Data retention is one of the most important reliability characteristics of split-gate flash.Therefore,many efforts were made to improve data retention of split-gate flash.By experiments,it was found that higher chlori...Data retention is one of the most important reliability characteristics of split-gate flash.Therefore,many efforts were made to improve data retention of split-gate flash.By experiments,it was found that higher chlorine concentration produced in FGSP2 oxide deposition can induce worse data retention.Thus,reducing chlorine concentration is an effective approach to improve data retention for split-gate flash product.Additional RTO annealing between FGSP2 oxide deposition and FGSP2 etching could reduce chlorine concentration,and improve FGSP2 oxide film quality,and then get better data retention.展开更多
The erase voltage impact on the 0.18μm triple self-aligned split-gate flash endurance is studied.An optimized erase voltage is necessary in order to achieve the best endurance.A lower erase voltage can cause more cel...The erase voltage impact on the 0.18μm triple self-aligned split-gate flash endurance is studied.An optimized erase voltage is necessary in order to achieve the best endurance.A lower erase voltage can cause more cell current degradation by increasing its sensitivity to the floating gate voltage drop,which is induced by tunnel oxide charge trapping during program/erase cycling.A higher erase voltage also aggravates the endurance degradation by introducing select gate oxide charge trapping.A progressive erase voltage method is proposed and demonstrated to better balance the two degradation mechanisms and thus further improve endurance performance.展开更多
研究聚焦于闪存转换层(FTL)中间件的性能差异,在256 MB Nor Flash硬件平台上,对FlashFX和TrueFFS两种闪存转换层进行了系统性对比评估,通过测量包括扇区擦除、文件打开、文件删除、单文件写入及文件连续写入等关键操作的耗时,量化分析...研究聚焦于闪存转换层(FTL)中间件的性能差异,在256 MB Nor Flash硬件平台上,对FlashFX和TrueFFS两种闪存转换层进行了系统性对比评估,通过测量包括扇区擦除、文件打开、文件删除、单文件写入及文件连续写入等关键操作的耗时,量化分析两者性能表现。结果表明FlashFX与TrueFFS在不同操作场景下(如擦除粒度处理、写入调度策略)存在显著性能差异,TrueFFS适用于高可靠性、长寿命需求的系统,FlashFX更适合对操作速度敏感的应用,二者选择需基于具体场景的性能与寿命进行权衡。展开更多
In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings ...In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings on AZ31B magnesium alloy.The main novelty is the successful incorporation of calcium,zinc,manganese and phosphate species into the Flash-PEO coatings via a precursor layer rather than using the electrolyte.The precursor also led to longer lasting and more intense discharges during the PEO process,resulting in increased pore size.Corrosion studies revealed similar short-term performance for all coatings,with impedance modulus at low frequencies above 10^(7)Ωcm^(2),and slightly better performance for the SiPF-based coating.Nonetheless,the enlarged pores in the PEO coatings functionalized with the PCC precursor compromised the effectiveness of self-healing mechanisms by creating diffusion pathways for corrosive species,leading to earlier failure.These phenomena were effectively monitored by recording the open circuit potential during immersion in 0.5 wt.%NaCl solution.In summary,this study demonstrates that conversion coatings are a viable option for the functionalization of PEO coatings on magnesium alloys,as they allow for the incorporation of cationic and other species.However,it is crucial to maintain a small pore size to facilitate effective blockage through self-healing mechanisms.展开更多
文摘Data retention is one of the most important reliability characteristics of split-gate flash.Therefore,many efforts were made to improve data retention of split-gate flash.By experiments,it was found that higher chlorine concentration produced in FGSP2 oxide deposition can induce worse data retention.Thus,reducing chlorine concentration is an effective approach to improve data retention for split-gate flash product.Additional RTO annealing between FGSP2 oxide deposition and FGSP2 etching could reduce chlorine concentration,and improve FGSP2 oxide film quality,and then get better data retention.
文摘The erase voltage impact on the 0.18μm triple self-aligned split-gate flash endurance is studied.An optimized erase voltage is necessary in order to achieve the best endurance.A lower erase voltage can cause more cell current degradation by increasing its sensitivity to the floating gate voltage drop,which is induced by tunnel oxide charge trapping during program/erase cycling.A higher erase voltage also aggravates the endurance degradation by introducing select gate oxide charge trapping.A progressive erase voltage method is proposed and demonstrated to better balance the two degradation mechanisms and thus further improve endurance performance.
文摘研究聚焦于闪存转换层(FTL)中间件的性能差异,在256 MB Nor Flash硬件平台上,对FlashFX和TrueFFS两种闪存转换层进行了系统性对比评估,通过测量包括扇区擦除、文件打开、文件删除、单文件写入及文件连续写入等关键操作的耗时,量化分析两者性能表现。结果表明FlashFX与TrueFFS在不同操作场景下(如擦除粒度处理、写入调度策略)存在显著性能差异,TrueFFS适用于高可靠性、长寿命需求的系统,FlashFX更适合对操作速度敏感的应用,二者选择需基于具体场景的性能与寿命进行权衡。
基金support of the PID2021-124341OB-C22/AEI/10.13039/501100011033/FEDER,UE(MICIU)J.M.Vega also acknowledges the Grant RYC2021-034384-I funded by MICIU/AEI/10.13039/501100011033 and by“European Union Next Generation EU/PRTR”.
文摘In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings on AZ31B magnesium alloy.The main novelty is the successful incorporation of calcium,zinc,manganese and phosphate species into the Flash-PEO coatings via a precursor layer rather than using the electrolyte.The precursor also led to longer lasting and more intense discharges during the PEO process,resulting in increased pore size.Corrosion studies revealed similar short-term performance for all coatings,with impedance modulus at low frequencies above 10^(7)Ωcm^(2),and slightly better performance for the SiPF-based coating.Nonetheless,the enlarged pores in the PEO coatings functionalized with the PCC precursor compromised the effectiveness of self-healing mechanisms by creating diffusion pathways for corrosive species,leading to earlier failure.These phenomena were effectively monitored by recording the open circuit potential during immersion in 0.5 wt.%NaCl solution.In summary,this study demonstrates that conversion coatings are a viable option for the functionalization of PEO coatings on magnesium alloys,as they allow for the incorporation of cationic and other species.However,it is crucial to maintain a small pore size to facilitate effective blockage through self-healing mechanisms.