期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
Effective approach to stabilize silicon anode:controllable molecular construction of artificial solid electrolyte interphase
1
作者 Hongbin Liu Putao Zhang 《Chinese Journal of Structural Chemistry》 2025年第3期8-9,共2页
Silicon-based materials are considered as the next generation anode to replace graphite due to their low cost and ultra-high theoretical capacity.However,significant volume expansion and contraction occur during charg... Silicon-based materials are considered as the next generation anode to replace graphite due to their low cost and ultra-high theoretical capacity.However,significant volume expansion and contraction occur during charging and discharging processes,leading to the instability of electrode structure and susceptibility to peeling and damage,limiting its application.Constructing controllable molecular artificial solid electrolyte interphase(CMASEI)is an effective approach to address the commercialization of silicon-based anode materials[1].Improving the performance of silicon-based anodes through CMASEI is a multifaceted outcome. 展开更多
关键词 silicon anode electrode structure stability volume expansion volume expansion contraction COMMERCIALIZATION controllable molecular construction molecular artificial solid electrolyte instability electrode structure
原文传递
Revolutionizing High-Areal-Capacity Silicon Anodes With a Multi-Level Carbon Construction Strategy for Practical Li-Ion Batteries
2
作者 Yongbiao Mu Chaozhu Huang +11 位作者 Youqi Chu Huicun Gu Xianbing Wei Xinyu Chen Shaowei Kang Jian Chen Yichun Wang Pengcheng Zhou Ke Ge Qing Zhang Yiju Li Lin Zeng 《Carbon Energy》 2025年第6期131-144,共14页
There is an urgent need to develop high-areal-capacity silicon(Si)anodes with good cycling stability and rate capability for high-energy-density lithium-ion batteries(LIBs).However,this remains a huge challenge due to... There is an urgent need to develop high-areal-capacity silicon(Si)anodes with good cycling stability and rate capability for high-energy-density lithium-ion batteries(LIBs).However,this remains a huge challenge due to large volume expansion-induced mechanical degradation and electrical connectivity loss in thick electrodes.Here,a three-in-one strategy is proposed to achieve high-areal-capacity silicon anodes by constructing a multi-level interconnected 3D porous and robust conductive network that carbon nanofibers and vertical carbon nanosheets tightly encapsulate on the surface of Si nanoparticles(Si NPs)anchored in porous carbon felts.This network accommodates large volume expansion of Si NPs to significantly improve electrode mechanical stability and creates excellent electrical connectivity to boost charge transport in thick electrodes,revealed through Multiphysics field simulations and in situ electrochemical techniques.Therefore,the designed Si anodes achieve superior long-term stability with a capacity of 8.13 mAh cm^(-2)after 500 cycles and an ultrahigh areal capacity of 45.8 mAh cm^(-2).In particular,Ah-level pouch cells demonstrate an impressive capacity retention of 79.34%after 500 cycles at 1 C.Our study offers novel insights and directions for understanding and optimizing high-areal-capacity silicon-carbon composite anodes. 展开更多
关键词 carbon nanofibers high areal capacity lithium-ion battery silicon anode vertical carbon nanosheets
在线阅读 下载PDF
Spider web-inspired structural design for an energy-dissipating polymer binder enabling stabilized silicon anodes
3
作者 Xiangyu Lin Danna Ma +4 位作者 Ziming Zhu Shanshan Wang He Liu Xu Xu Zhaoshuang Li 《Journal of Energy Chemistry》 2025年第10期870-878,共9页
Silicon(Si)is considered one of the most promising anode materials for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,its application is significantly limited by severe volume ... Silicon(Si)is considered one of the most promising anode materials for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,its application is significantly limited by severe volume expansion,leading to structural degradation and poor cycling stability.Polymer binders play a critical role in addressing these issues by providing mechanical stabilization.Inspired by the mechanically adaptive architecture of spider webs,where stiff radial threads and extensible spiral threads act in synergy,a dual-thread architecture polymer binder(PALT)with energy dissipation ability enabled by integrating rigid and flexible domains is designed.The rigid poly(acrylic acid lithium)(PAALi)segments offer structural reinforcement,while the soft segments(poly(lipoic acid-tannic acid),LT)introduce dynamic covalent bonds and multiple hydrogen bonds that function as reversible sacrificial bonds,enhancing energy dissipation during cycling.Comprehensive experimental and computational analyses demonstrate effectively reduced stress concentration,improved structural integrity,and stable electrochemical performance over prolonged cycling.The silicon anode incorporating the PALT binder exhibits a satisfying capacity loss per cycle of 0.042% during 350 charge/discharge cycles at 3580 m A g^(-1).This work highlights a bioinspired binder design strategy that combines intrinsic rigidity with dynamic stress adaptability to advance the mechanical and electrochemical stability of silicon anodes. 展开更多
关键词 Polymer binder Lithium-ion batteries silicon anodes Tannic acid
在线阅读 下载PDF
Piezoelectricity-driven structural stabilization and electrochemical enhancement in silicon anodes:A novel force-electric coupling framework
4
作者 Kanghou Ma Caiyue Sun +10 位作者 Yitao He Xinyue Zhao Sunfa Wang Ge Zhang Chen Wang Fangshuo Zhou Zhiguo Liu Zhe Lü Xiqiang Huang Ningning Wu Yaohui Zhang 《Journal of Energy Chemistry》 2025年第10期65-75,共11页
This study presents a novel approach to enhance silicon anode performance through barium titanate(BTO)incorporation,with the establishment of a force-electric coupling model.By introducing piezoelectric BTO into silic... This study presents a novel approach to enhance silicon anode performance through barium titanate(BTO)incorporation,with the establishment of a force-electric coupling model.By introducing piezoelectric BTO into silicon matrices,we successfully improved both the mechanical stability and electrochemical kinetics of the anode.The developed force-electric coupling model explains how BTO mitigates stress accumulation during lithiation while optimizing the kinetics of Li^(+)and electron transfer.Experimental verification and multiphysical simulation indicate that Si@BTO effectively eliminates structural degradation during the cycling process and significantly reduces the charge transfer resistance.The force-electric coupling mechanism further facilitates stable solid electrolyte interphase(SEI)formation.When paired with LiFePO_(4)cathodes,Si@BTO maintains 76% capacity retention after 500 cycles at a 10 C rate.This work establishes a basic force-electric coupling model framework and offers insights into the development of advanced silicon anode batteries with exceptional performance. 展开更多
关键词 silicon anode Piezoelectric effect Electrochemical properties Structural stability
在线阅读 下载PDF
Volumetric Stress Managements on Silicon Anode of Lithium-Ion Batteries by a Self-Adaptable Binder
5
作者 Shuai Wu Lanying He +8 位作者 Yue Lu Jingang Zheng Lixiang Li Xin Geng Chengguo Sun Hongwei Zhao Guangshen Jiang Fang Di Baigang An 《Energy & Environmental Materials》 2025年第3期58-67,共10页
The intrinsic volume changes(about 300%)of Si anode during the lithiation/delithiation leads to the serious degradation of battery performance despite of theoretical capacity of 3579 mAh g^(-1) of Si.Herein,a three-di... The intrinsic volume changes(about 300%)of Si anode during the lithiation/delithiation leads to the serious degradation of battery performance despite of theoretical capacity of 3579 mAh g^(-1) of Si.Herein,a three-dimensional(3D)conductive polymer binder with adjustable crosslinking density has been designed by employing citric acid(CA)as a crosslinker between the carboxymethyl cellulose(CMC)and the poly(3,4-ethylenedioxythiophene)poly-(styrene-4-sulfonate)(PEDOT:PSS)to stabilize Si anode.By adjusting the crosslinking density,the binder can achieve a balance between rigidity and flexibility to adapt the volume expansion upon lithiation and reversible volume recovery after delithiation of Si.Therefore,Si/CMC-CA-PEDOT:PSS(Si/CCP)electrode demonstrates an excellent performance with high capacities of 2792.3 mAh g^(-1) at 0.5 A g^(-1) and a high area capacity above 2.6 mAh cm^(-2) under Si loading of 1.38 mg cm^(-2).The full cell Si/CCP paired with Li(Ni_(0.8)Co_(0.1)Mn_(0.1))O_(2) cathode discharges a capacity of 199.0 mAh g^(-1) with 84.3%ICE at 0.1 C and the capacity retention of 95.6%after 100 cycles.This work validates the effectiveness of 3D polymer binder and provides new insights to boost the performance of Si anode. 展开更多
关键词 3D conductive polymer binder crosslinking density self-adapting silicon anode
在线阅读 下载PDF
Hydrolysis-Engineered Robust Porous Micron Silicon Anode for High-Energy Lithium-Ion Batteries
6
作者 Mili Liu Jiangwen Liu +7 位作者 Yunqi Jia Chen Li Anwei Zhang Renzong Hu Jun Liu Chengyun Wang Longtao Ma Liuzhang Ouyang 《Nano-Micro Letters》 2025年第12期18-32,共15页
Micro-silicon(Si)anode that features high theoretical capacity and fine tap density is ideal for energy-dense lithiumion batteries.However,the substantial localized mechanical strain caused by the large volume expansi... Micro-silicon(Si)anode that features high theoretical capacity and fine tap density is ideal for energy-dense lithiumion batteries.However,the substantial localized mechanical strain caused by the large volume expansion often results in electrode disintegration and capacity loss.Herein,a microporous Si anode with the SiO_(x)/C layer functionalized all-surface and high tap density(~0.65 g cm^(-3))is developed by the hydrolysis-driven strategy that avoids the common use of corrosive etchants and toxic siloxane reagents.The functionalized inner pore with superior structural stability can effectively alleviate the volume change and enhance the electrolyte contact.Simultaneously,the outer particle surface forms a continuous network that prevents electrolyte parasitic decomposition,disperses the interface stress of Si matrix and facilitates electron/ion transport.As a result,the micron-sized Si anode shows only~9.94 GPa average stress at full lithiation state and delivers an impressive capacity of 901.1 mAh g^(-1)after 500 cycles at 1 A g^(-1).It also performs excellent rate performance of 1123.0 mAh g^(-1)at 5 A g^(-1)and 850.4 at 8 A g^(-1),far exceeding most of reported literatures.Furthermore,when paired with a commercial LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2),the pouch cell demonstrates high capacity and desirable cyclic performance. 展开更多
关键词 Micro-sized silicon anode Pore structure Functionalized SiO_(x)/C interface Long-term lithium-ion batteries
在线阅读 下载PDF
Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries:Overcoming Challenges and Real-World Applications 被引量:6
7
作者 Mustafa Khan Suxia Yan +6 位作者 Mujahid Ali Faisal Mahmood Yang Zheng Guochun Li Junfeng Liu Xiaohui Song Yong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期341-384,共44页
Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material... Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material pulverization and capacity degradation.Recent research on nanostructured Si aims to mitigate volume expansion and enhance electrochemical performance,yet still grapples with issues like pulverization,unstable solid electrolyte interface(SEI)growth,and interparticle resistance.This review delves into innovative strategies for optimizing Si anodes’electrochemical performance via structural engineering,focusing on the synthesis of Si/C composites,engineering multidimensional nanostructures,and applying non-carbonaceous coatings.Forming a stable SEI is vital to prevent electrolyte decomposition and enhance Li^(+)transport,thereby stabilizing the Si anode interface and boosting cycling Coulombic efficiency.We also examine groundbreaking advancements such as self-healing polymers and advanced prelithiation methods to improve initial Coulombic efficiency and combat capacity loss.Our review uniquely provides a detailed examination of these strategies in real-world applications,moving beyond theoretical discussions.It offers a critical analysis of these approaches in terms of performance enhancement,scalability,and commercial feasibility.In conclusion,this review presents a comprehensive view and a forward-looking perspective on designing robust,high-performance Si-based anodes the next generation of LIBs. 展开更多
关键词 silicon anode Energy storage NANOSTRUCTURE Prelithiation BINDER
在线阅读 下载PDF
Monothetic and conductive network and mechanical stress releasing layer on micron-silicon anode enabling high-energy solid-state battery 被引量:1
8
作者 Xiang Han Min Xu +7 位作者 Lan-Hui Gu Chao-Fei Lan Min-Feng Chen Jun-Jie Lu Bi-Fu Sheng Peng Wang Song-Yan Chen Ji-Zhang Chen 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1017-1029,共13页
Silicon has ultrahigh capacity,dendrite-free alloy lithiation mechanism and low cost and has been regarded as a promising anode candidate for solid-state battery.Owing to the low infiltration of solid-state electrolyt... Silicon has ultrahigh capacity,dendrite-free alloy lithiation mechanism and low cost and has been regarded as a promising anode candidate for solid-state battery.Owing to the low infiltration of solid-state electrolyte(SSE),not the unstable solid-electrolyte interphase(SEI),but the huge stress during lithiation-and delithiation-induced particle fracture and conductivity lost tend to be the main issues.In this study,starting with micron-Si,a novel monothetic carbon conductive framework and a MgO coating layer are designed,which serve as electron pathway across the whole electrode and stress releasing layer,respectively.In addition,the in situ reaction between Si and SSE helps to form a LiF-rich and mechanically stable SEI layer.As a result,the mechanical stability and charge transfer kinetics of the uniquely designed Si anode are significantly improved.Consequently,high initial Coulombic efficiency,high capacity and durable cycling stability can be achieved by applying the Si@MgO@C anode in SSB.For example,high specific capacity of 3224.6 mAh·g^(-1)and long cycling durability of 200 cycles are achieved.This work provides a new concept for designing alloy-type anode that combines surface coating on particle and electrode structure design. 展开更多
关键词 Lithium-ion battery(LIB) Solid-state electrolyte(SSE) silicon anode Stress relief Coating
原文传递
A review of the carbon coating of the silicon anode in highperformance lithium-ion batteries 被引量:1
9
作者 XU Ze-yu SHAO Hai-bo WANG Jian-ming 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期896-917,共22页
In the development of rechargeable lithium ion batteries(LIBs),silicon anodes have attracted much attention because of their extremely high theoretical capacity,relatively low Li-insertion voltage and the availability... In the development of rechargeable lithium ion batteries(LIBs),silicon anodes have attracted much attention because of their extremely high theoretical capacity,relatively low Li-insertion voltage and the availability of silicon resources.However,their large volume expansion and fragile solid electrolyte interface(SEI)film hinder their commercial application.To solve these problems,Si has been combined with various carbon materials to increase their structural stability and improve their interface properties.The use of different carbon materials,such as amorphous carbon and graphite,as three-dimensional(3D)protective anode coatings that help buffer mechanical strain and isolate the electrolyte is detailed,and novel methods for applying the coatings are outlined.However,carbon materials used as a protective layer still have some disadvantages,necessitating their modification.Recent developments have focused on modifying the protective carbon shells,and substitutes for the carbon have been suggested. 展开更多
关键词 Lithium-ion batteries silicon anode 3D carbon coating CARBON
在线阅读 下载PDF
From 0D to 3D:Hierarchical structured high-performance free-standing silicon anodes based on binder-induced topological network architecture
10
作者 Yihong Tong Ruicheng Cao +4 位作者 Guanghui Xu Yifeng Xia Hongyuan Xu Hong Jin Hui Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期16-23,I0002,共9页
Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal ... Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges. 展开更多
关键词 Topological network SELF-STABILIZATION FLEXIBILITY FREE-STANDING silicon anode
在线阅读 下载PDF
Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures
11
作者 王秋辰 黄昱力 +3 位作者 许晶 禹习谦 李泓 陈立泉 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期117-126,共10页
Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid ... Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid electrolyte interphase(SEI)formation and particle pulverization.However,major challenges arise for Si anodes in SSBs at elevated temperatures.In this work,the failure mechanisms of Si-Li_(6)PS_(5)Cl(LPSC)composite anodes above 80℃are thoroughly investigated from the perspectives of interface stability and(electro)chemo-mechanical effect.The chemistry and growth kinetics of Lix Si|LPSC interphase are demonstrated by combining electrochemical,chemical and computational characterizations.Si and/or Si–P compound formed at Lix Si|LPSC interface prove to be detrimental to interface stability at high temperatures.On the other hand,excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes.This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs. 展开更多
关键词 sulfide electrolytes silicon anodes interface stability degradation kinetics all-solid-state batteries
原文传递
Lamellar sulfonated acid polymer-initiated in situ construction of robust LiF-rich SEI enabling superior charge transport for ultrastable and fast charging silicon anodes
12
作者 Jungsoo Park Song Kyu Kang +4 位作者 Junhyuk Ji Hwichan Ahn Gwan Hyeon Park Minho Kim Won Bae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期134-143,共10页
The extreme volume expansion of the silicon(Si) anodes during repeated cycles seriously induces undesirable interfacial side reactions,forming an unstable solid electrolyte interphase(SEI) that degrades the electrode ... The extreme volume expansion of the silicon(Si) anodes during repeated cycles seriously induces undesirable interfacial side reactions,forming an unstable solid electrolyte interphase(SEI) that degrades the electrode integrity and cycle stability in lithium-ion batteries,limiting their practical applications.Despite considerable efforts to stabilize the SEI through surface modification,challenges persist in the development of high-performance Si anodes that effectively regulate intrinsic SEI properties and simultaneously facilitate electron/ion transport.Here,a highly conductive and organic electrolyte-compatible lamellar p-toluenesulfonic acid-doped polyaniline(pTAP) layer is proposed for constructing a robust artificial SEI on Si nanoparticles to achieve fast charging,lo ng-term cycle lifespan and high areal capacity.The spatially uniform pTAP layer,formed through a facile direct-encapsulation approach assisted by enriched hydrogen bonding,contributes to the effective formation of in situ SEI with an even distribution of the LiF-rich phase in its interlamination spaces.Furthermore,the integrated artificial SEI facilitates isotropic ion/electron transport,increased robustness,and effectively dissipates stress from volume changes.Consequently,a notably high rate performance of 570 mA h g^(-1),even at a substantially high current density of 10 A g^(-1),is achieved with excellent cyclic stability by showing a superior capacity over 1430 mA h g^(-1) at 1 A g^(-1) after 250 cycles and a high areal capacity of ca.2 mA h cm^(-2) at 0.5 C in a full cell system.This study demonstrates that the rational design of conductive polymers with SEI modulation for surface protection has great potential for use in high-energy-density Si anodes. 展开更多
关键词 Lithium-ion battery silicon anode Conductive polymers Solid electrolyte interphase
在线阅读 下载PDF
A hydrophilic poly(methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode 被引量:7
13
作者 Hao Chen Zhenzhen Wu +4 位作者 Zhong Su Luke Hencz Su Chen Cheng Yan Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期127-135,I0003,共10页
Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large... Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large volume change and active material loss in lithium-ion batteries during prolonged cycles. Herein, a hydrophilic polymer poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was explored as a dual-functional aqueous binder for the preparation of high-performance silicon anode and sulfur cathode. Benefiting from the dual functions of PMVEMA, i.e., the excellent dispersion ability and strong binding forces, the as-prepared electrodes exhibit improved capacity, rate capability and long-term cycling performance. In particular, the as-prepared Si electrode delivers a high initial discharge capacity of 1346.5 mAh g^(−1) at a high rate of 8.4 A/g and maintains 834.5 mAh g^(−1) after 300 cycles at 4.2 A/g, while the as-prepared S cathode exhibits enhanced cycling performance with high remaining discharge capacities of 663.4 mAh g^(−1) after 100 cycles at 0.2 C and 487.07 mAh g^(−1) after 300 cycles at 1 C, respectively. These encouraging results suggest that PMVEMA could be a universal binder to facilitate the green manufacture of both anode and cathode for high-capacity energy storage systems. 展开更多
关键词 Dual-functional Aqueous binder silicon anode Sulfur cathode Lithium-ion batteries Lithium-sulfur batteries
在线阅读 下载PDF
Crosslinked carboxymethyl cellulose-sodium borate hybrid binder for advanced silicon anodes in lithium-ion batteries 被引量:8
14
作者 Li Zhang Yun Ding Jiangxuan Song 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第12期1773-1776,共4页
Silicon anodes have drawn ever-increasing attention in lithium-ion batteries(LIBs) owing to their extremely high theoretical capacity and abundance in the earth. Despite promising advantages, the wide use of silicon a... Silicon anodes have drawn ever-increasing attention in lithium-ion batteries(LIBs) owing to their extremely high theoretical capacity and abundance in the earth. Despite promising advantages, the wide use of silicon anodes in LIBs is highly hindered by their fast capacity fading and low Coulombic efficiency arising from their substantial volumetric variation(>300%). Herein, we report a novel aqueous hybrid gel binder for silicon anodes via crosslinking sodium carboxymethyl cellulose(NaCMC) by an inorganic crosslinker-sodium borate. Not only this gel polymer binder can chemically bond to silicon nanoparticle, but also the deformable framework of this crosslinked binder is capable of maintaining electrode integrity, thus buffering dramatic volume change of silicon. Consequently, the silicon anode with this gel binder exhibits good cycle life(1211.5 mAh/g after 600 cycles) and high initial Coulombic efficiency(88.95%). 展开更多
关键词 Lithium-ion batteries silicon anodes Sodium carboxymethyl cellulose BINDER CROSSLINKING
原文传递
Sustainable silicon anodes facilitated via a double-layer interface engineering: Inner SiOx combined with outer nitrogen and boron co-doped carbon 被引量:5
15
作者 Jun Zhou Yao Lu +4 位作者 Lishan Yang Wenqiang Zhu Weifang Liu Yahui Yang Kaiyu Liu 《Carbon Energy》 SCIE CAS 2022年第3期399-410,共12页
Silicon-based(Si)materials are promising anodes for lithium-ion batteries(LIBs)because of their ultrahigh theoretical capacity of 4200 mA h g^(−1).However,commercial applications of Si anodes have been hindered by the... Silicon-based(Si)materials are promising anodes for lithium-ion batteries(LIBs)because of their ultrahigh theoretical capacity of 4200 mA h g^(−1).However,commercial applications of Si anodes have been hindered by their drastic volume variation(∼300%)and low electrical conductivity.Here,to tackle the drawbacks,a hierarchical Si anode with double-layer coatings of a SiOx inner layer and a nitrogen(N),boron(B)co-doped carbon(C-NB)outer layer is elaborately designed by copyrolysis of Si-OH structures and a H3BO_(3)-doped polyaniline polymer on the Si surface.Compared with the pristine Si anodes(7mA h g^(−1) at 0.5 A g^(−1) after 340 cycles and 340 mA h g^(−1) at 5 A g^(−1)),the modified Si-based materials(Si@SiOx@C-NB nanospheres)present su perior cycling stability(reversible 1301 mA h g^(−1) at 0.5 A g^(−1) after 340 cycles)as well as excellent rate capability(690mA h g^(−1) at 5 A g^(−1))when used as anodes in LIBs.The unique double-layer coating structure,in which the inner amorphous SiOx layer acts as a buffer matrix and the outer defect-rich carbon enhances the electron diffusion of the whole anode,makes it possible to de liver excellent electrochemical properties.These results indicate that our double-layer coating strategy is a promising approach not only for the devel opment of sustainable Si anodes but also for the design of multielement-doped carbon nanomaterials. 展开更多
关键词 boron-nitrogen co-doped carbon coating silicon anode stability WETTABILITY
在线阅读 下载PDF
Silane coupling agent treated copper foil as a current collector for silicon anode 被引量:3
16
作者 MENG Xiang-juan ZENG Xiao-min +8 位作者 JIANG Wei LI Si-yuan DU Qiao-kun JI Ze-kai ZHU Wei-wei LIU Chuang LIANG Cheng-du LING Min YAN Li-jing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第11期3620-3629,共10页
Since the volume variation of silicon particles during cycling,the binding spots between Cu current collector and silicon anode raised to be one of the critical binding problems.In this work,an amino-modified Cu curre... Since the volume variation of silicon particles during cycling,the binding spots between Cu current collector and silicon anode raised to be one of the critical binding problems.In this work,an amino-modified Cu current collector(Cu^(*))is fabricated to tackle this issue.The amino groups on Cu^(*)surface increase its hydrophilicity,which is conducive to the curing process of aqueous slurry on its surface.Meanwhile,these amino groups can form abundant amide bonds with carboxyl groups from the adopted polyacrylic acid(PAA)binder.The combined action composed of the covalent bond and mechanical interlocking could reduce the contact loss inside the electrode.However,high concentration silane coupling agent treatment will weaken the surface roughness of Cu^(*)and weaken mechanical interlocking.What is more,the insulation of silane coupling agent reduces the conductivity of Cu and increases the impedance of battery.Considering the effect of silane coupling agent comprehensively,electrochemical performance of Cu^(*)-0.05%is best. 展开更多
关键词 lithium ion batteries silicon anodes Cu foils surface modification
在线阅读 下载PDF
Low‐temperature synthesis of graphitic carbon‐coated silicon anode materials 被引量:9
17
作者 Zheng Yan Huile Jin Juchen Guo 《Carbon Energy》 CAS 2019年第2期246-252,共7页
We report the synthesis of a high‐performance graphitic carbon‐coated silicon(Si@GC)composite material for lithium‐ion batteries via a scalable production route.Porous Si is produced from the magnesiothermic reduct... We report the synthesis of a high‐performance graphitic carbon‐coated silicon(Si@GC)composite material for lithium‐ion batteries via a scalable production route.Porous Si is produced from the magnesiothermic reduction of commercial silica(SiO2)precursor followed by low‐temperature graphitic carbon coating using glucose as the precursor.The obtained Si@GC composite achieves an excellent reversible specific capacity of 1195 mAh g−1 and outstanding cycle stability.The thick Si@GC anode(3.4 mg cm^−2)in full cells with commercial lithium iron phosphate cathode delivers a remarkable performance of 800 mAh g^−1 specific capacity and 2.7 mAh cm^−2 areal capacity as well as 93.6%capacity retention after 200 cycles. 展开更多
关键词 GLUCOSE graphitic carbon Li‐ion batteries silicon anode
在线阅读 下载PDF
Amylopectin from Glutinous Rice as a Sustainable Binder for High-Performance Silicon Anodes 被引量:2
18
作者 Han Yeu Ling Chengrui Wang +8 位作者 Zhong Su Su Chen Hao Chen Shangshu Qian Dong-Sheng Li Cheng Yan Milton Kiefel Chao Lai Shanqing Zhang 《Energy & Environmental Materials》 SCIE CSCD 2021年第2期263-268,共6页
Silicon(Si)has been investigated as a promising anode material because of its high theoretical capacity(4200 m Ah g^(-1)).However,silicon anode suffers from huge volume changes during repeated charge–discharge cycles... Silicon(Si)has been investigated as a promising anode material because of its high theoretical capacity(4200 m Ah g^(-1)).However,silicon anode suffers from huge volume changes during repeated charge–discharge cycles.In this work,inspired by a remarkable success of the glutinous rice mortar in the Great Wall with ca.2000-year history,amylopectin(AP),the key ingredient responsible for the strong bonding force,is extracted from glutinous rice and utilized as a flexible,aqueous,and resilient binder to address the most challenging drastic volume-expansion and pulverization issues of silicon anode.Additionally,the removal of toxic N-methyl-2-pyrrolidone(NMP)organic solvent makes the electrode fabrication process environmentally friendly and healthy.The as-prepared Si-AP electrode with 60 wt%of Si can uphold a high discharge capacity of 1517.9 m Ah g^(-1)at a rate of 0.1 C after 100 cycles.The cycling stability of the Si-AP has been remarkably improved in comparison with both traditional polyvinylidene fluoride(PVDF)and aqueous carboxymethylcellulose(CMC)binders.Moreover,when the content of silicon in the Si-AP electrode increases to 70 wt%,a high discharge capacity of 1463.1 m Ah g^(-1)can still be obtained after 50 cycles at 0.1°C.These preliminary results suggest that the sustainably available and environmentally benign amylopectin binders could be a promising choice for the construction of highly stable silicon anodes. 展开更多
关键词 AMYLOPECTIN BINDER glutinous rice silicon anode sticky rice
在线阅读 下载PDF
Construction of dual crosslinked network binder via sequential ionic crosslinking for high-performance silicon anodes 被引量:1
19
作者 Ji-Na Wu Hong-Xu Chen +3 位作者 Chao Chen Hai-Dong Li Hong-Wen Zhang Bo Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第7期2238-2249,共12页
Nowadays,silicon has become a promising anode active material for lithium-ion batteries due to its high specific capacity.However,traditional binder materials cannot effectively restrain the volume expansion of silico... Nowadays,silicon has become a promising anode active material for lithium-ion batteries due to its high specific capacity.However,traditional binder materials cannot effectively restrain the volume expansion of silicon during lithiation/delithiation.Inspired by the growth process of climbing plants,we sequentially crosslink sodium alginate with calcium ions and hyperbranched polyethyleneimine to construct a dual crosslinked network binder.During the sequentially crosslinking,sodium alginate preferentially crosslinks with Ca^(2+)to form the"trellis"network,which restricts the free movement of hyperbranched polyethyleneimine and guides it,like"vine",to gradually anchor on the surrounding"trellis"through hydrogen and ionic bonding.In this dual crosslinked network,the ionic ally crosslinked sodium alginate maintains the anode structural integrity;the anchored hyperbranched polyethyleneimine forms strong multidimensional hydrogen bonds with silicon nanoparticles through its amino-rich branch chains;and the network utilizes the bonding reversibility of hydrogen and ionic bonds to repeatedly eliminate the mechanical stress and self-heal the structure damages caused by the volume change of silicon.Benefited from the multifunction of the dual crosslinked network,the silicon anode has achieved an excellent electrochemical performance with a specific capacity of 2403 mAh·g^(-1)at the current density of500 mA·g^(-1)after 100 cycles. 展开更多
关键词 Sodium alginate Hyperbranched polyethyleneimine(HBPEI) Ionic crosslinking BINDER silicon anode Lithium-ion battery(LIB)
原文传递
Exploring the optimal molecular weight of polyacrylic acid binder for silicon nanoparticle anodes in lithium-ion batteries
20
作者 Zhengwei Wan Siying Li +7 位作者 Weiting Tang Chengjun Dai Jingting Yang Zheng Lin Juncheng Qiu Min Ling Zhan Lin Zeheng Li 《Journal of Energy Chemistry》 2025年第6期76-86,I0003,共12页
Polyacrylic acid(PAA)-based binders have been demonstrated to significantly enhance the cycling stability of pure silicon(Si)anodes compared to other binder types.However,there is a notable lack of systematic and in-d... Polyacrylic acid(PAA)-based binders have been demonstrated to significantly enhance the cycling stability of pure silicon(Si)anodes compared to other binder types.However,there is a notable lack of systematic and in-depth investigation into the relationship between the molecular weight(MW)of PAA and its performance in pure Si anodes,leading to an absence of reliable theoretical guidance for designing and optimizing of PAA-based binders for these anodes.Herein,we select a series of PAA with varying MWs as binders for Si nanoparticle(SiNP)anodes to systematically identify the optimal MW of PAA for enhancing the electrochemical performance of SiNP anodes.The actual MWs of the various PAA were confirmed by gel permeation chromatography to accurately establish the relationship between MW and binder performance.Within an ultrawide weight average molecular weight(M_(w))range of 35.9-4850 kDa,we identify that the PAA binder with a M_(w)of 1250 kDa(PAA125)exhibits the strongest mechanical strength and the highest adhesion strength,attributed to its favorable molecular chain orientation and robust interchain interactions.These characteristics enable the SiNP anodes utilizing PAA125 to maintain the best interfacial chemistry and bulk mechanical structure stability,leading to optimal electrochemical performance.Notably,the enhancement in cycling stability of SiNP anode by PAA125 under practical application conditions is further validated by the 1.1 Ah LLNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/SiNP@PAA125 pouch cell. 展开更多
关键词 silicon anodes Polyacrylic acid BINDER Average molecular weight Pouch cells
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部