期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Kernel-Based Semantic Relation Detection and Classification via Enriched Parse Tree Structure 被引量:7
1
作者 周国栋 朱巧明 《Journal of Computer Science & Technology》 SCIE EI CSCD 2011年第1期45-56,共12页
This paper proposes a tree kernel method of semantic relation detection and classification (RDC) between named entities. It resolves two critical problems in previous tree kernel methods of RDC. First, a new tree ke... This paper proposes a tree kernel method of semantic relation detection and classification (RDC) between named entities. It resolves two critical problems in previous tree kernel methods of RDC. First, a new tree kernel is presented to better capture the inherent structural information in a parse tree by enabling the standard convolution tree kernel with context-sensitiveness and approximate matching of sub-trees. Second, an enriched parse tree structure is proposed to well derive necessary structural information, e.g., proper latent annotations, from a parse tree. Evaluation on the ACE RDC corpora shows that both the new tree kernel and the enriched parse tree structure contribute significantly to RDC and our tree kernel method much outperforms the state-of-the-art ones. 展开更多
关键词 semantic relation detection and classification convolution tree kernel approximate matching context sensitiveness enriched parse tree structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部