CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage ...CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage capacities of these ternary oxides were characterized by XRD, Raman spectra and oxygen storage capacity measurements. It was found that Al3+ and Zr4+ inserted into CeO2 lattice, forming CeO2-ZrO2-Al2O3 solid solution. The concentration of aluminium isopropoxide in the solution affected the concentration of oxygen vacancy and the distortion of oxygen sublattice which were responsible for the oxygen storage capacity. The rapidest oxygen uptake/release rate and maximum total oxygen storage capacity (122.0 mmolO2/molCeO2) were obtained with the aluminitun isopropoxide concentration at 0.2 wt.% in the solution.展开更多
Pseudo-first order reaction rate constants of 5,10,15-tris(pentafluorophenyl)corrole Mn(V)-oxo (F_(15)CMn(V)-oxo),5,15-bis(pentafluorophenyl)-10-(phenyl)corrole Mn(V)-oxo(F_(10)CMn(V)-oxo),5,15- ...Pseudo-first order reaction rate constants of 5,10,15-tris(pentafluorophenyl)corrole Mn(V)-oxo (F_(15)CMn(V)-oxo),5,15-bis(pentafluorophenyl)-10-(phenyl)corrole Mn(V)-oxo(F_(10)CMn(V)-oxo),5,15- bis(phenyl)-10-(pentafluorophenyl)corrole Mn(V)-oxo(F_5CMn(V)-oxo) and 5,10,15-tris(phenyl)corrole Mn(V)-oxo(F_0CMn(V)-oxo) with a series of alkene substrates in different solvents were determined by UV-vis spectroscopy.The results indicated that the oxygen atom transfer pathway between Mn(V)-oxo corrole and alkene is solvent-dependent.展开更多
Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various det...Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various determination methods. The effects of leaching time,leaching temperature,leaching agent concentration,leaching L/S ratio,granularity of material,additive consumption were investigated based on the mineralogy.The results show that under the conditions of leaching time of 3-4 h, temperature of 150℃,sulfuric acid consumption of 25%?30%,ratio of liquid to solid of 1.2:1,the granularity less than 0.074 mm, additive consumption of 3%-5%,and oxygen pressure of 1.2 MPa,and the vanadium leaching rate can be more than 92%by the method of two-step pressurized acid leaching.The powdery V2O5 product with 99.52%in V2O5 content is obtained by the flowsheet of acid recovery,removing iron by reduction process,solvent extraction,precipitating vanadium with ammonium water,and pyrolysis from the stone-coal oxygen pressure acid-leaching solution.The total recovery efficiency of vanadium is above 85%,which is more than 20%higher than that obtained in the conventional process.Furthermore,the new process does not cause air pollution since no HCl or Cl2 is released by calcination of the raw material.展开更多
The nano-crystalline Cu-Ce-Zr-O composite oxides were successfully prepared by the supercritical anti-solvent (SAS) process. The physicochemical properties and catalytic performances were investigated by X-ray diffr...The nano-crystalline Cu-Ce-Zr-O composite oxides were successfully prepared by the supercritical anti-solvent (SAS) process. The physicochemical properties and catalytic performances were investigated by X-ray diffraction (XRD), Raman spectroscopy, H2 temperature-programmed reduction (H2 -TPR), oxygen storage capacity (OSC) measurement and catalytic activity evaluation. It was found that Cu2+ ions incorporated into CeO2 -ZrO2 lattice to form Cu-Ce-Zr-O solid solution associated with the formation of oxygen vacancies. The Cu-Ce-Zr-O catalysts prepared via the SAS process with the Cu content 2.63 mol.% showed the highest OSC index of 636.9 μmol/g. Compared with the samples prepared by impregnation method, Cu doping using SAS process could improve the dispersion of Cu2+ in the composite oxide, enhance the interaction between Cu2+ and CeO2-ZrO2 , improve the reducibility of catalyst, and thus improve the OSC performance and increase the catalytic activity for CO oxidation at low temperature.展开更多
以六水合硝酸钴(Co(NO_3)_2·6H_2O)为钴源,硫脲(CS(NH_2)_2)为硫源,采用溶剂热法和低温固相硫化的方法制备出了介孔Co_3S_4纳米棒。采用X射线衍射(XRD),扫描电镜(SEM)和透射电镜(TEM)等手段对于介孔Co_3S_4纳米棒进行表征,同时对介...以六水合硝酸钴(Co(NO_3)_2·6H_2O)为钴源,硫脲(CS(NH_2)_2)为硫源,采用溶剂热法和低温固相硫化的方法制备出了介孔Co_3S_4纳米棒。采用X射线衍射(XRD),扫描电镜(SEM)和透射电镜(TEM)等手段对于介孔Co_3S_4纳米棒进行表征,同时对介孔Co_3S_4纳米棒进行了电催化产氧性能测试。结果表明:介孔Co_3S_4纳米棒的起始过电位为0.37 V,塔菲尔斜率为76.95 m V/dec,具有高的电催化产氧性能。展开更多
对锌精矿氧压酸浸液中铟的提取进行了研究,在1.0m o l/L的H2SO4介质中,铟可被P204定量萃取,当萃取相比为O/A=1/4,进行三级萃取,平衡时间为3m in时,In萃取率达97%以上;对负载有机相用3m o l/L的HC l进行三级反萃,O/A=5/1,平衡时间为3m in...对锌精矿氧压酸浸液中铟的提取进行了研究,在1.0m o l/L的H2SO4介质中,铟可被P204定量萃取,当萃取相比为O/A=1/4,进行三级萃取,平衡时间为3m in时,In萃取率达97%以上;对负载有机相用3m o l/L的HC l进行三级反萃,O/A=5/1,平衡时间为3m in,In反萃率为99.62%。展开更多
基金National Natural Science Foundation of China(20976120)the Natural Science Foundation of Tianjin(09JCYBJC06200)
文摘CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage capacities of these ternary oxides were characterized by XRD, Raman spectra and oxygen storage capacity measurements. It was found that Al3+ and Zr4+ inserted into CeO2 lattice, forming CeO2-ZrO2-Al2O3 solid solution. The concentration of aluminium isopropoxide in the solution affected the concentration of oxygen vacancy and the distortion of oxygen sublattice which were responsible for the oxygen storage capacity. The rapidest oxygen uptake/release rate and maximum total oxygen storage capacity (122.0 mmolO2/molCeO2) were obtained with the aluminitun isopropoxide concentration at 0.2 wt.% in the solution.
基金The financial support from the National Natural Science Foundation of China(Nos.20971046 and 21171057)
文摘Pseudo-first order reaction rate constants of 5,10,15-tris(pentafluorophenyl)corrole Mn(V)-oxo (F_(15)CMn(V)-oxo),5,15-bis(pentafluorophenyl)-10-(phenyl)corrole Mn(V)-oxo(F_(10)CMn(V)-oxo),5,15- bis(phenyl)-10-(pentafluorophenyl)corrole Mn(V)-oxo(F_5CMn(V)-oxo) and 5,10,15-tris(phenyl)corrole Mn(V)-oxo(F_0CMn(V)-oxo) with a series of alkene substrates in different solvents were determined by UV-vis spectroscopy.The results indicated that the oxygen atom transfer pathway between Mn(V)-oxo corrole and alkene is solvent-dependent.
基金Project(2006AA06Z130)supported by the High-tech Research and Development Program of ChinaProject(50874053)supported by the National Natural Science Foundation of ChinaProject(2007GA010)supported by Science and Technology Bureau of Yunnan Province,China
文摘Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various determination methods. The effects of leaching time,leaching temperature,leaching agent concentration,leaching L/S ratio,granularity of material,additive consumption were investigated based on the mineralogy.The results show that under the conditions of leaching time of 3-4 h, temperature of 150℃,sulfuric acid consumption of 25%?30%,ratio of liquid to solid of 1.2:1,the granularity less than 0.074 mm, additive consumption of 3%-5%,and oxygen pressure of 1.2 MPa,and the vanadium leaching rate can be more than 92%by the method of two-step pressurized acid leaching.The powdery V2O5 product with 99.52%in V2O5 content is obtained by the flowsheet of acid recovery,removing iron by reduction process,solvent extraction,precipitating vanadium with ammonium water,and pyrolysis from the stone-coal oxygen pressure acid-leaching solution.The total recovery efficiency of vanadium is above 85%,which is more than 20%higher than that obtained in the conventional process.Furthermore,the new process does not cause air pollution since no HCl or Cl2 is released by calcination of the raw material.
基金Project supported by National Natural Science Foundation of China(20976120)Natural Science Foundation of Tianjin(09JCYBJC06200)
文摘The nano-crystalline Cu-Ce-Zr-O composite oxides were successfully prepared by the supercritical anti-solvent (SAS) process. The physicochemical properties and catalytic performances were investigated by X-ray diffraction (XRD), Raman spectroscopy, H2 temperature-programmed reduction (H2 -TPR), oxygen storage capacity (OSC) measurement and catalytic activity evaluation. It was found that Cu2+ ions incorporated into CeO2 -ZrO2 lattice to form Cu-Ce-Zr-O solid solution associated with the formation of oxygen vacancies. The Cu-Ce-Zr-O catalysts prepared via the SAS process with the Cu content 2.63 mol.% showed the highest OSC index of 636.9 μmol/g. Compared with the samples prepared by impregnation method, Cu doping using SAS process could improve the dispersion of Cu2+ in the composite oxide, enhance the interaction between Cu2+ and CeO2-ZrO2 , improve the reducibility of catalyst, and thus improve the OSC performance and increase the catalytic activity for CO oxidation at low temperature.
文摘以六水合硝酸钴(Co(NO_3)_2·6H_2O)为钴源,硫脲(CS(NH_2)_2)为硫源,采用溶剂热法和低温固相硫化的方法制备出了介孔Co_3S_4纳米棒。采用X射线衍射(XRD),扫描电镜(SEM)和透射电镜(TEM)等手段对于介孔Co_3S_4纳米棒进行表征,同时对介孔Co_3S_4纳米棒进行了电催化产氧性能测试。结果表明:介孔Co_3S_4纳米棒的起始过电位为0.37 V,塔菲尔斜率为76.95 m V/dec,具有高的电催化产氧性能。
文摘对锌精矿氧压酸浸液中铟的提取进行了研究,在1.0m o l/L的H2SO4介质中,铟可被P204定量萃取,当萃取相比为O/A=1/4,进行三级萃取,平衡时间为3m in时,In萃取率达97%以上;对负载有机相用3m o l/L的HC l进行三级反萃,O/A=5/1,平衡时间为3m in,In反萃率为99.62%。