The modeling technique of hydrodynamic torque converter flow passage was investigated. The semi-automatic modeling technique of torque converter flow passage was proposed. The flow passage model of each converter whee...The modeling technique of hydrodynamic torque converter flow passage was investigated. The semi-automatic modeling technique of torque converter flow passage was proposed. The flow passage model of each converter wheel is considered as a revolution entity sliced by two curved surfaces. In order to generate the revolution entity, a new approximation method, condition optimum arc approximation, was proposed. The method was used to approximate the meridional streamlines of the inner and outer wall. As a result, the three-dimensional revolution entity can be conveniently generated. In order to create slice surfaces, the central stream surface of flow passage was approximated with a quadric surface. The normal vector of the quadric surface and the thickness/thickness-function of bade were used to calculate the discrete point coordinates of blade surfaces. Via the rotation transformation to the coordinates, the discrete point coordinates of slice surfaces were obtained. A parameterized program code used for the hydrodynamic torque converter design and semi-automatic modeling was developed. Modeling errors were calculated and analyzed. The flow passage model was generated in several minutes with the help of the program code, Auto CAD and Solidworks software. Finally, the model was inputted into Gambit, and the pre-processing task used for the numerical simulation of torque converter flow field was successfully completed. The investigation results show that the semi-automatic modeling not only can ensure the accuracy of modeling, but also librates the research and design workers of torque converter from the time-consuming modeling work, which paves the way for the numerical simulation of the complex flow field of the hydrodynamic torque converter.展开更多
The objective of this work is to propose a semi-automatic methodology for the creation of a semidetailed to detailed watershed’s soil map. This methodological proposal is based on the traditional method (field work a...The objective of this work is to propose a semi-automatic methodology for the creation of a semidetailed to detailed watershed’s soil map. This methodological proposal is based on the traditional method (field work and photo interpretation) and on morphometric variables analysis, using data originated from the Digital Elevation Model (DEM) of the Shuttle Radar Topography Mission (SRTM) program. The steps taken through this methodological proposal were the identification of the hydromorphic areas boundaries through interpretation of aerial orthophotographs;the compartmentalization of the relief through color composition techniques using the morphometric variables—slope, altimetry and horizontal curvature;the development of a pedological database based on data gathered in the field;the elaboration of a preliminary soil map based on the compartmentalized relief and on the dataset of the soils sampled in the field;the elaboration and adjustment of the final soil map according to the interpretation of aerial photographs and also the physical and chemical analyses of the soils. This semi-automatic methodology demonstrated improved efficiency in defining the soil units, reducing operation time and subjectivity of the process, thereby contributing to the systematization of soil mapping at watershed level in scale 1:50,000, as well as, promoting better knowledge between the relation of the geomorphic and soil variables in the Brazilian Savanna Cerrado.展开更多
There is a rapid rise in cybercrime cases. There does not exist any effective forensic methods to deal with these eybercrime cases. Investigators are required to study the details of a large amount of tedious source i...There is a rapid rise in cybercrime cases. There does not exist any effective forensic methods to deal with these eybercrime cases. Investigators are required to study the details of a large amount of tedious source in order to understand the crime model and dig out the evidence. This requires a lot of effort and may result in human errors. In order to overcome these potential errors that may cause by the investigators, we propose a semi-automatic approach that integrates the user view (based on a high level study of the forensic investigator) and the system view (based on the automatic analysis of the source codes) to assist investigators in refining the scope of the investigation. The approach has been verified using a real cybercrime case and the method has been shown to be effective in assisting the investigators in refining the scope of investigation and understanding the crime model. The semi-automatic approach has improved the efficiency and reliability of the digital forensic analysis of cybercrime cases involving large volume of digital evidence from multiple sources.展开更多
This paper proposed a new method of semi-automatic extraction for semantic structures from unlabelled corpora in specific domains. The approach is statistical in nature. The extracted structures can be used for shallo...This paper proposed a new method of semi-automatic extraction for semantic structures from unlabelled corpora in specific domains. The approach is statistical in nature. The extracted structures can be used for shallow parsing and semantic labeling. By iteratively extracting new words and clustering words, we get an inital semantic lexicon that groups words of the same semantic meaning together as a class. After that, a bootstrapping algorithm is adopted to extract semantic structures. Then the semantic structures are used to extract new展开更多
Mapping and analyzing rock mass discontinuities based on 3D(three-dimensional)point cloud(3DPC)is one of the most important work in the engineering geomechanical survey.To efficiently analyze the distribution of disco...Mapping and analyzing rock mass discontinuities based on 3D(three-dimensional)point cloud(3DPC)is one of the most important work in the engineering geomechanical survey.To efficiently analyze the distribution of discontinuities,a self-developed code termed as the cloud-group-cluster(CGC)method based on MATLAB for mapping and detecting discontinuities based on the 3DPC was introduced.The identification and optimization of discontinuity groups were performed using three key parameters,i.e.K,θ,and f.A sensitivity analysis approach for identifying the optimal key parameters was introduced.The results show that the comprehensive analysis of the main discontinuity groups,mean orientations,and densities could be achieved automatically.The accuracy of the CGC method was validated using tetrahedral and hexahedral models.The 3D point cloud data were divided into three levels(point cloud,group,and cluster)for analysis,and this three-level distribution recognition was applied to natural rock surfaces.The densities and spacing information of the principal discontinuities were automatically detected using the CGC method.Five engineering case studies were conducted to validate the CGC method,showing the applicability in detecting rock discontinuities based on 3DPC model.展开更多
In recent years,industrial robots have received extensive attention in manufacturing field due to their high flexibility and great workspace.However,the weak stiffness of industrial robots makes it extremely easy to a...In recent years,industrial robots have received extensive attention in manufacturing field due to their high flexibility and great workspace.However,the weak stiffness of industrial robots makes it extremely easy to arouse chatter,which affects machining quality inevitably and generates noise pollution in severe cases.Compared with drilling,the chatter mechanism of robotic countersinking is more complex.The external excitation changes with cutting width and depth in countersinking.This characteristic results in time-varying and nonlinearity of robotic countersinking dynamics.Thus,it is urgent to propose a new method of chatter suppression and provide an accurate stability analysis model.As a new special machining technology,rotary ultrasonic machining has been proved to improve robotic drilling and milling stability effectively.Based on this,robotic rotary ultrasonic countersinking(RRUC)is proposed to improve the robotic countersinking stability in this paper.A three-dimensional stability domain method of RRUC is established.First,the countersinking process was divided intoρparts.The dynamic model of every unit was constructed based on ultrasonic function angle(γ)and dynamic chip area.Then,the stability region of RRUC is obtained based on the semi-discrete method(SDM).Compared with the robotic conventional countersinking(RCC),RRUC improves the stability by 27%.Finally,the correctness and effectiveness of the stability region model are proved by robotic ultrasonic countersinking experiments.展开更多
The slug rivet is widely used in wing assembly due to its longer fatigue life and better sealing performance compared with other connection technologies.As a countersink with dual-angle is widely adopted for this type...The slug rivet is widely used in wing assembly due to its longer fatigue life and better sealing performance compared with other connection technologies.As a countersink with dual-angle is widely adopted for this type of connection,the countersink diameter and depth are key factors that affect assembly quality.Therefore,it is of great importance to efficiently inspect the countersink quality to ensure high accuracy.However,contact measurements are susceptible to the loss of accuracy due to cutting debris and lube build-up,while the hole-scanning method using laser profilometry is time consuming and complex.In this paper,a non-contact method for countersink diameter and depth measurement based on a machine vision system is proposed.The countersink diameter can be directly measured by the machine vision system,while the countersink depth is determined through the countersink diameter indirectly.First,by means of image processing technology together with an improved edge detection algorithm,the countersink diameter can be obtained.Then,a 3D microscope is employed to measure the countersink depth,which helps to model the countersink.As a result,once the countersink diameter is measured,so is the depth.The experimentation demonstrated that this method has strong feasibility and enables time saving,which is conducive to improve the riveting efficiency.展开更多
文摘The modeling technique of hydrodynamic torque converter flow passage was investigated. The semi-automatic modeling technique of torque converter flow passage was proposed. The flow passage model of each converter wheel is considered as a revolution entity sliced by two curved surfaces. In order to generate the revolution entity, a new approximation method, condition optimum arc approximation, was proposed. The method was used to approximate the meridional streamlines of the inner and outer wall. As a result, the three-dimensional revolution entity can be conveniently generated. In order to create slice surfaces, the central stream surface of flow passage was approximated with a quadric surface. The normal vector of the quadric surface and the thickness/thickness-function of bade were used to calculate the discrete point coordinates of blade surfaces. Via the rotation transformation to the coordinates, the discrete point coordinates of slice surfaces were obtained. A parameterized program code used for the hydrodynamic torque converter design and semi-automatic modeling was developed. Modeling errors were calculated and analyzed. The flow passage model was generated in several minutes with the help of the program code, Auto CAD and Solidworks software. Finally, the model was inputted into Gambit, and the pre-processing task used for the numerical simulation of torque converter flow field was successfully completed. The investigation results show that the semi-automatic modeling not only can ensure the accuracy of modeling, but also librates the research and design workers of torque converter from the time-consuming modeling work, which paves the way for the numerical simulation of the complex flow field of the hydrodynamic torque converter.
文摘The objective of this work is to propose a semi-automatic methodology for the creation of a semidetailed to detailed watershed’s soil map. This methodological proposal is based on the traditional method (field work and photo interpretation) and on morphometric variables analysis, using data originated from the Digital Elevation Model (DEM) of the Shuttle Radar Topography Mission (SRTM) program. The steps taken through this methodological proposal were the identification of the hydromorphic areas boundaries through interpretation of aerial orthophotographs;the compartmentalization of the relief through color composition techniques using the morphometric variables—slope, altimetry and horizontal curvature;the development of a pedological database based on data gathered in the field;the elaboration of a preliminary soil map based on the compartmentalized relief and on the dataset of the soils sampled in the field;the elaboration and adjustment of the final soil map according to the interpretation of aerial photographs and also the physical and chemical analyses of the soils. This semi-automatic methodology demonstrated improved efficiency in defining the soil units, reducing operation time and subjectivity of the process, thereby contributing to the systematization of soil mapping at watershed level in scale 1:50,000, as well as, promoting better knowledge between the relation of the geomorphic and soil variables in the Brazilian Savanna Cerrado.
文摘There is a rapid rise in cybercrime cases. There does not exist any effective forensic methods to deal with these eybercrime cases. Investigators are required to study the details of a large amount of tedious source in order to understand the crime model and dig out the evidence. This requires a lot of effort and may result in human errors. In order to overcome these potential errors that may cause by the investigators, we propose a semi-automatic approach that integrates the user view (based on a high level study of the forensic investigator) and the system view (based on the automatic analysis of the source codes) to assist investigators in refining the scope of the investigation. The approach has been verified using a real cybercrime case and the method has been shown to be effective in assisting the investigators in refining the scope of investigation and understanding the crime model. The semi-automatic approach has improved the efficiency and reliability of the digital forensic analysis of cybercrime cases involving large volume of digital evidence from multiple sources.
文摘This paper proposed a new method of semi-automatic extraction for semantic structures from unlabelled corpora in specific domains. The approach is statistical in nature. The extracted structures can be used for shallow parsing and semantic labeling. By iteratively extracting new words and clustering words, we get an inital semantic lexicon that groups words of the same semantic meaning together as a class. After that, a bootstrapping algorithm is adopted to extract semantic structures. Then the semantic structures are used to extract new
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFC2907400 and 2021YFC2900500)the National Natural Science Foundation of China(Grant No.52074020).
文摘Mapping and analyzing rock mass discontinuities based on 3D(three-dimensional)point cloud(3DPC)is one of the most important work in the engineering geomechanical survey.To efficiently analyze the distribution of discontinuities,a self-developed code termed as the cloud-group-cluster(CGC)method based on MATLAB for mapping and detecting discontinuities based on the 3DPC was introduced.The identification and optimization of discontinuity groups were performed using three key parameters,i.e.K,θ,and f.A sensitivity analysis approach for identifying the optimal key parameters was introduced.The results show that the comprehensive analysis of the main discontinuity groups,mean orientations,and densities could be achieved automatically.The accuracy of the CGC method was validated using tetrahedral and hexahedral models.The 3D point cloud data were divided into three levels(point cloud,group,and cluster)for analysis,and this three-level distribution recognition was applied to natural rock surfaces.The densities and spacing information of the principal discontinuities were automatically detected using the CGC method.Five engineering case studies were conducted to validate the CGC method,showing the applicability in detecting rock discontinuities based on 3DPC model.
基金the Project on the Technological Leading Talent Teams Led by Frontiers Science Center for Complex Equipment System Dynamics(No.FSCCESD220401)the National Natural Science Foundation of China(No.52075265).
文摘In recent years,industrial robots have received extensive attention in manufacturing field due to their high flexibility and great workspace.However,the weak stiffness of industrial robots makes it extremely easy to arouse chatter,which affects machining quality inevitably and generates noise pollution in severe cases.Compared with drilling,the chatter mechanism of robotic countersinking is more complex.The external excitation changes with cutting width and depth in countersinking.This characteristic results in time-varying and nonlinearity of robotic countersinking dynamics.Thus,it is urgent to propose a new method of chatter suppression and provide an accurate stability analysis model.As a new special machining technology,rotary ultrasonic machining has been proved to improve robotic drilling and milling stability effectively.Based on this,robotic rotary ultrasonic countersinking(RRUC)is proposed to improve the robotic countersinking stability in this paper.A three-dimensional stability domain method of RRUC is established.First,the countersinking process was divided intoρparts.The dynamic model of every unit was constructed based on ultrasonic function angle(γ)and dynamic chip area.Then,the stability region of RRUC is obtained based on the semi-discrete method(SDM).Compared with the robotic conventional countersinking(RCC),RRUC improves the stability by 27%.Finally,the correctness and effectiveness of the stability region model are proved by robotic ultrasonic countersinking experiments.
文摘The slug rivet is widely used in wing assembly due to its longer fatigue life and better sealing performance compared with other connection technologies.As a countersink with dual-angle is widely adopted for this type of connection,the countersink diameter and depth are key factors that affect assembly quality.Therefore,it is of great importance to efficiently inspect the countersink quality to ensure high accuracy.However,contact measurements are susceptible to the loss of accuracy due to cutting debris and lube build-up,while the hole-scanning method using laser profilometry is time consuming and complex.In this paper,a non-contact method for countersink diameter and depth measurement based on a machine vision system is proposed.The countersink diameter can be directly measured by the machine vision system,while the countersink depth is determined through the countersink diameter indirectly.First,by means of image processing technology together with an improved edge detection algorithm,the countersink diameter can be obtained.Then,a 3D microscope is employed to measure the countersink depth,which helps to model the countersink.As a result,once the countersink diameter is measured,so is the depth.The experimentation demonstrated that this method has strong feasibility and enables time saving,which is conducive to improve the riveting efficiency.