Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt pro...Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt protective measures.However, whether to disseminate specific information is also a behavioral decision. In light of this understanding, we develop a coupled information–vaccination–epidemic model to depict these co-evolutionary dynamics in a three-layer network. Negative information dissemination and vaccination are treated as separate decision-making processes. We then examine the combined effects of herd and risk motives on information dissemination and vaccination decisions through the lens of game theory. The microscopic Markov chain approach(MMCA) is used to describe the dynamic process and to derive the epidemic threshold. Simulation results indicate that increasing the cost of negative information dissemination and providing timely clarification can effectively control the epidemic. Furthermore, a phenomenon of diminishing marginal utility is observed as the cost of dissemination increases, suggesting that authorities do not need to overinvest in suppressing negative information. Conversely, reducing the cost of vaccination and increasing vaccine efficacy emerge as more effective strategies for outbreak control. In addition, we find that the scale of the epidemic is greater when the herd motive dominates behavioral decision-making. In conclusion, this study provides a new perspective for understanding the complexity of epidemic spreading by starting with the construction of different behavioral decisions.展开更多
BACKGROUND Colorectal laterally spreading tumors(LSTs)are best treated with endoscopic submucosal dissection or endoscopic mucosal resection.AIM To analyze the clinicopathological and endoscopic profiles of colorectal...BACKGROUND Colorectal laterally spreading tumors(LSTs)are best treated with endoscopic submucosal dissection or endoscopic mucosal resection.AIM To analyze the clinicopathological and endoscopic profiles of colorectal LSTs,determine predictive factors for high-grade dysplasia(HGD)/carcinoma(CA),submucosal invasion,and complications.METHODS We retrospectively assessed the endoscopic and histological characteristics of 375 colorectal LSTs at our hospital between January 2016 and December 2023.We performed univariate and multivariate analysis to identify risk factors associated with HGD/CA,submucosal invasion and complications.RESULTS The numbers of granular(LST-G)and non-granular LST(LST-NG)were 260 and 115,respectively.The rates of low-grade dysplasia and HGD/CA were 60.3%and 39.7%,respectively.Multivariate analysis indicated that a tumor size≥30 mm[odds ratio(OR)=1.934,P=0.032],LST granular nodular mixed type(OR=2.100,P=0.005),and LST non-granular pseudo depressed type(NG-PD)(OR=3.016,P=0.015)were independent risk factors significantly associated with higher odds of HGD/CA.NG-PD(OR=6.506,P=0.001),tumor size(20-29 mm)(OR=2.631,P=0.036)and tumor size≥30 mm(OR=3.449,P=0.016)were associated with increased odds of submucosal invasion.Tumor size≥30 mm(OR=4.888,P=0.003)was a particularly important predictor of complications.A nomogram model demonstrated a satisfactory fit,with an area under the receiver operating characteristic curve of 0.716(95%confidence interval:0.653-0.780),indicating strong predictive performance.CONCLUSION The novel nomogram incorporating tumor size,location,and morphology predicted HGD/CA during endoscopic resection for LSTs.NG-PD lesions larger than 20 mm were more likely to invade the submucosa.Tumor size≥30 mm was an important predictor of complications.展开更多
Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered dri...Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered driven separately by social reinforcement or higher-order interactions.However,due to the limitations of empirical data and theoretical analysis,how the higher-order network structure affects the explosive information spreading under the role of social reinforcement has not been fully explored.In this work,we propose an information-spreading model by considering the social reinforcement in real and synthetic higher-order networks,describable as hypergraphs.Depending on the average group size(hyperedge cardinality)and node membership(hyperdegree),we observe two different spreading behaviors:(i)The spreading progress is not sensitive to social reinforcement,resulting in the information localized in a small part of nodes;(ii)a strong social reinforcement will promote the large-scale spread of information and induce an explosive transition.Moreover,a large average group size and membership would be beneficial to the appearance of the explosive transition.Further,we display that the heterogeneity of the node membership and group size distributions benefit the information spreading.Finally,we extend the group-based approximate master equations to verify the simulation results.Our findings may help us to comprehend the rapidly information-spreading phenomenon in modern society.展开更多
This paper is devoted to investigating the spreading speed of a time-space periodic epidemic model with vital dynamics and standard incidence in discrete media. We establish the existence of the leftward and rightward...This paper is devoted to investigating the spreading speed of a time-space periodic epidemic model with vital dynamics and standard incidence in discrete media. We establish the existence of the leftward and rightward spreading speeds for the infective individuals, which can be used to estimate how fast the disease spreads. To overcome the difficulty arising from the lack of comparison principle for such time-space periodic nonmonotone systems, our proof is mainly based on constructing a series of scalar time-space periodic equations, establishing the spreading speeds for such auxiliary equations and using comparison methods. It may be the first work to study the spreading speed for time-space periodic non-monotone systems.展开更多
The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(...The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(GEP).Based on statistical reasoning,individual models were developed for two topographies:free-face and gently sloping ground.Along with a comparison with conventional approaches for predicting the Dh,four additional regression-based soft computing models,i.e.Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimization regression(SMOR),and M5-tree,were developed and compared with the GEP model.The results indicate that the GEP models predict Dh with less bias,as evidenced by the root mean square error(RMSE)and mean absolute error(MAE)for training(i.e.1.092 and 0.815;and 0.643 and 0.526)and for testing(i.e.0.89 and 0.705;and 0.773 and 0.573)in free-face and gently sloping ground topographies,respectively.The overall performance for the free-face topology was ranked as follows:GEP>RVM>M5-tree>GPR>SMOR,with a total score of 40,32,24,15,and 10,respectively.For the gently sloping condition,the performance was ranked as follows:GEP>RVM>GPR>M5-tree>SMOR with a total score of 40,32,21,19,and 8,respectively.Finally,the results of the sensitivity analysis showed that for both free-face and gently sloping ground,the liquefiable layer thickness(T_(15))was the major parameter with percentage deterioration(%D)value of 99.15 and 90.72,respectively.展开更多
There are various phenomena of malicious information spreading in the real society, which cause many negative impacts on the society. In order to better control the spreading, it is crucial to reveal the influence of ...There are various phenomena of malicious information spreading in the real society, which cause many negative impacts on the society. In order to better control the spreading, it is crucial to reveal the influence of network structure on network spreading. Motifs, as fundamental structures within a network, play a significant role in spreading. Therefore, it is of interest to investigate the influence of the structural characteristics of basic network motifs on spreading dynamics.Considering the edges of the basic network motifs in an undirected network correspond to different tie ranges, two edge removal strategies are proposed, short ties priority removal strategy and long ties priority removal strategy. The tie range represents the second shortest path length between two connected nodes. The study focuses on analyzing how the proposed strategies impact network spreading and network structure, as well as examining the influence of network structure on network spreading. Our findings indicate that the long ties priority removal strategy is most effective in controlling network spreading, especially in terms of spread range and spread velocity. In terms of network structure, the clustering coefficient and the diameter of network also have an effect on the network spreading, and the triangular structure as an important motif structure effectively inhibits the spreading.展开更多
In recent years,attacks against crowded places such as campuses and theaters have had a frequent and negative impact on the security and stability of society.In such an event,the crowd will be subjected to high psycho...In recent years,attacks against crowded places such as campuses and theaters have had a frequent and negative impact on the security and stability of society.In such an event,the crowd will be subjected to high psychological stress and their emotions will rapidly spread to others.This paper establishes the attack-escape evacuation simulation model(AEES-SFM),based on the social force model,to consider emotion spreading under attack.In this model,(1)the attack-escape driving force is considered for the interaction between an attacker and evacuees and(2)emotion spreading among the evacuees is considered to modify the value of the psychological force.To validate the simulation,several experiments were carried out at a university in China.Comparing the simulation and experimental results,it is found that the simulation results are similar to the experimental results when considering emotion spreading.Therefore,the AEES-SFM is proved to be effective.By comparing the results of the evacuation simulation without emotion spreading,the emotion spreading model reduces the evacuation time and the number of casualties by about 30%,which is closer to the real experimental results.The results are still applicable in the case of a 40-person evacuation.This paper provides theoretical support and practical guidance for campus response to violent attacks.展开更多
The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the wid...The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the widely used deterministic compartmental models have qualitatively presented continuous “analytical” insight and captured some transmission features,their treatment usually lacks spatiotemporal variation.Here,we propose a stochastic individual dynamical(SID)model to mimic the random and heterogeneous nature of epidemic propagation.The SID model provides a unifying framework for representing the spatiotemporal variations of epidemic development by tracking the movements of each individual.Using this model,we reproduce the infection curves for COVID-19 cases in different areas globally and find the local dynamics and heterogeneity at the individual level that affect the disease outbreak.The macroscopic trend of virus spreading is clearly illustrated from the microscopic perspective,enabling a quantitative assessment of different interventions.Seemingly,this model is also applicable to studying stochastic processes at the “meter scale”,e.g.,human society’s collective dynamics.展开更多
Background: We present a compelling case fitting the phenomenon of cortical spreading depression detected by intraoperative neurophysiological monitoring (IONM) following an intraoperative seizure during a craniotomy ...Background: We present a compelling case fitting the phenomenon of cortical spreading depression detected by intraoperative neurophysiological monitoring (IONM) following an intraoperative seizure during a craniotomy for revascularization. Cortical spreading depression (CSD, also called cortical spreading depolarization) is a pathophysiological phenomenon whereby a wave of depolarization is thought to propagate across the cerebral cortex, creating a brief period of relative neuronal inactivity. The relationship between CSD and seizures is unclear, although some literature has made a correlation between seizures and a cortical environment conducive to CSD. Methods: Intraoperative somatosensory evoked potentials (SSEPs) and electroencephalography (EEG) were monitored continuously during the craniotomy procedure utilizing standard montages. Electrophysiological data from pre-ictal, ictal, and post-ictal periods were recorded. Results: During the procedure, intraoperative EEG captured a generalized seizure followed by a stepwise decrease in somatosensory evoked potential cortical amplitudes, compelling for the phenomenon of CSD. The subsequent partial recovery of neuronal function was also captured electrophysiologically. Discussion: While CSD is considered controversial in some aspects, intraoperative neurophysiological monitoring allowed for the unique analysis of a case demonstrating a CSD-like phenomenon. To our knowledge, this is the first published example of this phenomenon in which intraoperative neurophysiological monitoring captured a seizure, along with a stepwise subsequent reduction in SSEP cortical amplitudes not explained by other variables.展开更多
As the dump was a typically heterogeneous body, the seepage was different with varied spreading solution modes. The phenomenon of lamination that occured in the site was simulated using three layers in an indoor exper...As the dump was a typically heterogeneous body, the seepage was different with varied spreading solution modes. The phenomenon of lamination that occured in the site was simulated using three layers in an indoor experiment, and the seepage effect comparison experiment of the inside spreading solution model and the top spreading solution model have been carried out. In the inside spreading solution mode, the phreatic planar flew without infiltration and the parallel layer motion model was used to calculate the seepage coefficient and equivalent seepage coefficient of each state respectively. In the top spreading solution model, the phreatic planar flew with an even infiltration on the surface, and the vertical layer motion model was adopted to calculate the above coefficient. The results showed that the seepage coefficient of the inside model was larger than the top model in the heterogeneous body, The ratio of them was between 1.42 and 3.07. On the basis of these results, the following new technologies were discussed: installing a few small diameter mechanical pore sand piles with every lamination in the using dump; drilling some holes one-off in the unused dump. These two methods could changed the top spreading solution into the inside model, thus the seepage in the dump was improved.展开更多
The contact angle is one of important parameters to simulate droplet spreading and impingement phenomena on the surface. In the most numerical research, it is assumed constant value and it is implemented as boundary c...The contact angle is one of important parameters to simulate droplet spreading and impingement phenomena on the surface. In the most numerical research, it is assumed constant value and it is implemented as boundary condition. However, contact angle is changed according to contact line velocity and time. Hence, for accurate simulation, dynamic contact angle which has various values as time elapsed is adopted. In the present study, the numerical analysis is performed on the droplet spreading phenomena considering dynamic contact angle function which is obtained from single droplet spreading experiment on the flat and bare surface. The CIP (cubic interpolated pseudo-particle) method by Yabe is used for analysis of interface between liquid and gas phases. The numerical results considering contact angle function which newly modeled as time and contact angle are compared with numerical results considering Hoffman's function and experimental data for range of Weber number which are 4.427 and 11.334. In contrast of numerical result considering Hoffman's function, the numerical result shows good agreement with experimental data as time elapsed in contact angle evolution, deformation of droplet spreading radius and height. Indeed, overall, the results display the increasing maximum spreading radius and the decreasing height as Weber numbers increased.展开更多
Lunar surface additive manufacturing with lunar regolith is a key step in in-situ resource utilization.The powder spreading process is the key process,which has a major impact on the quality of the powder bed and the ...Lunar surface additive manufacturing with lunar regolith is a key step in in-situ resource utilization.The powder spreading process is the key process,which has a major impact on the quality of the powder bed and the precision of molded parts.In this study,the discrete element method(DEM)was adopted to simulate the powder spreading process with a roller.The three powder bed quality indicators,including the molding layer offset,voidage fraction,and surface roughness,were established.Besides,the influence of the three process parameters,which are roller’s translational speed,rotational speed,and powder spreading layer thickness on the powder bed quality indicators was also analyzed.The results show that with the reduction of the powder spreading layer thickness and the increase of the rotational speed,the offset increased significantly;when the translational speed increased,the offset first increased and then decreased,which resulted in an extreme value;with the increase of the layer thickness and the decrease of the translational speed,the values for voidage fraction and surface roughness significantly reduced.The powder bed quality indicators were adopted as the optimization objective,and the multi-objective parameter optimization was carried out.The predicted optimal powder spreading parameters and powder bed quality indicators were then obtained.Moreover,the optimal values were then verified.This study can provide informative guidance for in-situ manufacturing at the moon in future deep space exploration missions.展开更多
Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. ...Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.展开更多
In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on ...In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the finaJ size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations.展开更多
Esophageal carcinoma(EC) is a highly lethal malignancywith a poor prognosis. One of the most important prognostic factors in EC is lymph node status. Therefore, lymphadenectomy has been recognized as a key that influe...Esophageal carcinoma(EC) is a highly lethal malignancywith a poor prognosis. One of the most important prognostic factors in EC is lymph node status. Therefore, lymphadenectomy has been recognized as a key that influences the outcome of surgical treatment for EC. However, the lymphatic drainage system of the esophagus, including an abundant lymph-capillary network in the lamina propria and muscularis mucosa, is very complex with cervical, mediastinal and celiac node spreading. The extent of lymphadenectomy for EC has always been controversial because of the very complex pattern of lymph node spreading. In this article, published literature regarding lymphatic spreading was reviewed and the current lymphadenectomy trends for EC are discussed.展开更多
AIM: To clarify differences in mucin phenotype, prolif- erative activity and oncogenetic alteration among sub- types of colorectal laterally spreading tumor (LST). METHODS: LSTs, defined as superficial elevated le...AIM: To clarify differences in mucin phenotype, prolif- erative activity and oncogenetic alteration among sub- types of colorectal laterally spreading tumor (LST). METHODS: LSTs, defined as superficial elevated lesions greater than 10 mm in diameter with a low vertical axis, were macroscopically classified into two subtypes: (1) a granular type (Gr-LST) composed of superficially spread- ing aggregates of nodules forming a fiat-based lesion with a granulonodular and uneven surface; and (2) a non-granular type (NGr-LST) with a flat smooth surface and an absence of granulonodular formation. A total of 69 LSTs, comprising 36 Gr-LSTs and 33 NGr-LSTs, were immunohistochemically stained with MUC2, MUC5AC, MUC6, CD10 (markers of gastrointestinal cell lineage), p53, 13-catenin and Ki-67 antibodies, and examined for alteration in exon 1 of v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and exon 15 of v-raf murine sarcoma viral oncogene homologue B1 (BRAF) by poly- merase chain reaction followed by direct sequencing. RESULTS: Histologically, 15 Gr-LST samples were ad- enomas with low-grade dysplasia (LGD), 12 were high- grade dysplasia (HGD) and 9 were adenocarcinomas invading the submucosa (INV), while 12 NGr-LSTs demonstrated LGD, 14 HGD and 7 INV. In the proximal colon, MUC5AC expression was significantly higher in the Gr-type than the NGr-type. MUC6 was expressed only in NGr-LST. MUC2 or CD10 did not differ. P53 ex- pression demonstrated a significant stepwise increment in progression through LGD-HGD-INV with both types of LST. Nuclear β-catenin expression was significantly higher in the NGr-type. Ki-67 expression was signifi- cantly higher in the Gr-type in the lower one third zone of the tumor. In proximal, but not distal colon tumors, the incidence of KRAS provided mutation was signifi- cantly higher in the Gr-type harboring a specific muta- tional pattern (G12V). BRAF mutations (V600E) were detected only in two Gr-LSTs. CONCLUSION: The two subtypes of LST, especially in the proximal colon, have differing phenotypes of gastrointestinal cell lineage, proliferation and activa- tion of Wnt/β-catenin or RAS/RAF/extracellular signal- regulated kinase signaling.展开更多
The response of pile foundations near a quay wall under liquefaction-induced lateral spreading remains a complex problem. This study presents the results of a shake-table test on a 2×2 pile group behind a sheet-p...The response of pile foundations near a quay wall under liquefaction-induced lateral spreading remains a complex problem. This study presents the results of a shake-table test on a 2×2 pile group behind a sheet-pile quay wall that was subjected to lateral spreading. The quay wall was employed to trigger liquefaction-induced large lateral ground deformation. The discussions focus on the behavior of the pile and the soil and on the bending moment distributions within the group pile and the restoring force characteristics at the superstructure. Overall, the piles exhibited apparent pinning effects that reduced soil deformation. In addition, the rear-row piles near the quay wall experienced larger bending moments than did the front-row piles, indicating significant pile group effects. The tests showed that lateral spreading could be a primary cause of larger monotonic deformations and bending moments. It can also be concluded that the monotonic bending moments were significantly decreased due to the presence of slow soil flow. The stiffness at the superstructure was reduced because of accumulated excess pore pressure before liquefaction, and it was recovered during lateral spreading. The present study further enhances current understanding of the behavior of low-cap pile foundations under lateral spreading.展开更多
To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. ...To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. By simplifying the objective function of maximum likelihood estimation, the algorithm can realize sequence synchronization and sequence estimation via adaptive iteration and sliding window. Since it avoids the correlation matrix computation, the algorithm significantly reduces the storage requirement and the computation complexity. Simulations show that it is a fast convergent algorithm, and can perform well in low signal to noise ratio (SNR).展开更多
The stiffness spreading method (SSM) was initially proposed for layout optimization of truss structures,in which an artificial elastic material of low modulus is uniformly distributed in the design domain to create co...The stiffness spreading method (SSM) was initially proposed for layout optimization of truss structures,in which an artificial elastic material of low modulus is uniformly distributed in the design domain to create connections between discrete members.In this paper,a modified stiffness spreading method is proposed by replacing the artificial elastic material with auxiliary bars to connect real members of the truss structure.Since the background continuum mesh for the elastic material is no longer required,the computational cost is significantly reduced.Like SSM,the new method is advantageous in that an initial design may consist of disconnected bars allocated in the design domain,and mathematical programming methods can be applied for the efficient solution of the formulated optimization problem.A number of solution strategies are also developed to achieve more practical designs with lower computational cost.Numerical examples of both 2-D and 3-D truss structures are presented to demonstrate the feasibility,robustness and effectiveness of the proposed method.展开更多
This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations ...This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations in terms of superstructure type, connection, continuity at support and foundation type, etc. render different damage resistant capability. Six classes of bridges are established based on their anticipated failure mechanisms under earthquake shaking. The numerical models that are capable of simulating the complex soil-structure interaction effects, nonlinear behavior of columns and connections are developed for each bridge class. The dynamic responses are obtained using nonlinear time history analyses for a suite of 250 earthquake motions with increasing intensity. An equivalent static analysis procedure is also implemented to evaluate the vulnerability of the bridges when subjected to liquefaction-induced lateral spreading. Fragility functions for each bridge class are derived and compared for both seismic shaking (based on nonlinear dynamic analyses) and lateral spreading (based on equivalent static analyses) for different performance states. The study finds that the fragility functions due to either ground shaking or lateral spreading show significant correlation with the structural characterizations, but differences emerge for ground shaking and lateral spreading conditions. Structural properties that will mostly affect the bridges' damage resistant capacity are also identified.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 72174121)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Soft Science Research Project of Shanghai (Grant No. 22692112600)。
文摘Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt protective measures.However, whether to disseminate specific information is also a behavioral decision. In light of this understanding, we develop a coupled information–vaccination–epidemic model to depict these co-evolutionary dynamics in a three-layer network. Negative information dissemination and vaccination are treated as separate decision-making processes. We then examine the combined effects of herd and risk motives on information dissemination and vaccination decisions through the lens of game theory. The microscopic Markov chain approach(MMCA) is used to describe the dynamic process and to derive the epidemic threshold. Simulation results indicate that increasing the cost of negative information dissemination and providing timely clarification can effectively control the epidemic. Furthermore, a phenomenon of diminishing marginal utility is observed as the cost of dissemination increases, suggesting that authorities do not need to overinvest in suppressing negative information. Conversely, reducing the cost of vaccination and increasing vaccine efficacy emerge as more effective strategies for outbreak control. In addition, we find that the scale of the epidemic is greater when the herd motive dominates behavioral decision-making. In conclusion, this study provides a new perspective for understanding the complexity of epidemic spreading by starting with the construction of different behavioral decisions.
文摘BACKGROUND Colorectal laterally spreading tumors(LSTs)are best treated with endoscopic submucosal dissection or endoscopic mucosal resection.AIM To analyze the clinicopathological and endoscopic profiles of colorectal LSTs,determine predictive factors for high-grade dysplasia(HGD)/carcinoma(CA),submucosal invasion,and complications.METHODS We retrospectively assessed the endoscopic and histological characteristics of 375 colorectal LSTs at our hospital between January 2016 and December 2023.We performed univariate and multivariate analysis to identify risk factors associated with HGD/CA,submucosal invasion and complications.RESULTS The numbers of granular(LST-G)and non-granular LST(LST-NG)were 260 and 115,respectively.The rates of low-grade dysplasia and HGD/CA were 60.3%and 39.7%,respectively.Multivariate analysis indicated that a tumor size≥30 mm[odds ratio(OR)=1.934,P=0.032],LST granular nodular mixed type(OR=2.100,P=0.005),and LST non-granular pseudo depressed type(NG-PD)(OR=3.016,P=0.015)were independent risk factors significantly associated with higher odds of HGD/CA.NG-PD(OR=6.506,P=0.001),tumor size(20-29 mm)(OR=2.631,P=0.036)and tumor size≥30 mm(OR=3.449,P=0.016)were associated with increased odds of submucosal invasion.Tumor size≥30 mm(OR=4.888,P=0.003)was a particularly important predictor of complications.A nomogram model demonstrated a satisfactory fit,with an area under the receiver operating characteristic curve of 0.716(95%confidence interval:0.653-0.780),indicating strong predictive performance.CONCLUSION The novel nomogram incorporating tumor size,location,and morphology predicted HGD/CA during endoscopic resection for LSTs.NG-PD lesions larger than 20 mm were more likely to invade the submucosa.Tumor size≥30 mm was an important predictor of complications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12305043 and 12165016)the Natural Science Foundation of Jiangsu Province(Grant No.BK20220511)+1 种基金the Project of Undergraduate Scientific Research(Grant No.22A684)the support from the Jiangsu Specially-Appointed Professor Program。
文摘Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered driven separately by social reinforcement or higher-order interactions.However,due to the limitations of empirical data and theoretical analysis,how the higher-order network structure affects the explosive information spreading under the role of social reinforcement has not been fully explored.In this work,we propose an information-spreading model by considering the social reinforcement in real and synthetic higher-order networks,describable as hypergraphs.Depending on the average group size(hyperedge cardinality)and node membership(hyperdegree),we observe two different spreading behaviors:(i)The spreading progress is not sensitive to social reinforcement,resulting in the information localized in a small part of nodes;(ii)a strong social reinforcement will promote the large-scale spread of information and induce an explosive transition.Moreover,a large average group size and membership would be beneficial to the appearance of the explosive transition.Further,we display that the heterogeneity of the node membership and group size distributions benefit the information spreading.Finally,we extend the group-based approximate master equations to verify the simulation results.Our findings may help us to comprehend the rapidly information-spreading phenomenon in modern society.
基金supported by the Natural Science Basic Research Program of Shanxi(Grant No.2024JC-YBMS-025)the Innovation Capability Support Program of Shanxi(Grant No.2024RS-CXTD-88)。
文摘This paper is devoted to investigating the spreading speed of a time-space periodic epidemic model with vital dynamics and standard incidence in discrete media. We establish the existence of the leftward and rightward spreading speeds for the infective individuals, which can be used to estimate how fast the disease spreads. To overcome the difficulty arising from the lack of comparison principle for such time-space periodic nonmonotone systems, our proof is mainly based on constructing a series of scalar time-space periodic equations, establishing the spreading speeds for such auxiliary equations and using comparison methods. It may be the first work to study the spreading speed for time-space periodic non-monotone systems.
文摘The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(GEP).Based on statistical reasoning,individual models were developed for two topographies:free-face and gently sloping ground.Along with a comparison with conventional approaches for predicting the Dh,four additional regression-based soft computing models,i.e.Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimization regression(SMOR),and M5-tree,were developed and compared with the GEP model.The results indicate that the GEP models predict Dh with less bias,as evidenced by the root mean square error(RMSE)and mean absolute error(MAE)for training(i.e.1.092 and 0.815;and 0.643 and 0.526)and for testing(i.e.0.89 and 0.705;and 0.773 and 0.573)in free-face and gently sloping ground topographies,respectively.The overall performance for the free-face topology was ranked as follows:GEP>RVM>M5-tree>GPR>SMOR,with a total score of 40,32,24,15,and 10,respectively.For the gently sloping condition,the performance was ranked as follows:GEP>RVM>GPR>M5-tree>SMOR with a total score of 40,32,21,19,and 8,respectively.Finally,the results of the sensitivity analysis showed that for both free-face and gently sloping ground,the liquefiable layer thickness(T_(15))was the major parameter with percentage deterioration(%D)value of 99.15 and 90.72,respectively.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62373197 and 62203229)the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX24_1211)。
文摘There are various phenomena of malicious information spreading in the real society, which cause many negative impacts on the society. In order to better control the spreading, it is crucial to reveal the influence of network structure on network spreading. Motifs, as fundamental structures within a network, play a significant role in spreading. Therefore, it is of interest to investigate the influence of the structural characteristics of basic network motifs on spreading dynamics.Considering the edges of the basic network motifs in an undirected network correspond to different tie ranges, two edge removal strategies are proposed, short ties priority removal strategy and long ties priority removal strategy. The tie range represents the second shortest path length between two connected nodes. The study focuses on analyzing how the proposed strategies impact network spreading and network structure, as well as examining the influence of network structure on network spreading. Our findings indicate that the long ties priority removal strategy is most effective in controlling network spreading, especially in terms of spread range and spread velocity. In terms of network structure, the clustering coefficient and the diameter of network also have an effect on the network spreading, and the triangular structure as an important motif structure effectively inhibits the spreading.
基金Project supported by the National Natural Science Foundation of China(Grant No.72274208)。
文摘In recent years,attacks against crowded places such as campuses and theaters have had a frequent and negative impact on the security and stability of society.In such an event,the crowd will be subjected to high psychological stress and their emotions will rapidly spread to others.This paper establishes the attack-escape evacuation simulation model(AEES-SFM),based on the social force model,to consider emotion spreading under attack.In this model,(1)the attack-escape driving force is considered for the interaction between an attacker and evacuees and(2)emotion spreading among the evacuees is considered to modify the value of the psychological force.To validate the simulation,several experiments were carried out at a university in China.Comparing the simulation and experimental results,it is found that the simulation results are similar to the experimental results when considering emotion spreading.Therefore,the AEES-SFM is proved to be effective.By comparing the results of the evacuation simulation without emotion spreading,the emotion spreading model reduces the evacuation time and the number of casualties by about 30%,which is closer to the real experimental results.The results are still applicable in the case of a 40-person evacuation.This paper provides theoretical support and practical guidance for campus response to violent attacks.
基金supported by the National Natural Science Foundation of China(Grant No.22273034)the Frontiers Science Center for Critical Earth Material Cycling of Nanjing University。
文摘The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the widely used deterministic compartmental models have qualitatively presented continuous “analytical” insight and captured some transmission features,their treatment usually lacks spatiotemporal variation.Here,we propose a stochastic individual dynamical(SID)model to mimic the random and heterogeneous nature of epidemic propagation.The SID model provides a unifying framework for representing the spatiotemporal variations of epidemic development by tracking the movements of each individual.Using this model,we reproduce the infection curves for COVID-19 cases in different areas globally and find the local dynamics and heterogeneity at the individual level that affect the disease outbreak.The macroscopic trend of virus spreading is clearly illustrated from the microscopic perspective,enabling a quantitative assessment of different interventions.Seemingly,this model is also applicable to studying stochastic processes at the “meter scale”,e.g.,human society’s collective dynamics.
文摘Background: We present a compelling case fitting the phenomenon of cortical spreading depression detected by intraoperative neurophysiological monitoring (IONM) following an intraoperative seizure during a craniotomy for revascularization. Cortical spreading depression (CSD, also called cortical spreading depolarization) is a pathophysiological phenomenon whereby a wave of depolarization is thought to propagate across the cerebral cortex, creating a brief period of relative neuronal inactivity. The relationship between CSD and seizures is unclear, although some literature has made a correlation between seizures and a cortical environment conducive to CSD. Methods: Intraoperative somatosensory evoked potentials (SSEPs) and electroencephalography (EEG) were monitored continuously during the craniotomy procedure utilizing standard montages. Electrophysiological data from pre-ictal, ictal, and post-ictal periods were recorded. Results: During the procedure, intraoperative EEG captured a generalized seizure followed by a stepwise decrease in somatosensory evoked potential cortical amplitudes, compelling for the phenomenon of CSD. The subsequent partial recovery of neuronal function was also captured electrophysiologically. Discussion: While CSD is considered controversial in some aspects, intraoperative neurophysiological monitoring allowed for the unique analysis of a case demonstrating a CSD-like phenomenon. To our knowledge, this is the first published example of this phenomenon in which intraoperative neurophysiological monitoring captured a seizure, along with a stepwise subsequent reduction in SSEP cortical amplitudes not explained by other variables.
基金supported by the National Key Basic Research and Development Programme of China(No.2004CB612905)National 0riginality Innovation Population Project of China(No.50321402)National Natural Science Foundation of China(No.50574099).
文摘As the dump was a typically heterogeneous body, the seepage was different with varied spreading solution modes. The phenomenon of lamination that occured in the site was simulated using three layers in an indoor experiment, and the seepage effect comparison experiment of the inside spreading solution model and the top spreading solution model have been carried out. In the inside spreading solution mode, the phreatic planar flew without infiltration and the parallel layer motion model was used to calculate the seepage coefficient and equivalent seepage coefficient of each state respectively. In the top spreading solution model, the phreatic planar flew with an even infiltration on the surface, and the vertical layer motion model was adopted to calculate the above coefficient. The results showed that the seepage coefficient of the inside model was larger than the top model in the heterogeneous body, The ratio of them was between 1.42 and 3.07. On the basis of these results, the following new technologies were discussed: installing a few small diameter mechanical pore sand piles with every lamination in the using dump; drilling some holes one-off in the unused dump. These two methods could changed the top spreading solution into the inside model, thus the seepage in the dump was improved.
文摘The contact angle is one of important parameters to simulate droplet spreading and impingement phenomena on the surface. In the most numerical research, it is assumed constant value and it is implemented as boundary condition. However, contact angle is changed according to contact line velocity and time. Hence, for accurate simulation, dynamic contact angle which has various values as time elapsed is adopted. In the present study, the numerical analysis is performed on the droplet spreading phenomena considering dynamic contact angle function which is obtained from single droplet spreading experiment on the flat and bare surface. The CIP (cubic interpolated pseudo-particle) method by Yabe is used for analysis of interface between liquid and gas phases. The numerical results considering contact angle function which newly modeled as time and contact angle are compared with numerical results considering Hoffman's function and experimental data for range of Weber number which are 4.427 and 11.334. In contrast of numerical result considering Hoffman's function, the numerical result shows good agreement with experimental data as time elapsed in contact angle evolution, deformation of droplet spreading radius and height. Indeed, overall, the results display the increasing maximum spreading radius and the decreasing height as Weber numbers increased.
文摘Lunar surface additive manufacturing with lunar regolith is a key step in in-situ resource utilization.The powder spreading process is the key process,which has a major impact on the quality of the powder bed and the precision of molded parts.In this study,the discrete element method(DEM)was adopted to simulate the powder spreading process with a roller.The three powder bed quality indicators,including the molding layer offset,voidage fraction,and surface roughness,were established.Besides,the influence of the three process parameters,which are roller’s translational speed,rotational speed,and powder spreading layer thickness on the powder bed quality indicators was also analyzed.The results show that with the reduction of the powder spreading layer thickness and the increase of the rotational speed,the offset increased significantly;when the translational speed increased,the offset first increased and then decreased,which resulted in an extreme value;with the increase of the layer thickness and the decrease of the translational speed,the values for voidage fraction and surface roughness significantly reduced.The powder bed quality indicators were adopted as the optimization objective,and the multi-objective parameter optimization was carried out.The predicted optimal powder spreading parameters and powder bed quality indicators were then obtained.Moreover,the optimal values were then verified.This study can provide informative guidance for in-situ manufacturing at the moon in future deep space exploration missions.
文摘Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61103231,61103230the Innovation Program of Graduate Scientific Research in Institution of Higher Education of Jiangsu Province of China under Grant No.CXZZ110401+1 种基金the Basic Research Foundation of Engineering University of the Chinese People's Armed Police Force under Grant No.WJY201218 the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No.2011JM8012
文摘In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the finaJ size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations.
文摘Esophageal carcinoma(EC) is a highly lethal malignancywith a poor prognosis. One of the most important prognostic factors in EC is lymph node status. Therefore, lymphadenectomy has been recognized as a key that influences the outcome of surgical treatment for EC. However, the lymphatic drainage system of the esophagus, including an abundant lymph-capillary network in the lamina propria and muscularis mucosa, is very complex with cervical, mediastinal and celiac node spreading. The extent of lymphadenectomy for EC has always been controversial because of the very complex pattern of lymph node spreading. In this article, published literature regarding lymphatic spreading was reviewed and the current lymphadenectomy trends for EC are discussed.
基金Supported by A grant-in-aid for General Scientific Research from the Ministry of Education, Science, Sports and Culture to Hiroyuki Mitomi, No. 21590394to Tsuyoshi Saito, No. 23590434, To-kyo, Japan
文摘AIM: To clarify differences in mucin phenotype, prolif- erative activity and oncogenetic alteration among sub- types of colorectal laterally spreading tumor (LST). METHODS: LSTs, defined as superficial elevated lesions greater than 10 mm in diameter with a low vertical axis, were macroscopically classified into two subtypes: (1) a granular type (Gr-LST) composed of superficially spread- ing aggregates of nodules forming a fiat-based lesion with a granulonodular and uneven surface; and (2) a non-granular type (NGr-LST) with a flat smooth surface and an absence of granulonodular formation. A total of 69 LSTs, comprising 36 Gr-LSTs and 33 NGr-LSTs, were immunohistochemically stained with MUC2, MUC5AC, MUC6, CD10 (markers of gastrointestinal cell lineage), p53, 13-catenin and Ki-67 antibodies, and examined for alteration in exon 1 of v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and exon 15 of v-raf murine sarcoma viral oncogene homologue B1 (BRAF) by poly- merase chain reaction followed by direct sequencing. RESULTS: Histologically, 15 Gr-LST samples were ad- enomas with low-grade dysplasia (LGD), 12 were high- grade dysplasia (HGD) and 9 were adenocarcinomas invading the submucosa (INV), while 12 NGr-LSTs demonstrated LGD, 14 HGD and 7 INV. In the proximal colon, MUC5AC expression was significantly higher in the Gr-type than the NGr-type. MUC6 was expressed only in NGr-LST. MUC2 or CD10 did not differ. P53 ex- pression demonstrated a significant stepwise increment in progression through LGD-HGD-INV with both types of LST. Nuclear β-catenin expression was significantly higher in the NGr-type. Ki-67 expression was signifi- cantly higher in the Gr-type in the lower one third zone of the tumor. In proximal, but not distal colon tumors, the incidence of KRAS provided mutation was signifi- cantly higher in the Gr-type harboring a specific muta- tional pattern (G12V). BRAF mutations (V600E) were detected only in two Gr-LSTs. CONCLUSION: The two subtypes of LST, especially in the proximal colon, have differing phenotypes of gastrointestinal cell lineage, proliferation and activa- tion of Wnt/β-catenin or RAS/RAF/extracellular signal- regulated kinase signaling.
基金National Natural Science Foundation of China under Grant Nos.51378161 and 51108134
文摘The response of pile foundations near a quay wall under liquefaction-induced lateral spreading remains a complex problem. This study presents the results of a shake-table test on a 2×2 pile group behind a sheet-pile quay wall that was subjected to lateral spreading. The quay wall was employed to trigger liquefaction-induced large lateral ground deformation. The discussions focus on the behavior of the pile and the soil and on the bending moment distributions within the group pile and the restoring force characteristics at the superstructure. Overall, the piles exhibited apparent pinning effects that reduced soil deformation. In addition, the rear-row piles near the quay wall experienced larger bending moments than did the front-row piles, indicating significant pile group effects. The tests showed that lateral spreading could be a primary cause of larger monotonic deformations and bending moments. It can also be concluded that the monotonic bending moments were significantly decreased due to the presence of slow soil flow. The stiffness at the superstructure was reduced because of accumulated excess pore pressure before liquefaction, and it was recovered during lateral spreading. The present study further enhances current understanding of the behavior of low-cap pile foundations under lateral spreading.
基金supported by Joint Foundation of and China Academy of Engineering Physical (10676006)
文摘To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. By simplifying the objective function of maximum likelihood estimation, the algorithm can realize sequence synchronization and sequence estimation via adaptive iteration and sliding window. Since it avoids the correlation matrix computation, the algorithm significantly reduces the storage requirement and the computation complexity. Simulations show that it is a fast convergent algorithm, and can perform well in low signal to noise ratio (SNR).
基金The authors gratefully acknowledge the financial support provided by the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant 2016YFB0200605)the National Natural Science Foundation of China(Grant 11372004).
文摘The stiffness spreading method (SSM) was initially proposed for layout optimization of truss structures,in which an artificial elastic material of low modulus is uniformly distributed in the design domain to create connections between discrete members.In this paper,a modified stiffness spreading method is proposed by replacing the artificial elastic material with auxiliary bars to connect real members of the truss structure.Since the background continuum mesh for the elastic material is no longer required,the computational cost is significantly reduced.Like SSM,the new method is advantageous in that an initial design may consist of disconnected bars allocated in the design domain,and mathematical programming methods can be applied for the efficient solution of the formulated optimization problem.A number of solution strategies are also developed to achieve more practical designs with lower computational cost.Numerical examples of both 2-D and 3-D truss structures are presented to demonstrate the feasibility,robustness and effectiveness of the proposed method.
基金Supported by:Pacific Earthquake Engineering Research Center Lifelines Program Under Project Task No.9C
文摘This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations in terms of superstructure type, connection, continuity at support and foundation type, etc. render different damage resistant capability. Six classes of bridges are established based on their anticipated failure mechanisms under earthquake shaking. The numerical models that are capable of simulating the complex soil-structure interaction effects, nonlinear behavior of columns and connections are developed for each bridge class. The dynamic responses are obtained using nonlinear time history analyses for a suite of 250 earthquake motions with increasing intensity. An equivalent static analysis procedure is also implemented to evaluate the vulnerability of the bridges when subjected to liquefaction-induced lateral spreading. Fragility functions for each bridge class are derived and compared for both seismic shaking (based on nonlinear dynamic analyses) and lateral spreading (based on equivalent static analyses) for different performance states. The study finds that the fragility functions due to either ground shaking or lateral spreading show significant correlation with the structural characterizations, but differences emerge for ground shaking and lateral spreading conditions. Structural properties that will mostly affect the bridges' damage resistant capacity are also identified.