Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occu...Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occurred. Based on dictionary of Gabor atoms and matching pursuit algorithm, the method extracts the atomic components iteratively from the feature signals and translated them to damped sinusoidal components. Then we can obtain the parametrical and analytical representation of atomic components. The termination condition of decomposing iteration is determined by the threshold of the initial residual energy with the purpose of extract the features more effectively. Accordingly, the proposed method can extract the starting and ending moment of disturbances precisely as well as their magnitudes, frequencies and other features. The numerical examples demonstrate its effectiveness.展开更多
AC loss is one of the greatest obstacles for high‐temperature superconducting(HTS)applications.In some HTS applications,coated conductors carry non‐sinusoidal currents.Thus,it is important to investigate the effect ...AC loss is one of the greatest obstacles for high‐temperature superconducting(HTS)applications.In some HTS applications,coated conductors carry non‐sinusoidal currents.Thus,it is important to investigate the effect of various waveforms on AC loss in coated conductors.In this work,transport AC loss in a 4 mm‐wide REBCO coated conductor carrying sinusoidal and non‐sinusoidal currents,is numerically investigated.The current amplitudes,the frequency of the transport current,and n‐value are varied.Non‐sinusoidal transport current waveforms studied include square,five types of trapezoidal,and triangular waveforms.Simulated results show that,for a given current amplitude,AC loss for the square current waveform is the greatest,that for the triangular waveform is the smallest.The sequence of AC loss in the conductor for different current waveforms coincides with the penetration depth,which implies the penetration depth determines the AC loss of the coated conductor.Furthermore,the transport AC loss in the conductor was found to decrease with frequency as f2=n for non‐sinusoidal transport current.展开更多
三相并网变流器的控制需要电网基波电压同步信号的确准检测,正弦幅值积分器锁频环(frequency-locked loop based on sinusoidal amplitude integrator,SAI-FLL)是一种结构简单、性能良好的同步信号检测方法。文中首先分析了当输入信号...三相并网变流器的控制需要电网基波电压同步信号的确准检测,正弦幅值积分器锁频环(frequency-locked loop based on sinusoidal amplitude integrator,SAI-FLL)是一种结构简单、性能良好的同步信号检测方法。文中首先分析了当输入信号含有直流分量时,正弦幅值积分器锁频环的性能,分析结果表明,输入直流分量会在正序幅值和频率信号中产生工频波动,负序幅值中还会产生附加直流分量。文中提出一种抑制直流分量影响的方法,该方法将直流分量作为频率为零的交流分量,利用正弦幅值积分器(sinusoidal amplitude integrator,SAI)的选频特性,形成统一的SAI方法,控制结构简单。理论分析和实验结果都表明,文中提出的方法可以在电网不平衡和频率变化等情况下消除直流分量的影响,并快速准确地提取电网电压基波正负序分量的幅值和相位,实现同步信号的检测。展开更多
随着漏电断路器应用场景的不断扩展,用电设备故障时产生的剩余电流呈现非正弦特征,直接影响漏电断路器的动作特性。该文针对电磁式漏电断路器中的剩余电流互感器(residual current transformer,RCT)及其信号调理电路开展了研究。首先,...随着漏电断路器应用场景的不断扩展,用电设备故障时产生的剩余电流呈现非正弦特征,直接影响漏电断路器的动作特性。该文针对电磁式漏电断路器中的剩余电流互感器(residual current transformer,RCT)及其信号调理电路开展了研究。首先,分析剩余电流互感器的工作特点,建立考虑铁心饱和特性和磁滞效应的RCT仿真模型,可精确仿真RCT在各种工况下的传输特性,并能对非正弦大电流下的传输特性进行仿真;其次,对RCT输出信号调理电路进行研究,提出基于并联谐振原理的补偿电容参数设计方法,并分析补偿电容的容差特性对输出电压的影响,在谐振条件下RCT输出特性受外界因素影响最小。最后,通过仿真与实验测试结果对比,验证RCT传输特性仿真模型及补偿电容对输出电压的影响。展开更多
文摘Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occurred. Based on dictionary of Gabor atoms and matching pursuit algorithm, the method extracts the atomic components iteratively from the feature signals and translated them to damped sinusoidal components. Then we can obtain the parametrical and analytical representation of atomic components. The termination condition of decomposing iteration is determined by the threshold of the initial residual energy with the purpose of extract the features more effectively. Accordingly, the proposed method can extract the starting and ending moment of disturbances precisely as well as their magnitudes, frequencies and other features. The numerical examples demonstrate its effectiveness.
基金supported by the New Zealand Ministry of Business,Innovation and Employment under Catalyst Space and Fusion project“International Science Co‐operation on Superconductor Technologies”contract number RTVU1916supported by the New Zealand Ministry of Business,Innovation and Employment under the Advanced Energy Technology Platform program“High power electric motors for large scale transport”contract number RTVU2004.
文摘AC loss is one of the greatest obstacles for high‐temperature superconducting(HTS)applications.In some HTS applications,coated conductors carry non‐sinusoidal currents.Thus,it is important to investigate the effect of various waveforms on AC loss in coated conductors.In this work,transport AC loss in a 4 mm‐wide REBCO coated conductor carrying sinusoidal and non‐sinusoidal currents,is numerically investigated.The current amplitudes,the frequency of the transport current,and n‐value are varied.Non‐sinusoidal transport current waveforms studied include square,five types of trapezoidal,and triangular waveforms.Simulated results show that,for a given current amplitude,AC loss for the square current waveform is the greatest,that for the triangular waveform is the smallest.The sequence of AC loss in the conductor for different current waveforms coincides with the penetration depth,which implies the penetration depth determines the AC loss of the coated conductor.Furthermore,the transport AC loss in the conductor was found to decrease with frequency as f2=n for non‐sinusoidal transport current.
文摘三相并网变流器的控制需要电网基波电压同步信号的确准检测,正弦幅值积分器锁频环(frequency-locked loop based on sinusoidal amplitude integrator,SAI-FLL)是一种结构简单、性能良好的同步信号检测方法。文中首先分析了当输入信号含有直流分量时,正弦幅值积分器锁频环的性能,分析结果表明,输入直流分量会在正序幅值和频率信号中产生工频波动,负序幅值中还会产生附加直流分量。文中提出一种抑制直流分量影响的方法,该方法将直流分量作为频率为零的交流分量,利用正弦幅值积分器(sinusoidal amplitude integrator,SAI)的选频特性,形成统一的SAI方法,控制结构简单。理论分析和实验结果都表明,文中提出的方法可以在电网不平衡和频率变化等情况下消除直流分量的影响,并快速准确地提取电网电压基波正负序分量的幅值和相位,实现同步信号的检测。
文摘随着漏电断路器应用场景的不断扩展,用电设备故障时产生的剩余电流呈现非正弦特征,直接影响漏电断路器的动作特性。该文针对电磁式漏电断路器中的剩余电流互感器(residual current transformer,RCT)及其信号调理电路开展了研究。首先,分析剩余电流互感器的工作特点,建立考虑铁心饱和特性和磁滞效应的RCT仿真模型,可精确仿真RCT在各种工况下的传输特性,并能对非正弦大电流下的传输特性进行仿真;其次,对RCT输出信号调理电路进行研究,提出基于并联谐振原理的补偿电容参数设计方法,并分析补偿电容的容差特性对输出电压的影响,在谐振条件下RCT输出特性受外界因素影响最小。最后,通过仿真与实验测试结果对比,验证RCT传输特性仿真模型及补偿电容对输出电压的影响。