RNA干扰在癌症和其他多种疾病的治疗中具有广阔的应用前景,亟需发展高效、安全的递送手段来实现RNA干扰技术的临床应用。本研究使用瞬时纳米沉淀技术,制备系列稳定的、基于壳聚糖(CS)和三聚磷酸钠(TPP)的纳米粒子,系统研究了CS浓度、分...RNA干扰在癌症和其他多种疾病的治疗中具有广阔的应用前景,亟需发展高效、安全的递送手段来实现RNA干扰技术的临床应用。本研究使用瞬时纳米沉淀技术,制备系列稳定的、基于壳聚糖(CS)和三聚磷酸钠(TPP)的纳米粒子,系统研究了CS浓度、分子量及其与TPP的质量比对CS/TPP纳米粒子的物理化学性质的影响,并初步评价了纳米粒子的基因沉默效率。结果显示,CS浓度为0.3~0.6 g/L和CS/TPP质比为1/1~4/1时,可以形成较为稳定的复合物。其中,CS浓度为0.5g/L,质量比为2/1时可得到直径为70~100 nm的稳定纳米粒子。稳定的CS/TPP纳米粒子对siRNA的负载效率为75%~90%,细胞毒性低。在2.5 ng siRNA/μL浓度下,负载siRNA的CS/TPP纳米粒子可以引起约30%的目的基因的沉默。相关结果对制备稳定的、小尺寸CS纳米粒子及其siRNA递送研究具有一定的借鉴意义。展开更多
文摘RNA干扰在癌症和其他多种疾病的治疗中具有广阔的应用前景,亟需发展高效、安全的递送手段来实现RNA干扰技术的临床应用。本研究使用瞬时纳米沉淀技术,制备系列稳定的、基于壳聚糖(CS)和三聚磷酸钠(TPP)的纳米粒子,系统研究了CS浓度、分子量及其与TPP的质量比对CS/TPP纳米粒子的物理化学性质的影响,并初步评价了纳米粒子的基因沉默效率。结果显示,CS浓度为0.3~0.6 g/L和CS/TPP质比为1/1~4/1时,可以形成较为稳定的复合物。其中,CS浓度为0.5g/L,质量比为2/1时可得到直径为70~100 nm的稳定纳米粒子。稳定的CS/TPP纳米粒子对siRNA的负载效率为75%~90%,细胞毒性低。在2.5 ng siRNA/μL浓度下,负载siRNA的CS/TPP纳米粒子可以引起约30%的目的基因的沉默。相关结果对制备稳定的、小尺寸CS纳米粒子及其siRNA递送研究具有一定的借鉴意义。