Semantic change detection is extension of change detection task in which it is not only used to identify the changed regions but also to analyze the land area semantic(labels/categories)details before and after the ti...Semantic change detection is extension of change detection task in which it is not only used to identify the changed regions but also to analyze the land area semantic(labels/categories)details before and after the timelines are analyzed.Periodical land change analysis is used for many real time applications for valuation purposes.Majority of the research works are focused on Convolutional Neural Networks(CNN)which tries to analyze changes alone.Semantic information of changes appears to be missing,there by absence of communication between the different semantic timelines and changes detected over the region happens.To overcome this limitation,a CNN network is proposed incorporating the Resnet-34 pre-trained model on Fully Convolutional Network(FCN)blocks for exploring the temporal data of satellite images in different timelines and change map between these two timelines are analyzed.Further this model achieves better results by analyzing the semantic information between the timelines and based on localized information collected from skip connections which help in generating a better change map with the categories that might have changed over a land area across timelines.Proposed model effectively examines the semantic changes such as from-to changes on land over time period.The experimental results on SECOND(Semantic Change detectiON Dataset)indicates that the proposed model yields notable improvement in performance when it is compared with the existing approaches and this also improves the semantic segmentation task on images over different timelines and the changed areas of land area across timelines.展开更多
This paper proposes a tree kernel method of semantic relation detection and classification (RDC) between named entities. It resolves two critical problems in previous tree kernel methods of RDC. First, a new tree ke...This paper proposes a tree kernel method of semantic relation detection and classification (RDC) between named entities. It resolves two critical problems in previous tree kernel methods of RDC. First, a new tree kernel is presented to better capture the inherent structural information in a parse tree by enabling the standard convolution tree kernel with context-sensitiveness and approximate matching of sub-trees. Second, an enriched parse tree structure is proposed to well derive necessary structural information, e.g., proper latent annotations, from a parse tree. Evaluation on the ACE RDC corpora shows that both the new tree kernel and the enriched parse tree structure contribute significantly to RDC and our tree kernel method much outperforms the state-of-the-art ones.展开更多
Recent change detection(CD)methods focus on the extraction of deep change semantic features.However,existing methods overlook the fine-grained features and have the poor ability to capture long-range space–time infor...Recent change detection(CD)methods focus on the extraction of deep change semantic features.However,existing methods overlook the fine-grained features and have the poor ability to capture long-range space–time information,which leads to the micro changes missing and the edges of change types smoothing.In this paper,a potential transformer-based semantic change detection(SCD)model,Pyramid-SCDFormer is proposed,which precisely recognizes the small changes and fine edges details of the changes.The SCD model selectively merges different semantic tokens in multi-head self-attention block to obtain multiscale features,which is crucial for extraction information of remote sensing images(RSIs)with multiple changes from different scales.Moreover,we create a well-annotated SCD dataset,Landsat-SCD with unprecedented time series and change types in complex scenarios.Comparing with three Convolutional Neural Network-based,one attention-based,and two transformer-based networks,experimental results demonstrate that the Pyramid-SCDFormer stably outperforms the existing state-of-the-art CD models and obtains an improvement in MIoU/F1 of 1.11/0.76%,0.57/0.50%,and 8.75/8.59%on the LEVIR-CD,WHU_CD,and Landsat-SCD dataset respectively.For change classes proportion less than 1%,the proposed model improves the MIoU by 7.17–19.53%on Landsat-SCD dataset.The recognition performance for small-scale and fine edges of change types has greatly improved.展开更多
The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict dete...The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict detection.We research the global conflict detection algorithm in this paper.We presented a semantic model that captures more complete classifications of the policy using knowledge concept in rough set.Based on this model,we presented the global conflict formal model,and represent it with OBDD(Ordered Binary Decision Diagram).Then we developed GFPCDA(Global Firewall Policy Conflict Detection Algorithm) algorithm to detect global conflict.In experiment,we evaluated the usability of our semantic model by eliminating the false positives and false negatives caused by incomplete policy semantic model,of a classical algorithm.We compared this algorithm with GFPCDA algorithm.The results show that GFPCDA detects conflicts more precisely and independently,and has better performance.展开更多
Semantic change detection(SCD)and land cover mapping(LCM)are always treated as a dual task in thefield of remote sensing.However,due to diverse real-world scenarios,many SCD categories are not easy to be clearly recog...Semantic change detection(SCD)and land cover mapping(LCM)are always treated as a dual task in thefield of remote sensing.However,due to diverse real-world scenarios,many SCD categories are not easy to be clearly recognized,such as“water-vegetation”and“water-tree”,which can be regarded asfine-grained differences.In addition,even a single LCM category is usually difficult to define.For instance,some“vegetation”categories with litter vegetation coverage are easily confused with the general“ground”category.SCD/LCM becomes challenging under both challenges of itsfine-grained nature and label ambiguity.In this paper,we tackle the SCD and LCM tasks simultaneously by proposing a coarse-to-fine attention tree(CAT)model.Specifically,it consists of an encoder,a decoder and a coarse-to-fine attention tree module.The encoder-decoder structure extracts the high-level features from input multi-temporal imagesfirst and then reconstructs them to return SCD and LCM predictions.Our coarse-to-fine attention tree,on the one hand,utilizes the tree structure to better model a hierarchy of categories by predicting the coarse-grained labelsfirst and then predicting thefine-grained labels later.On the other hand,it applies the attention mechanism to capture discriminative pixel regions.Furthermore,to address label ambiguity in SCD/LCM,we also equip a label distribution learning loss upon our model.Experiments on the large-scale SECOND dataset justify that the proposed CAT model outperforms state-of-the-art models.Moreover,various ablation studies have demonstrated the effectiveness of tailored designs in the CAT model for solving semantic change detection problems.展开更多
High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection...High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection(BCD)and semantic change detection(SCD)simultaneously because classification datasets always have one time phase and BCD datasets focus only on the changed location,ignoring the changed classes.Public SCD datasets are rare but much needed.To solve the above problems,a tri-temporal SCD dataset made up of Gaofen-2(GF-2)remote sensing imagery(with 11 LULC classes and 60 change directions)was built in this study,namely,the Wuhan Urban Semantic Understanding(WUSU)dataset.Popular deep learning based methods for LULC classification,BCD and SCD are tested to verify the reliability of WUSU.A Siamese-based multi-task joint framework with a multi-task joint loss(MJ loss)named ChangeMJ is proposed to restore the object boundaries and obtains the best results in LULC classification,BCD and SCD,compared to the state-of-the-art(SOTA)methods.Finally,a large spatial-scale mapping for Wuhan central urban area is carried out to verify that the WUsU dataset and the ChangeMJ framework have good application values.展开更多
文摘Semantic change detection is extension of change detection task in which it is not only used to identify the changed regions but also to analyze the land area semantic(labels/categories)details before and after the timelines are analyzed.Periodical land change analysis is used for many real time applications for valuation purposes.Majority of the research works are focused on Convolutional Neural Networks(CNN)which tries to analyze changes alone.Semantic information of changes appears to be missing,there by absence of communication between the different semantic timelines and changes detected over the region happens.To overcome this limitation,a CNN network is proposed incorporating the Resnet-34 pre-trained model on Fully Convolutional Network(FCN)blocks for exploring the temporal data of satellite images in different timelines and change map between these two timelines are analyzed.Further this model achieves better results by analyzing the semantic information between the timelines and based on localized information collected from skip connections which help in generating a better change map with the categories that might have changed over a land area across timelines.Proposed model effectively examines the semantic changes such as from-to changes on land over time period.The experimental results on SECOND(Semantic Change detectiON Dataset)indicates that the proposed model yields notable improvement in performance when it is compared with the existing approaches and this also improves the semantic segmentation task on images over different timelines and the changed areas of land area across timelines.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60873150,60970056 and 90920004
文摘This paper proposes a tree kernel method of semantic relation detection and classification (RDC) between named entities. It resolves two critical problems in previous tree kernel methods of RDC. First, a new tree kernel is presented to better capture the inherent structural information in a parse tree by enabling the standard convolution tree kernel with context-sensitiveness and approximate matching of sub-trees. Second, an enriched parse tree structure is proposed to well derive necessary structural information, e.g., proper latent annotations, from a parse tree. Evaluation on the ACE RDC corpora shows that both the new tree kernel and the enriched parse tree structure contribute significantly to RDC and our tree kernel method much outperforms the state-of-the-art ones.
基金supported by National Key Research and Development Program of China[Grant number 2017YFB0504203]Xinjiang Production and Construction Corps Science and Technology Project:[Grant number 2017DB005].
文摘Recent change detection(CD)methods focus on the extraction of deep change semantic features.However,existing methods overlook the fine-grained features and have the poor ability to capture long-range space–time information,which leads to the micro changes missing and the edges of change types smoothing.In this paper,a potential transformer-based semantic change detection(SCD)model,Pyramid-SCDFormer is proposed,which precisely recognizes the small changes and fine edges details of the changes.The SCD model selectively merges different semantic tokens in multi-head self-attention block to obtain multiscale features,which is crucial for extraction information of remote sensing images(RSIs)with multiple changes from different scales.Moreover,we create a well-annotated SCD dataset,Landsat-SCD with unprecedented time series and change types in complex scenarios.Comparing with three Convolutional Neural Network-based,one attention-based,and two transformer-based networks,experimental results demonstrate that the Pyramid-SCDFormer stably outperforms the existing state-of-the-art CD models and obtains an improvement in MIoU/F1 of 1.11/0.76%,0.57/0.50%,and 8.75/8.59%on the LEVIR-CD,WHU_CD,and Landsat-SCD dataset respectively.For change classes proportion less than 1%,the proposed model improves the MIoU by 7.17–19.53%on Landsat-SCD dataset.The recognition performance for small-scale and fine edges of change types has greatly improved.
基金supported by the National Nature Science Foundation of China under Grant No.61170295 the Project of National ministry under Grant No.A2120110006+2 种基金 the Co-Funding Project of Beijing Municipal Education Commission under Grant No.JD100060630 the Beijing Education Committee General Program under Grant No. KM201211232010 the National Nature Science Foundation of China under Grant NO. 61370065
文摘The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict detection.We research the global conflict detection algorithm in this paper.We presented a semantic model that captures more complete classifications of the policy using knowledge concept in rough set.Based on this model,we presented the global conflict formal model,and represent it with OBDD(Ordered Binary Decision Diagram).Then we developed GFPCDA(Global Firewall Policy Conflict Detection Algorithm) algorithm to detect global conflict.In experiment,we evaluated the usability of our semantic model by eliminating the false positives and false negatives caused by incomplete policy semantic model,of a classical algorithm.We compared this algorithm with GFPCDA algorithm.The results show that GFPCDA detects conflicts more precisely and independently,and has better performance.
基金supported by National Key R&D Program of China(No.2021YFA1001100)National Natural Science Foundation of China(Nos.62272231,61925201,62132001,and U21B2025)+2 种基金Natural Science Foundation of Jiangsu Province of China under Grant(No.BK20210340)the Fundamental Research Funds for the Central Universities(No.30920041111)CAAI-Huawei MindSpore Open Fund,and Beijing Academy of Artificial Intelligence(BAAI).
文摘Semantic change detection(SCD)and land cover mapping(LCM)are always treated as a dual task in thefield of remote sensing.However,due to diverse real-world scenarios,many SCD categories are not easy to be clearly recognized,such as“water-vegetation”and“water-tree”,which can be regarded asfine-grained differences.In addition,even a single LCM category is usually difficult to define.For instance,some“vegetation”categories with litter vegetation coverage are easily confused with the general“ground”category.SCD/LCM becomes challenging under both challenges of itsfine-grained nature and label ambiguity.In this paper,we tackle the SCD and LCM tasks simultaneously by proposing a coarse-to-fine attention tree(CAT)model.Specifically,it consists of an encoder,a decoder and a coarse-to-fine attention tree module.The encoder-decoder structure extracts the high-level features from input multi-temporal imagesfirst and then reconstructs them to return SCD and LCM predictions.Our coarse-to-fine attention tree,on the one hand,utilizes the tree structure to better model a hierarchy of categories by predicting the coarse-grained labelsfirst and then predicting thefine-grained labels later.On the other hand,it applies the attention mechanism to capture discriminative pixel regions.Furthermore,to address label ambiguity in SCD/LCM,we also equip a label distribution learning loss upon our model.Experiments on the large-scale SECOND dataset justify that the proposed CAT model outperforms state-of-the-art models.Moreover,various ablation studies have demonstrated the effectiveness of tailored designs in the CAT model for solving semantic change detection problems.
基金supported by National Key Research and Development Program of China under grant number 2022YFB3903404National Natural Science Foundation of China under grant number 42325105,42071350LIESMARS Special Research Funding.
文摘High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection(BCD)and semantic change detection(SCD)simultaneously because classification datasets always have one time phase and BCD datasets focus only on the changed location,ignoring the changed classes.Public SCD datasets are rare but much needed.To solve the above problems,a tri-temporal SCD dataset made up of Gaofen-2(GF-2)remote sensing imagery(with 11 LULC classes and 60 change directions)was built in this study,namely,the Wuhan Urban Semantic Understanding(WUSU)dataset.Popular deep learning based methods for LULC classification,BCD and SCD are tested to verify the reliability of WUSU.A Siamese-based multi-task joint framework with a multi-task joint loss(MJ loss)named ChangeMJ is proposed to restore the object boundaries and obtains the best results in LULC classification,BCD and SCD,compared to the state-of-the-art(SOTA)methods.Finally,a large spatial-scale mapping for Wuhan central urban area is carried out to verify that the WUsU dataset and the ChangeMJ framework have good application values.