In this paper, we deal mainly with the following problem: if every 2-maximal subgroup of a Sylow p-subgroup of a finite group G is S-seminormal in G, what conditions force G to be p-nilpotent? As an application of mai...In this paper, we deal mainly with the following problem: if every 2-maximal subgroup of a Sylow p-subgroup of a finite group G is S-seminormal in G, what conditions force G to be p-nilpotent? As an application of main results, some sufficient conditions for finite nilpotent groups and finite supersolvable groups are obtained.展开更多
We give a functional representation theorem for a class of real p-Banach algebras. This theorem is used to show that every p-homogeneous seminorm with square property on a real associative algebra is
A subgroup H is called S-seminormal in a finite group G if H permutes with all Sylow p-subgroups of G with (p, |H| =1. The main object of this paper is to generalize some known results about finite supersolvable group...A subgroup H is called S-seminormal in a finite group G if H permutes with all Sylow p-subgroups of G with (p, |H| =1. The main object of this paper is to generalize some known results about finite supersolvable groups to a saturated formation containing the class of finite supersolvable groups.展开更多
In this paper, we prove the following theorem: Let p be a prime number, P a Sylow psubgroup of a group G and π = π(G) / {p}. If P is seminormal in G, then the following statements hold: 1) G is a p-soluble gro...In this paper, we prove the following theorem: Let p be a prime number, P a Sylow psubgroup of a group G and π = π(G) / {p}. If P is seminormal in G, then the following statements hold: 1) G is a p-soluble group and P' ≤ Op(G); 2) lp(G) ≤ 2 and lπ(G) ≤ 2; 3) if a π-Hall subgroup of G is q-supersoluble for some q ∈ π, then G is q-supersoluble.展开更多
文摘In this paper, we deal mainly with the following problem: if every 2-maximal subgroup of a Sylow p-subgroup of a finite group G is S-seminormal in G, what conditions force G to be p-nilpotent? As an application of main results, some sufficient conditions for finite nilpotent groups and finite supersolvable groups are obtained.
文摘We give a functional representation theorem for a class of real p-Banach algebras. This theorem is used to show that every p-homogeneous seminorm with square property on a real associative algebra is
文摘A subgroup H is called S-seminormal in a finite group G if H permutes with all Sylow p-subgroups of G with (p, |H| =1. The main object of this paper is to generalize some known results about finite supersolvable groups to a saturated formation containing the class of finite supersolvable groups.
文摘In this paper, we prove the following theorem: Let p be a prime number, P a Sylow psubgroup of a group G and π = π(G) / {p}. If P is seminormal in G, then the following statements hold: 1) G is a p-soluble group and P' ≤ Op(G); 2) lp(G) ≤ 2 and lπ(G) ≤ 2; 3) if a π-Hall subgroup of G is q-supersoluble for some q ∈ π, then G is q-supersoluble.