This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller u...This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller under arbitrary switching signals,in which an H∞ performance is required. The condition is shown in the form of linear matrix inequalities (LMI). Finally,a numerical example shows the feasibility of the designed controller and illustrates that the new sufficient condition has lower conservation and more optimized H∞ tfperformance.展开更多
预测状态表示(Predictive State Representations,PSRs)是用于解决局部可观测问题的有效方法.然而,现实环境中,通过样本学习得到的PSR模型不可能完全准确.随着计算步数的增多,利用PSR模型计算得到的预测向量有可能越来越偏离其真实值,...预测状态表示(Predictive State Representations,PSRs)是用于解决局部可观测问题的有效方法.然而,现实环境中,通过样本学习得到的PSR模型不可能完全准确.随着计算步数的增多,利用PSR模型计算得到的预测向量有可能越来越偏离其真实值,进而导致PSR模型的预测精度越来越低.文中提出了一种PSR模型的复位算法.通过使用判别分析方法确定系统所处的PSR状态,文中所提算法可对利用计算获取的预测向量复位,从而提高PSR模型的准确性.实验结果表明,采用复位算法的PSR模型在预测精度上明显优于未采用复位算法的PSR模型,验证了所提算法的有效性.展开更多
文摘This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller under arbitrary switching signals,in which an H∞ performance is required. The condition is shown in the form of linear matrix inequalities (LMI). Finally,a numerical example shows the feasibility of the designed controller and illustrates that the new sufficient condition has lower conservation and more optimized H∞ tfperformance.
文摘预测状态表示(Predictive State Representations,PSRs)是用于解决局部可观测问题的有效方法.然而,现实环境中,通过样本学习得到的PSR模型不可能完全准确.随着计算步数的增多,利用PSR模型计算得到的预测向量有可能越来越偏离其真实值,进而导致PSR模型的预测精度越来越低.文中提出了一种PSR模型的复位算法.通过使用判别分析方法确定系统所处的PSR状态,文中所提算法可对利用计算获取的预测向量复位,从而提高PSR模型的准确性.实验结果表明,采用复位算法的PSR模型在预测精度上明显优于未采用复位算法的PSR模型,验证了所提算法的有效性.