期刊文献+
共找到473篇文章
< 1 2 24 >
每页显示 20 50 100
On Visualization Analysis of Stock Data
1
作者 Yue Cai Zeying Song +6 位作者 Guang Sun Jing Wang Ziyi Guo Yi Zuo Xiaoping Fan Jianjun Zhang Lin Lang 《Journal on Big Data》 2019年第3期135-144,共10页
Big data technology is changing with each passing day,generating massive amounts of data every day.These data have large capacity,many types,fast growth,and valuable features.The same is true for the stock investment ... Big data technology is changing with each passing day,generating massive amounts of data every day.These data have large capacity,many types,fast growth,and valuable features.The same is true for the stock investment market.The growth of the amount of stock data generated every day is difficult to predict.The price trend in the stock market is uncertain,and the valuable information hidden in the stock data is difficult to detect.For example,the price trend of stocks,profit trends,how to make a reasonable speculation on the price trend of stocks and profit trends is a major problem that needs to be solved at this stage.This article uses the Python language to visually analyze,calculate,and predict each stock.Realize the integration and calculation of stock data to help people find out the valuable information hidden in stocks.The method proposed in this paper has been tested and proved to be feasible.It can reasonably extract,analyze and calculate the stock data,and predict the stock price trend to a certain extent. 展开更多
关键词 data visualization stock data data analysis
在线阅读 下载PDF
DAViS:a unified solution for data collection, analyzation,and visualization in real‑time stock market prediction
2
作者 Suppawong Tuarob Poom Wettayakorn +4 位作者 Ponpat Phetchai Siripong Traivijitkhun Sunghoon Lim Thanapon Noraset Tipajin Thaipisutikul 《Financial Innovation》 2021年第1期1232-1263,共32页
The explosion of online information with the recent advent of digital technology in information processing,information storing,information sharing,natural language processing,and text mining techniques has enabled sto... The explosion of online information with the recent advent of digital technology in information processing,information storing,information sharing,natural language processing,and text mining techniques has enabled stock investors to uncover market movement and volatility from heterogeneous content.For example,a typical stock market investor reads the news,explores market sentiment,and analyzes technical details in order to make a sound decision prior to purchasing or selling a particular company’s stock.However,capturing a dynamic stock market trend is challenging owing to high fluctuation and the non-stationary nature of the stock market.Although existing studies have attempted to enhance stock prediction,few have provided a complete decision-support system for investors to retrieve real-time data from multiple sources and extract insightful information for sound decision-making.To address the above challenge,we propose a unified solution for data collection,analysis,and visualization in real-time stock market prediction to retrieve and process relevant financial data from news articles,social media,and company technical information.We aim to provide not only useful information for stock investors but also meaningful visualization that enables investors to effectively interpret storyline events affecting stock prices.Specifically,we utilize an ensemble stacking of diversified machine-learning-based estimators and innovative contextual feature engineering to predict the next day’s stock prices.Experiment results show that our proposed stock forecasting method outperforms a traditional baseline with an average mean absolute percentage error of 0.93.Our findings confirm that leveraging an ensemble scheme of machine learning methods with contextual information improves stock prediction performance.Finally,our study could be further extended to a wide variety of innovative financial applications that seek to incorporate external insight from contextual information such as large-scale online news articles and social media data. 展开更多
关键词 Investment support system stock data visualization Time series analysis Ensemble machine learning Text mining
在线阅读 下载PDF
Application of a Bayesian method to data-poor stock assessment by using Indian Ocean albacore (Thunnus alalunga) stock assessment as an example 被引量:15
3
作者 GUAN Wenjiang TANG Lin +2 位作者 ZHU Jiangfeng TIAN Siquan XU Liuxiong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第2期117-125,共9页
It is widely recognized that assessments of the status of data-poor fish stocks are challenging and that Bayesian analysis is one of the methods which can be used to improve the reliability of stock assessments in dat... It is widely recognized that assessments of the status of data-poor fish stocks are challenging and that Bayesian analysis is one of the methods which can be used to improve the reliability of stock assessments in data-poor situations through borrowing strength from prior information deduced from species with good-quality data or other known information. Because there is considerable uncertainty remaining in the stock assessment of albacore tuna(Thunnus alalunga) in the Indian Ocean due to the limited and low-quality data, we investigate the advantages of a Bayesian method in data-poor stock assessment by using Indian Ocean albacore stock assessment as an example. Eight Bayesian biomass dynamics models with different prior assumptions and catch data series were developed to assess the stock. The results show(1) the rationality of choice of catch data series and assumption of parameters could be enhanced by analyzing the posterior distribution of the parameters;(2) the reliability of the stock assessment could be improved by using demographic methods to construct a prior for the intrinsic rate of increase(r). Because we can make use of more information to improve the rationality of parameter estimation and the reliability of the stock assessment compared with traditional statistical methods by incorporating any available knowledge into the informative priors and analyzing the posterior distribution based on Bayesian framework in data-poor situations, we suggest that the Bayesian method should be an alternative method to be applied in data-poor species stock assessment, such as Indian Ocean albacore. 展开更多
关键词 data-poor stock assessment Bayesian method catch data series demographic method Indian Ocean Thunnus alalunga
在线阅读 下载PDF
Using Data Mining with Time Series Data in Short-Term Stocks Prediction: A Literature Review 被引量:3
4
作者 José Manuel Azevedo Rui Almeida Pedro Almeida 《International Journal of Intelligence Science》 2012年第4期176-180,共5页
Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series da... Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on shorttime stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced. 展开更多
关键词 data MINING Time Series FUNDAMENTAL data data Frequency Application Domain SHORT-TERM stocks PREDICTION
暂未订购
Stock Price Forecasting: An Echo State Network Approach
5
作者 Guang Sun Jingjing Lin +6 位作者 Chen Yang Xiangyang Yin Ziyu Li Peng Guo Junqi Sun Xiaoping Fan Bin Pan 《Computer Systems Science & Engineering》 SCIE EI 2021年第3期509-520,共12页
Forecasting stock prices using deep learning models suffers from pro-blems such as low accuracy,slow convergence,and complex network structures.This study developed an echo state network(ESN)model to mitigate such pro... Forecasting stock prices using deep learning models suffers from pro-blems such as low accuracy,slow convergence,and complex network structures.This study developed an echo state network(ESN)model to mitigate such pro-blems.We compared our ESN with a long short-term memory(LSTM)network by forecasting the stock data of Kweichow Moutai,a leading enterprise in China’s liquor industry.By analyzing data for 120,240,and 300 days,we generated fore-cast data for the next 40,80,and 100 days,respectively,using both ESN and LSTM.In terms of accuracy,ESN had the unique advantage of capturing non-linear data.Mean absolute error(MAE)was used to present the accuracy results.The MAEs of the data forecast by ESN were 0.024,0.024,and 0.025,which were,respectively,0.065,0.007,and 0.009 less than those of LSTM.In terms of con-vergence,ESN has a reservoir state-space structure,which makes it perform faster than other models.Root-mean-square error(RMSE)was used to present the con-vergence time.In our experiment,the RMSEs of ESN were 0.22,0.27,and 0.26,which were,respectively,0.08,0.01,and 0.12 less than those of LSTM.In terms of network structure,ESN consists only of input,reservoir,and output spaces,making it a much simpler model than the others.The proposed ESN was found to be an effective model that,compared to others,converges faster,forecasts more accurately,and builds time-series analyses more easily. 展开更多
关键词 stock data forecast echo state network deep learning
在线阅读 下载PDF
Forest aboveground biomass estimates in a tropical rainforest in Madagascar: new insights from the use of wood specific gravity data 被引量:2
6
作者 Tahiana Ramananantoandro Herimanitra P.Rafidimanantsoa Miora F.Ramanakoto 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第1期47-55,共9页
To generate carbon credits under the Reducing Emissions from Deforestation and forest Degradation program(REDD+), accurate estimates of forest carbon stocks are needed. Carbon accounting efforts have focused on car... To generate carbon credits under the Reducing Emissions from Deforestation and forest Degradation program(REDD+), accurate estimates of forest carbon stocks are needed. Carbon accounting efforts have focused on carbon stocks in aboveground biomass(AGB).Although wood specific gravity(WSG) is known to be an important variable in AGB estimates, there is currently a lack of data on WSG for Malagasy tree species. This study aimed to determine whether estimates of carbon stocks calculated from literature-based WSG values differed from those based on WSG values measured on wood core samples. Carbon stocks in forest biomass were assessed using two WSG data sets:(i) values measured from 303 wood core samples extracted in the study area,(ii) values derived from international databases. Results suggested that there is difference between the field and literaturebased WSG at the 0.05 level. The latter data set was on average 16 % higher than the former. However, carbon stocks calculated from the two data sets did not differ significantly at the 0.05 level. Such findings could be attributed to the form of the allometric equation used which gives more weight to tree diameter and tree height than to WSG. The choice of dataset should depend on the level of accuracy(Tier II or III) desired by REDD+. As higher levels of accuracy are rewarded by higher prices, speciesspecific WSG data would be highly desirable. 展开更多
关键词 Biomass estimates Carbon stocks data quality Madagascar REDD+ Wood specific gravity
在线阅读 下载PDF
Stock Trading with Genetic AlgorithmmSwitching from One Stock to Another
7
作者 Tomio Kurokawa 《通讯和计算机(中英文版)》 2011年第2期143-149,共7页
关键词 股票交易 遗传 买卖 训练数据 样本数据 学习系统 交易模式 股票数据
在线阅读 下载PDF
Model of Risk Forewarn and Investment Decision in Stock Markets and Its Realization
8
作者 邹辉文 汤兵勇 +1 位作者 王丽萍 徐光伟 《Journal of Donghua University(English Edition)》 EI CAS 2004年第6期134-141,共8页
Based on the discussion of characteristic and mechanism of the stock prices volatility in Chinese emerging stock markets, this research designs an index system for risk forewarn, and builds up an investment decision m... Based on the discussion of characteristic and mechanism of the stock prices volatility in Chinese emerging stock markets, this research designs an index system for risk forewarn, and builds up an investment decision model based on the forewarn of the market risk signal. Then, on probing into the structure and function of the realization of the model, the paper presents the method of data interface. 展开更多
关键词 stock market RISK forewarn system structure data INTERFACE
在线阅读 下载PDF
数据资产与企业资本市场表现:基于股票流动性的视角 被引量:4
9
作者 盛明泉 刘泽源 《云南财经大学学报》 北大核心 2025年第4期52-68,共17页
数据资产是推动企业发展和创新的核心竞争力。选取2013—2022年中国A股上市公司为研究对象,以股票流动性为切入点,探讨数据资产信息披露对企业股票流动性的影响。研究发现,数据资产能够提升企业股票流动性,这一结论经过一系列稳健性检... 数据资产是推动企业发展和创新的核心竞争力。选取2013—2022年中国A股上市公司为研究对象,以股票流动性为切入点,探讨数据资产信息披露对企业股票流动性的影响。研究发现,数据资产能够提升企业股票流动性,这一结论经过一系列稳健性检验和内生性检验后依然成立;机制分析表明,数据资产通过提高媒体正面报道、分析师关注度和投资者关注度来提升股票流动性;异质性分析表明,在民营企业、绩效较低的企业和东部地区企业中,数据资产对股票流动性的提升效果更明显;拓展性分析表明,数据资产能够有效抑制股价崩盘风险,企业的诚信态度强化了数据资产对股票流动性的积极影响。上述结论表明,政府可建立数据资源评估和审计机制,推动企业数据资源规范披露和运营管理;同时,可加强投资者教育和保护,引导投资者理性投资。 展开更多
关键词 数据资产 信息披露 股票流动性 资本市场
在线阅读 下载PDF
数据资产信息披露何以影响股价崩盘风险 被引量:1
10
作者 张树山 刘赵宁 姚欣妍 《广东财经大学学报》 北大核心 2025年第3期54-69,共16页
数据资产作为企业重要的战略性资源,其信息披露如何缓释股价崩盘风险,对于维护金融安全及促进经济高质量发展至关重要。以2010—2023年沪深A股上市公司为样本,基于年报文本分析量化数据资产信息披露水平,实证检验数据资产信息披露对股... 数据资产作为企业重要的战略性资源,其信息披露如何缓释股价崩盘风险,对于维护金融安全及促进经济高质量发展至关重要。以2010—2023年沪深A股上市公司为样本,基于年报文本分析量化数据资产信息披露水平,实证检验数据资产信息披露对股价崩盘风险的影响及作用机制。研究发现,数据资产信息披露显著降低企业股价崩盘风险,该效应通过吸引外部市场关注与驱动内部数字化变革双路径实现。异质性分析表明,在财务柔性较低、客户稳定度不足及市场竞争压力较高的企业中,数据资产信息披露的风险抑制作用更为显著。进一步基于耐心资本视角的检验显示,稳定型股权通过增强治理效应强化风险抑制作用,而关系型债务因偿债压力约束弱化了该效应。研究结论为推进数据资产全生命周期管理、规范信息披露制度及防范金融市场系统性风险提供了理论支撑与政策参考。 展开更多
关键词 数据资产信息披露 股价崩盘风险 市场关注 数字化变革 耐心资本
在线阅读 下载PDF
基于KAN-BiLSTM模型的股票指数预测研究
11
作者 赵涛 赵迎庆 《重庆科技大学学报(自然科学版)》 2025年第3期70-77,共8页
针对当前神经网络在长时间跨度的股票指数预测中精度和泛化能力不足的问题,提出一种融合可学习激活函数的KAN(Kolmogorov-Arnold network)与双向长短期记忆(BiLSTM)网络的新模型——KAN-BiLSTM。利用BiLSTM提取股票数据的双向时间特征,... 针对当前神经网络在长时间跨度的股票指数预测中精度和泛化能力不足的问题,提出一种融合可学习激活函数的KAN(Kolmogorov-Arnold network)与双向长短期记忆(BiLSTM)网络的新模型——KAN-BiLSTM。利用BiLSTM提取股票数据的双向时间特征,通过KAN强大的非线性函数逼近能力增强模型表达能力,提升整体预测性能。在多个长时间跨度的股票指数数据集上进行对比实验,结果显示KAN-BiLSTM模型的预测精度相比BiLSTM模型有所提高,在泛化性方面表现也更优,验证了其在股票指数预测中的有效性。 展开更多
关键词 神经网络 KAN模型 BiLSTM模型 长跨度股票数据
在线阅读 下载PDF
基于不同参数先验假设的CMSY方法敏感性研究 被引量:1
12
作者 耿紫宜 董思宋 张帆 《南方水产科学》 北大核心 2025年第3期101-110,共10页
受数据不足的限制,大部分渔业难以采用传统的渔业资源评估方法为渔业管理提供建议。因此,基于数据缺乏方法的评估模型逐渐受到关注,其中CMSY是目前国际上应用广泛的数据缺乏评估方法。然而,现有研究表明,CMSY方法的评估结果对先验假设... 受数据不足的限制,大部分渔业难以采用传统的渔业资源评估方法为渔业管理提供建议。因此,基于数据缺乏方法的评估模型逐渐受到关注,其中CMSY是目前国际上应用广泛的数据缺乏评估方法。然而,现有研究表明,CMSY方法的评估结果对先验假设具有高度依赖性,且不同参数先验对模型输出结果的具体影响尚不明确。为探究CMSY参数先验假设对评估结果的影响,从RAM传统资源评估数据库(RAM Legacy Stock Assessment Database)中随机选取200个来自不同海域的鱼类及无脊椎动物种群对CMSY敏感性进行分析。系统分析了内禀增长率(r)以及开始、中间、最后年份的资源量水平(B_(start)/K、B_(int)/K、B_(end)/K,B为生物量,K为环境容纳量)的上下限先验假设变化对模型估算结果[生物量轨迹、最大可持续产量(MSY)、最大可持续产量对应的生物量(B_(MSY))、最大可持续产量对应的捕捞死亡系数(F_(MSY))、相对生物量(B/B_(MSY))、相对捕捞死亡系数(F/F_(MSY))]的影响。结果表明:1)生物量轨迹、B_(MSY)、F_(MSY)受r下限的影响大,B/B_(MSY)、F/F_(MSY)受B_(end)/K上限的影响大,而MSY受各参数先验的影响较小。2)目级分类差异对CMSY方法的敏感性无显著性影响。3)参数先验的改变易导致Kobe图中的种群资源状况发生象限迁移,其中B_(end)/K上限对其影响最大。研究表明,CMSY方法对参数先验设置具有较高的敏感性,建议使用该模型时谨慎设定参数和进行结果分析。 展开更多
关键词 CMSY 敏感性分析 参数先验 资源评估 数据有限
在线阅读 下载PDF
投资者情绪、信息效率与股价波动——来自股票社区用户日内高频发帖文本的证据
13
作者 尹海员 《南京师大学报(社会科学版)》 北大核心 2025年第1期122-134,共13页
使用朴素贝叶斯法构建了来自股票社区发帖文本的日内高频投资者情绪指数,分析了其对股价波动的影响效应,并讨论了信息效率的中介机制作用以及信息环境、制度环境的调节效应。研究发现,个股日内高频投资者情绪指数对股价波动产生显著的... 使用朴素贝叶斯法构建了来自股票社区发帖文本的日内高频投资者情绪指数,分析了其对股价波动的影响效应,并讨论了信息效率的中介机制作用以及信息环境、制度环境的调节效应。研究发现,个股日内高频投资者情绪指数对股价波动产生显著的正向影响,乐观情绪的集聚加大了股价日内波动水平。进一步分析发现,股价信息效率在这一影响过程中起到了中介机制效应,投资者情绪会通过降低股价信息效率进而增加股价波动程度。“A+H”交叉上市的样本股票中情绪对股价波动的影响效应更低,公司投资者保护程度的提升则会减缓投资者情绪对股价波动的影响效应,说明更好的信息环境和制度环境有助于提升股价信息效率并减缓投资者情绪对股价波动的影响效应。为从投资者情绪视角透视我国股票市场的日内运行规律以及在线股票社区信息监管的必要性提供了实证证据。 展开更多
关键词 投资者情绪 股价波动 信息效率 高频数据 朴素贝叶斯法
在线阅读 下载PDF
数据资产信息披露对能源企业股票流动性的影响研究
14
作者 庞明 黄诗婷 《煤炭经济研究》 2025年第7期209-217,共9页
数据资产作为数据要素的资产化表现形式,成为推动数字中国建设和加快数字经济发展的重要资源,如何充分释放数据资产价值已上升到国家战略高度。基于中国能源行业上市企业2013—2022年面板数据,利用Python爬取年报中数据资产的词频,实证... 数据资产作为数据要素的资产化表现形式,成为推动数字中国建设和加快数字经济发展的重要资源,如何充分释放数据资产价值已上升到国家战略高度。基于中国能源行业上市企业2013—2022年面板数据,利用Python爬取年报中数据资产的词频,实证检验能源企业数据资产信息披露与股票流动性的关系与作用机制。研究发现:(1)数据资产信息披露显著提升了股票流动性,在经过一系列内生性与稳健性检验后依旧成立;(2)机制检验表明,数据资产信息披露通过影响企业创新动能、缓解企业融资约束提高股票流动性;(3)异质性分析表明,数据资产信息披露对股票流动性的提升作用在非国有企业以及总部位于中国东部地区的能源企业中更为显著。 展开更多
关键词 数据资产 信息披露 股票流动性 资本市场表现 能源企业
原文传递
国有股东参股如何降低民营企业股价同步性
15
作者 赵彦锋 《财经问题研究》 北大核心 2025年第9期46-61,共16页
股价同步性影响了资本市场价格信号的资源配置功能,而国有股东参股是否能够降低民营企业股价同步性值得关注。本文以2007—2023年我国沪深A股制造业民营上市公司为样本,考察国有股东参股对民营企业股价同步性的影响。研究发现:国有股东... 股价同步性影响了资本市场价格信号的资源配置功能,而国有股东参股是否能够降低民营企业股价同步性值得关注。本文以2007—2023年我国沪深A股制造业民营上市公司为样本,考察国有股东参股对民营企业股价同步性的影响。研究发现:国有股东参股能够显著降低民营企业股价同步性。异质性分析结果表明,从参股情况看,与单一国有股东相比,多个国有股东参股对民营企业股价同步性的降低效果更明显,国有股东向民营企业委派高管能够强化国有股东参股对民营企业股价同步性的降低效果;从企业特征看,国有股东参股对民营企业股价同步性的降低效果在年报信息可读性较高、内部控制质量较高的企业中更明显;从外部监督环境看,国有股东参股对民营企业股价同步性的降低效果在分析师关注度较高、网络媒体关注度较高的企业中更明显。机制分析结果表明,国有股东参股通过长期投资导向机制和市场关注机制降低民营企业股价同步性。本文的研究结论丰富了国有资本参股经济后果和股价同步性影响因素的研究,同时为民营企业利用国有资本发挥资本市场价值发现功能提供了理论与经验依据。 展开更多
关键词 国有股东参股 股价同步性 长期投资导向 数据资产 市场关注
在线阅读 下载PDF
Prediction of the Bombay Stock Exchange (BSE) Market Returns Using Artificial Neural Network and Genetic Algorithm
16
作者 Yusuf Perwej Asif Perwej 《Journal of Intelligent Learning Systems and Applications》 2012年第2期108-119,共12页
Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing ca... Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing capital from the investors to the business houses, which consequently leads to the availability of funds for business expansion. In this paper, we investigate to predict the daily excess returns of Bombay Stock Exchange (BSE) indices over the respective Treasury bill rate returns. Initially, we prove that the excess return time series do not fluctuate randomly. We are applying the prediction models of Autoregressive feed forward Artificial Neural Networks (ANN) to predict the excess return time series using lagged value. For the Artificial Neural Networks model using a Genetic Algorithm is constructed to choose the optimal topology. This paper examines the feasibility of the prediction task and provides evidence that the markets are not fluctuating randomly and finally, to apply the most suitable prediction model and measure their efficiency. 展开更多
关键词 stock Market Genetic Algorithm Bombay stock Exchange (BSE) Artificial Neural Network (ANN) PREDICTION Forecasting data AUTOREGRESSIVE (AR)
暂未订购
基于存量数据的基础地理实体转换生产技术研究 被引量:1
17
作者 张龙 《中国高新科技》 2025年第1期152-154,共3页
文章设计了一种基于存量数据的基础地理实体转换生产技术,主要针对现有的基础地理信息要素数据进行收集与汇总;在校验存量数据的完整性后,转换数据的格式和坐标。为了使地理信息要素与基础地理实体数据对应,需要进行属性映射,然后从土... 文章设计了一种基于存量数据的基础地理实体转换生产技术,主要针对现有的基础地理信息要素数据进行收集与汇总;在校验存量数据的完整性后,转换数据的格式和坐标。为了使地理信息要素与基础地理实体数据对应,需要进行属性映射,然后从土地利用处理、图层关系处理、数据拼接以及系统处理等方面,实现基础地理实体转换生产。 展开更多
关键词 存量数据 基础地理实体 转换生产 属性映射
在线阅读 下载PDF
存量数据在城市更新数据调查中的应用实践
18
作者 刘松梁 张郁 梁晓瑾 《地理空间信息》 2025年第6期100-103,共4页
城市更新已成为当代城市发展的重要议题之一,是城市走向高质量发展进程的重要一环。建筑物年份核查是城市更新基础数据调查的一项重要基础性工作,建筑物年份核查的成果可以辅助开展城市更新补偿核算,关系到政府、收储单位的征地补偿标准... 城市更新已成为当代城市发展的重要议题之一,是城市走向高质量发展进程的重要一环。建筑物年份核查是城市更新基础数据调查的一项重要基础性工作,建筑物年份核查的成果可以辅助开展城市更新补偿核算,关系到政府、收储单位的征地补偿标准,关系到人民群众的切身利益,于城市更新工作具有重要意义。以存量地形图、影像等存量基础地理信息成果数据为基础,面向房屋建筑数据相关基础属性的需求,探索存量数据在房屋建筑年份核查的关键技术体系和核查流程,结合广州市某地块范围的实际生产项目,分析房屋建筑年份核查的技术实现过程,为房屋建筑数据提供准确、详实的关键时间节点建设信息。 展开更多
关键词 存量数据 城市更新 建筑年份核查
在线阅读 下载PDF
层次隐马尔可夫模型在金融时间序列中的应用 被引量:1
19
作者 徐倩 李贺宇 《长春工业大学学报》 2025年第2期184-192,共9页
金融市场表现出价格上涨和下跌的交替周期,股票交易员要想做出有利可图的投资决策,就必须考虑到这些趋势。考虑到金融市场中股票数据经常表现为三种趋势:长期趋势、中期趋势和短期趋势,文中在隐马尔可夫模型的基础上提出了三层次隐马尔... 金融市场表现出价格上涨和下跌的交替周期,股票交易员要想做出有利可图的投资决策,就必须考虑到这些趋势。考虑到金融市场中股票数据经常表现为三种趋势:长期趋势、中期趋势和短期趋势,文中在隐马尔可夫模型的基础上提出了三层次隐马尔可夫模型(THHMM)对金融市场的情况进行刻画。并将所建立的模型运用到上证指数股票数据中,对不同时间尺度下的数据进行研究,描述了上证指数不同趋势下对数收益的状态分布情况。同时,通过状态解码可清晰地看出市场中牛市和熊市之间在何时进行转换,更加细致地展现股票市场的走势。最后,运用伪残差检验说明了所建立模型的可行性。 展开更多
关键词 时间序列建模 层次隐马尔可夫模型 状态解码 股票数据
在线阅读 下载PDF
个股模糊的测度与定价研究——来自中国A股市场2005~2023年高频交易数据的证据
20
作者 罗东东 冯科 《工业技术经济》 北大核心 2025年第5期133-142,共10页
股票市场的定价效率是金融市场中的基本问题,而个股模糊则对金融市场定价效率有着重要影响。因此,本文基于中国A股市场2005年1月至2023年7月个股的5分钟高频数据,对个股每月的模糊程度进行了度量,并据此构造了模糊因子,对个股模糊的定... 股票市场的定价效率是金融市场中的基本问题,而个股模糊则对金融市场定价效率有着重要影响。因此,本文基于中国A股市场2005年1月至2023年7月个股的5分钟高频数据,对个股每月的模糊程度进行了度量,并据此构造了模糊因子,对个股模糊的定价能力以及定价来源进行了研究。研究发现:(1)在中国A股市场中,个股模糊具有独立于传统风险的定价能力,该定价能力主要来源于个股在模糊因子上的暴露,而且个股模糊在横截面上也具有独立的定价能力,个股或者组合间存在显著的“高模糊低收益”的负相关关系;(2)通过将个股模糊分解成系统模糊性和特质模糊性,还发现个股模糊的定价能力主要来自于系统模糊,个股的特质模糊并未参与定价。 展开更多
关键词 个股模糊 模糊度量 模糊定价 特质模糊 系统模糊 高频数据 股票市场 定价能力
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部