reduction in computation time is achieved while ensuring accuracy.This method applies to most urban distribution systems in optimization problems involving power flow equations or voltage constraints.