Revealing the factors that affect the vibrational frequency of Stark probe at interface is a pre-requirement for evaluating the absolute interfacial electric field.Here using surface-enhanced infrared absorption(SEIRA...Revealing the factors that affect the vibrational frequency of Stark probe at interface is a pre-requirement for evaluating the absolute interfacial electric field.Here using surface-enhanced infrared absorption(SEIRA)spectroscopy,attenuated total reflection(ATR)spectroscopy and molecular dynamics(MD),we reveal the assembled C≡N at gold nanofilm exhibits a reduced Stark tuning rate(STR)referring to the vibrational frequency shift in response to electric field comparing with the bulk which was regulated by the electron transfer between S and Au.These findings lead to a deeper understanding of the vibrational Stark effect at the interface and provide guidance for improving the interface electric field theory.展开更多
Semiconductor moirésuperlattices provide great platforms for exploring exotic collective excitations.Optical Stark effect,a shift of the electronic transition in the presence of a light field,provides an ultrafas...Semiconductor moirésuperlattices provide great platforms for exploring exotic collective excitations.Optical Stark effect,a shift of the electronic transition in the presence of a light field,provides an ultrafast and coherent method of manipulating matter states,which,however,has not been demonstrated in moirématerials.Here,we report the valleyselective optical Stark effect of moiréexcitons in the WSe_(2)/WS_(2)superlattice by using transient reflection spectroscopy.Prominent valley-selective energy shifts up to 7.8 meV have been observed for moiréexcitons,corresponding to pseudomagnetic fields as large as 34 T.Our results provide a route to coherently manipulate exotic states in moirésuperlattices.展开更多
基金The National Key R&D Program of China(No.2022YFE0113000)the National Science Fund for Distinguished Young Scholars(No.22025406)+1 种基金the National Natural Science Foundation of China(Nos.22074138,12174457)the Youth Innovation Promotion Association of CAS(No.2020233)for financial support。
文摘Revealing the factors that affect the vibrational frequency of Stark probe at interface is a pre-requirement for evaluating the absolute interfacial electric field.Here using surface-enhanced infrared absorption(SEIRA)spectroscopy,attenuated total reflection(ATR)spectroscopy and molecular dynamics(MD),we reveal the assembled C≡N at gold nanofilm exhibits a reduced Stark tuning rate(STR)referring to the vibrational frequency shift in response to electric field comparing with the bulk which was regulated by the electron transfer between S and Au.These findings lead to a deeper understanding of the vibrational Stark effect at the interface and provide guidance for improving the interface electric field theory.
基金Project supported by the National Key R&D Program of China(Grant Nos.2022YFA1402400 and 2022YFA1405400)the National Natural Science Foundation of China(Grant Nos.11934011 and 12274365)+3 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LR24A040001)Open project of Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education)of Shanghai Jiao Tong Universitysupport from the JSPS KAKENHI(Grant Nos.20H00354 and 23H02052)World Premier International Research Center Initiative(WPI),MEXT,Japan。
文摘Semiconductor moirésuperlattices provide great platforms for exploring exotic collective excitations.Optical Stark effect,a shift of the electronic transition in the presence of a light field,provides an ultrafast and coherent method of manipulating matter states,which,however,has not been demonstrated in moirématerials.Here,we report the valleyselective optical Stark effect of moiréexcitons in the WSe_(2)/WS_(2)superlattice by using transient reflection spectroscopy.Prominent valley-selective energy shifts up to 7.8 meV have been observed for moiréexcitons,corresponding to pseudomagnetic fields as large as 34 T.Our results provide a route to coherently manipulate exotic states in moirésuperlattices.