In this paper,a joint analysis consisting of goodness-of-fit tests and Markov chain Monte Carlo simulations are used to assess the performance of some ranked set sampling designs.The Markov chain Monte Carlo simulatio...In this paper,a joint analysis consisting of goodness-of-fit tests and Markov chain Monte Carlo simulations are used to assess the performance of some ranked set sampling designs.The Markov chain Monte Carlo simulations are conducted when Bayesian methods with Jeffery’s priors of the unknown parameters of Weibull distribution are used,while the goodness of fit analysis is conducted when the likelihood estimators are used and the corresponding empirical distributions are obtained.The ranked set sampling designs considered in this research are the usual ranked set sampling,extreme ranked set sampling,median ranked set sampling,and neoteric ranked set sampling designs.An intensive Monte Carlo simulation study is conducted using Lindley’s approximation algorithm to compute the different designs’-based estimators.The study showed that the dependent design“neoteric ranked set sampling design”is superior to other ranked set designs and the total relative efficiency is higher than the other designs’total relative efficiency.展开更多
Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current resea...Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current research on the level set method for structure topology opti- mization. The method proposed employs a level set model to implicitly describe the material interfaces of the microstructure and a Hamilton-Jacobi equation to continuously evolve the ma- terial interfaces until an optimal design is achieved. Meanwhile, the moving velocities of level set are obtained by conducting sensitivity analysis and gradient projection. Besides, how to handle the violated constraints is also discussed in the level set method for topological optimization, and a return-mapping algorithm is constructed. Numerical examples show that the method exhibits outstanding ?exibility of handling topological changes and ?delity of material interface represen- tation as compared with other conventional methods in literatures.展开更多
The segment erector is a key part of the shield machines for tunnel engineering. The available segment erectors are all of serial configuration which is suffering from the problems of low rigidity and accumulative mot...The segment erector is a key part of the shield machines for tunnel engineering. The available segment erectors are all of serial configuration which is suffering from the problems of low rigidity and accumulative motion errors. The current research mainly focuses on improving assembly accuracy and control performance of serial segment erectors. An innovative design method is proposed featuring motion group-decoupling, based on which a new type of segment erector is developed and investigated. Firstly, the segment installation manipulation is analyzed and decomposed into three motion groups that are decoupled. Then the type synthesis for the 4-DOF motion group is performed based on the general function(GF) set theory and a new configuration of (1T?1R?1PS3UPS) is attained according to the segment manipulation requirements. Consequently, the kinematic models are built and the reducibility and accuracy are analyzed. The dexterity is verified though numerical simulation and no singular points appear in the workspace. Finally, a positioning experiment is carried out by using the prototype developed in the lab that demonstrates a 13.1% improvement of positioning accuracy and the feasibility of the new segment erector. The presented group-decoupling design method is able to invent new type of hybrid segment erectors that avoid the accumulative motion error of erecting.展开更多
Selecting the optimal one from similar schemes is a paramount work in equipment design.In consideration of similarity of schemes and repetition of characteristic indices,the theory of set pair analysis(SPA)is proposed...Selecting the optimal one from similar schemes is a paramount work in equipment design.In consideration of similarity of schemes and repetition of characteristic indices,the theory of set pair analysis(SPA)is proposed,and then an optimal selection model is established.In order to improve the accuracy and flexibility,the model is modified by the contribution degree.At last,this model has been validated by an example,and the result demonstrates the method is feasible and valuable for practical usage.展开更多
Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining ...Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining vector level set models with gradient projectiontechnology, the level set method for topological optimization is extended to a topologicaloptimization problem with multi-constraints, multi-materials and multi-load cases. Meanwhile, anappropriate nonlinear speed, mapping is established in the tangential space of the activeconstraints for a fast convergence. Then the method is applied to structure designs, mechanism andmaterial designs by a number of benchmark examples. Finally, in order to further improvecomputational efficiency and overcome the difficulty that the level set method cannot generate newmaterial interfaces during the optimization process, the topological derivative analysis isincorporated into the level set method for topological optimization, and a topological derivativeand level set algorithm for topological optimization is proposed.展开更多
文摘In this paper,a joint analysis consisting of goodness-of-fit tests and Markov chain Monte Carlo simulations are used to assess the performance of some ranked set sampling designs.The Markov chain Monte Carlo simulations are conducted when Bayesian methods with Jeffery’s priors of the unknown parameters of Weibull distribution are used,while the goodness of fit analysis is conducted when the likelihood estimators are used and the corresponding empirical distributions are obtained.The ranked set sampling designs considered in this research are the usual ranked set sampling,extreme ranked set sampling,median ranked set sampling,and neoteric ranked set sampling designs.An intensive Monte Carlo simulation study is conducted using Lindley’s approximation algorithm to compute the different designs’-based estimators.The study showed that the dependent design“neoteric ranked set sampling design”is superior to other ranked set designs and the total relative efficiency is higher than the other designs’total relative efficiency.
基金Project supported by the National Natural Science Foundation of China (Nos. 59805001 and 10332010) and the KeyScience and Technology Research Project of Ministry of Education of China (No. 104060).
文摘Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current research on the level set method for structure topology opti- mization. The method proposed employs a level set model to implicitly describe the material interfaces of the microstructure and a Hamilton-Jacobi equation to continuously evolve the ma- terial interfaces until an optimal design is achieved. Meanwhile, the moving velocities of level set are obtained by conducting sensitivity analysis and gradient projection. Besides, how to handle the violated constraints is also discussed in the level set method for topological optimization, and a return-mapping algorithm is constructed. Numerical examples show that the method exhibits outstanding ?exibility of handling topological changes and ?delity of material interface represen- tation as compared with other conventional methods in literatures.
基金supported by National Natural Science Foundation of China(Grant No. 51275284)Program for New Century Excellent Talents in University of China(Grant No. NCET-10-0567)the Research Fund of State Key Lab of Mechanical Systems and Vibration(Grant No.MSV-ZD-2010-02)
文摘The segment erector is a key part of the shield machines for tunnel engineering. The available segment erectors are all of serial configuration which is suffering from the problems of low rigidity and accumulative motion errors. The current research mainly focuses on improving assembly accuracy and control performance of serial segment erectors. An innovative design method is proposed featuring motion group-decoupling, based on which a new type of segment erector is developed and investigated. Firstly, the segment installation manipulation is analyzed and decomposed into three motion groups that are decoupled. Then the type synthesis for the 4-DOF motion group is performed based on the general function(GF) set theory and a new configuration of (1T?1R?1PS3UPS) is attained according to the segment manipulation requirements. Consequently, the kinematic models are built and the reducibility and accuracy are analyzed. The dexterity is verified though numerical simulation and no singular points appear in the workspace. Finally, a positioning experiment is carried out by using the prototype developed in the lab that demonstrates a 13.1% improvement of positioning accuracy and the feasibility of the new segment erector. The presented group-decoupling design method is able to invent new type of hybrid segment erectors that avoid the accumulative motion error of erecting.
文摘Selecting the optimal one from similar schemes is a paramount work in equipment design.In consideration of similarity of schemes and repetition of characteristic indices,the theory of set pair analysis(SPA)is proposed,and then an optimal selection model is established.In order to improve the accuracy and flexibility,the model is modified by the contribution degree.At last,this model has been validated by an example,and the result demonstrates the method is feasible and valuable for practical usage.
基金This project is supported by National Natural Science Foundation of China(No.598005001, No.10332010) and Key Science and Technology Research Project of Ministry of Education (No.104060).
文摘Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining vector level set models with gradient projectiontechnology, the level set method for topological optimization is extended to a topologicaloptimization problem with multi-constraints, multi-materials and multi-load cases. Meanwhile, anappropriate nonlinear speed, mapping is established in the tangential space of the activeconstraints for a fast convergence. Then the method is applied to structure designs, mechanism andmaterial designs by a number of benchmark examples. Finally, in order to further improvecomputational efficiency and overcome the difficulty that the level set method cannot generate newmaterial interfaces during the optimization process, the topological derivative analysis isincorporated into the level set method for topological optimization, and a topological derivativeand level set algorithm for topological optimization is proposed.