By using semiclassical theory combined with multiple-scale method, we analytically study the linear absorption and the nonlinear dynamical properties in a lifetime broadened Λ-type three-level self-assembled quantum ...By using semiclassical theory combined with multiple-scale method, we analytically study the linear absorption and the nonlinear dynamical properties in a lifetime broadened Λ-type three-level self-assembled quantum dots. It is found that this system can exhibit the transparency, and the width of the transparency window becomes wider with the increase of control light field. Interestingly, a weak probe light beam can form spatial weak-light dark solitons. When it propagates along the axial direction, the soliton will transform into a steady spatial weak-light ring dark soltion. In addition, the stability of two-dimensional spatial optical solitons is testified numerically.展开更多
A brief introduction of semiconductor self-assembled quantum dots (QDs) applied in single-photon sources is given. Single QDs in confined quantum optical microcavity systems are reviewed along with their optical prope...A brief introduction of semiconductor self-assembled quantum dots (QDs) applied in single-photon sources is given. Single QDs in confined quantum optical microcavity systems are reviewed along with their optical properties and coupling characteristics. Subsequently, the recent progresses in In(Ga)As QDs systems are summarized including the preparation of quantum light sources, multiple methods for embedding single QDs into different microcavities and the scalability of single-photon emitting wavelength. Particularly, several In(Ga)As QD single-photon devices are surveyed including In(Ga)As QDs coupling with nanowires, InAs QDs coupling with distributed Bragg reflection microcavity and the In(Ga)As QDs coupling with micropillar microcavities. Furthermore, applications in the field of single QDs technology are illustrated, such as the entangled photon emission by spontaneous parametric down conversion, the single-photon quantum storage, the chip preparation of single-photon sources as well as the single-photon resonance-fluorescence measurements.展开更多
In this paper,amino capped CdSe/ZnS quantum dots(QDs)were immobilized on the 11-mercaptoundecanoic acid(MUA)self-assembled Au surface(SAM/Au)by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride(EDC).Atomic f...In this paper,amino capped CdSe/ZnS quantum dots(QDs)were immobilized on the 11-mercaptoundecanoic acid(MUA)self-assembled Au surface(SAM/Au)by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride(EDC).Atomic force microscopy(AFM),fluorescence imaging and electrochemistry were employed to characterize the surface.The results showed that CdSe/ZnS QDs were immobilized on the surface of SAM/Au successfully.Based on this method,the fluorescence of the QDs on the SAM/Au was monitored on-line.展开更多
The effect of buried misfit dislocation on the distribution of Ge self-assembled quantum dots (SAQDs) grown on a relaxed SiGe buffer layer was investigated. The strain field of arrays of buried dislocations in a relax...The effect of buried misfit dislocation on the distribution of Ge self-assembled quantum dots (SAQDs) grown on a relaxed SiGe buffer layer was investigated. The strain field of arrays of buried dislocations in a relaxed SiGe buffer layer provided preferential nucleation sites for quantum dots. Burgers vector analysis using plan-view transmission electron microscopy (TEM) verified that the preferential nucleation sites of Ge SAQDs depended on the Burgers vector direction of corresponding dislocations. The measurement of the lateral distance between SAQDs and dislocations together with crosssection TEM observation clarified that the location of SAQDs was at the intersection of the dislocation slip plane and the top surface. The misfit strain should be an additional factor governing the uniformity in size, shape and distribution of Ge SAQDs.展开更多
Local structure of uncapped and Si capped Ge quantum dots grown on Si(100) has been probed by X ray absorption fine structure spectroscopy. It is found that the uncapped Ge dots are partially oxidized and partially al...Local structure of uncapped and Si capped Ge quantum dots grown on Si(100) has been probed by X ray absorption fine structure spectroscopy. It is found that the uncapped Ge dots are partially oxidized and partially alloyed with Si. The amount of Ge present in the Ge phase is found to be about 20 30%. In the Si capped sample, Ge is found to be dissolved in silicon, the fraction of Ge atoms existing as pure Ge phase being not more than 10%.展开更多
The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon ...The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon sources in the near-infrared band(λ∼700–1000 nm),several challenges have yet to be addressed for ideal single-photon emission at the telecommunication band.In this study,we present a droplet-epitaxy strategy for O-band to C-band single-photon source-based semiconductor quantum dots(QDs)using metal-organic vaporphase epitaxy(MOVPE).By investigating the growth conditions of the epitaxial process,we have successfully synthesized InAs/InP QDs with narrow emission lines spanning a broad spectral range of λ∼1200–1600 nm.The morphological and optical properties of the samples were characterized using atomic force microscopy and microphotoluminescence spectroscopy.The recorded single-photon purity of a plain QD structure reaches g^((2))(0)=0.16,with a radiative recombination lifetime as short as 1.5 ns.This work provides a crucial platform for future research on integrated microcavity enhancement techniques and coupled QDs with other quantum photonics in the telecom bands,offering significant prospects for quantum network applications.展开更多
InP quantum dots(QDs)have been a major building block of modern display technology due to their high photoluminescence quantum yield(PLQY)in the visible spectrum,superior stability,and eco-friendly composition.However...InP quantum dots(QDs)have been a major building block of modern display technology due to their high photoluminescence quantum yield(PLQY)in the visible spectrum,superior stability,and eco-friendly composition.However,their applications at short-wave infrared(SWIR)have been hindered by their low efficiency.Here,we report the synthesis of efficient and SWIR-emitting InP QDs by precisely controlling the InP core nucleation using a low-cost ammonia phosphorus precursor,while avoiding size-limiting ZnCl_(2) for effective copper doping.Subsequent epitaxial growth of a lattice-matched ZnSe/ZnS multishell enhanced the QD sphericity and surface smoothness and yielded a record PLQY of 66% with an emission peak at 960 nm.When QDs were integrated as the high-refractive-index luminescent core of a liquid waveguide-based luminescent solar concentrator(LSC),the device achieved an optical efficiency of 7.36%.This performance arises from their high PLQY,spectral alignment with the responsivity peak of silicon solar cells,and the optimized core/cladding waveguide structure.These results highlight the potential of InP QDs as a promising nanomaterial for SWIR emission and applications.展开更多
The binding energy of a hydrogenic impurity in self-assembled double quantum dots is calculated via the finitedifference method. The variation in binding energy with donor position, structure parameters and external m...The binding energy of a hydrogenic impurity in self-assembled double quantum dots is calculated via the finitedifference method. The variation in binding energy with donor position, structure parameters and external magnetic field is studied in detail. The results found are: (i) the binding energy has a complex behaviour due to coupling between the two dots; (ii) the binding energy is much larger when the donor is placed in the centre of one dot than in other positions; and (iii) the external magnetic field has different effects on the binding energy for different quantum-dot sizes or lateral confinements.展开更多
Semiconductor quantum dots have been intensively investigated because of their fundamental role in solid-state quan- tum information processing. The energy levels of quantum dots are quantized and can be tuned by exte...Semiconductor quantum dots have been intensively investigated because of their fundamental role in solid-state quan- tum information processing. The energy levels of quantum dots are quantized and can be tuned by external field such as optical, electric, and magnetic field. In this review, we focus on the development of magneto-optical properties of single InAs quantum dots embedded in GaAs matrix, including charge injection, relaxation, tunneling, wavefunction distribution, and coupling between different dimensional materials. Finally, the perspective of coherent manipulation of quantum state of single self-assembled quantum dots by photocurrent spectroscopy with an applied magnetic field is discussed.展开更多
Structural and optical properties of vertically aligned InAs quantum dots (QDs) were embedded in Al0.5Ga0.5As spacer layers. The aligned QDs were grown at 520℃ in the Stranski-Krastanow (S-K) growth mode of molecular...Structural and optical properties of vertically aligned InAs quantum dots (QDs) were embedded in Al0.5Ga0.5As spacer layers. The aligned QDs were grown at 520℃ in the Stranski-Krastanow (S-K) growth mode of molecular beam epitaxy. To impro ve QD characteristics, we employed a size- and density-controlled growth procedu re in the upper layers. Measurements by reflection high-energy electron diffract ion (RHEED) and atomic force microscopy (AFM) showed that both the size and dens ity of the QDs. The temperature dependence of the wavelength-integrated photolum inescence (PL) intensity revealed the InAs QD emission.展开更多
A detailed comparison of continuum and valence force field strain calculations in quantum-dot structures is presented with particular emphasis to boundary conditions,their implementation in the finite-elementmethod,an...A detailed comparison of continuum and valence force field strain calculations in quantum-dot structures is presented with particular emphasis to boundary conditions,their implementation in the finite-elementmethod,and associated implications for electronic states.The first part of this work provides the equation framework for the elastic continuum model including piezoelectric effects in crystal structures as well as detailing the Keating model equations used in the atomistic valence force field calculations.Given the variety of possible structure shapes,a choice of pyramidal,spherical and cubic-dot shapes is made having in mind their pronounced shape differences and practical relevance.In this part boundary conditions are also considered;in particular the relevance of imposing different types of boundary conditions is highlighted and discussed.In the final part,quantum dots with inhomogeneous indium concentration profiles are studied in order to highlight the importance of taking into account the exact In concentration profile for real quantum dots.The influence of strain,electric-field distributions,and material inhomogeneity of spherical quantum dots on electronic wavefunctions is briefly discussed.展开更多
The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature ...The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature is reported. The full width at half maximum of the band edge emitting peaks of the photoluminescence (PL) spectra at room temperature is less than 35meV for most of the multi-layer QD samples,revealing good,reproducible MBE growth conditions. Moreover,atomic force microscopy images show that the QD surface density can be controlled in the range from 1×10^10 to 7 ×10^10 cm^-2 . The best PL properties are obtained at a QD surface density of about 4×10^10cm^-2. Edge emitting lasers containing 3 and 5 stacked QD layers as the active layer lasing at room temperature in continuous wave operation mode are reported.展开更多
Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel...Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.展开更多
The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS...The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS QDs and hollow nanotube In_(2)O_(3)is successfully achieved using an electrostatic self-assembly method.Under visible light irradiation,all CdS-In_(2)O_(3)composites exhibit higher hydrogen evolution efficiency compared to pure CdS QDs.Notably,the photocatalytic H_(2)evolution rate of the optimal CdS-7%In_(2)O_(3)composite is determined to be 2258.59μmol g^(−1)h^(−1),approximately 12.3 times higher than that of pure CdS.The cyclic test indicates that the CdS-In_(2)O_(3)composite maintains considerable activity even after 5 cycles,indicating its excellent stability.In situ X-ray photoelectron spectroscopy and density functional theory calculations confirm that carrier migration in CdS-In_(2)O_(3)composites adheres to a typical S-scheme heterojunction mechanism.Additionally,a series of characterizations demonstrate that the formation of S-scheme heterojunctions between In_(2)O_(3)and CdS inhibits charge recombination and accelerates the separation and migration of photogenerated carriers in the CdS QDs,thus achieving enhanced photocatalytic performance.This work elucidates the pivotal role of S-scheme heterojunctions in photocatalytic H_(2)production and offers novel insights into the construction of effective composite photocatalysts.展开更多
The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and...The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and mixed reality applications.Alongside the controlled synthesis of high-performance QDs,a reliable QD patterning technology is crucial in overcoming this challenge.Among the various methods available,photolithography-based patterning technologies show great potentials in producing ultra-fine QD patterns at micron scale.This review article presents the recent advancements in the field of QD patterning using photolithography techniques and explores their applications in micro-display technology.Firstly,we discuss QD patterning through photolithography techniques employing photoresist(PR),which falls into two categories:PRassisted photolithography and photolithography of QDPR.Subsequently,direct photolithography techniques based on photo-induced crosslinking of photosensitive groups and photo-induced ligand cleavage mechanisms are thoroughly reviewed.Meanwhile,we assess the performance of QD arrays fabricated using these photolithography techniques and their integration into QD light emitting diode display devices as well as color conversionbased micro light emitting diode display devices.Lastly,we summarize the most recent developments in this field and outline future prospects.展开更多
Quantum dots(QDs),a type of nanoscale semiconductor material with unique optical and electrical properties like adjustable emission and high photoluminescence quantum yields,are suitable for applications in optoelectr...Quantum dots(QDs),a type of nanoscale semiconductor material with unique optical and electrical properties like adjustable emission and high photoluminescence quantum yields,are suitable for applications in optoelectronics.However,QDs are typically degraded under humid and high-temperature circumstances,greatly limiting their practical value.Coating the QD surface with an inorganic silica layer is a feasible method for improving stability and endurance in a variety of applications.This paper comprehensively reviews silica coating methodologies on QD surfaces and explores their applications in optoelectronic domains.Firstly,the paper provides mainstream silica coating approaches,which can be divided into two categories:in-situ hydrolysis of silylating reagents on QD surfaces and template techniques for encapsulation QDs.Subsequently,the recent applications of the silica-coated QDs on optoelectronic fields including light-emitting diodes,solar cells,photodetectors were discussed.Finally,it reviews recent advances in silica-coated QD technology and prospects for future applications.展开更多
With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ...With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.展开更多
Aqueous zinc ion batteries have received widespread attention.However,the growth of zinc dendrites and hydrogen evolution reaction generation seriously hinder the practical application of zinc ion bat-teries.Herein,it...Aqueous zinc ion batteries have received widespread attention.However,the growth of zinc dendrites and hydrogen evolution reaction generation seriously hinder the practical application of zinc ion bat-teries.Herein,it is reported that a multifunctional dendrites-free low-temperature PVA-based gel elec-trolyte by introducing negatively charged polymer carbon quantum dots(QDs)and the organic antifreeze dimethyl sulfoxide(DMSO)into it.The QDs carrying a large number of functional groups on the surface can effectively adsorb Zn^(2+),eliminating the“tip effect”,and inducing the uniform deposition of Zn^(2+)and the formation of a dendrites-free structure.Meanwhile,the solvation structure of adsorbed Zn^(2+)can be controlled by charged groups to reduce the generation of side reactions,thus obtaining high-performance zinc ion batteries.The Zn/polyaniline(PANi)full battery can be stably cycled more than 1000 times at-20℃,and the design of this gel electrolyte can provide good feasibility for safe,stable,and flexible energy storage devices.展开更多
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Neve...Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.展开更多
Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective al...Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.展开更多
基金Project supported by the Special Funds of the National Natural Science Foundation of China(Grant No.11247313)
文摘By using semiclassical theory combined with multiple-scale method, we analytically study the linear absorption and the nonlinear dynamical properties in a lifetime broadened Λ-type three-level self-assembled quantum dots. It is found that this system can exhibit the transparency, and the width of the transparency window becomes wider with the increase of control light field. Interestingly, a weak probe light beam can form spatial weak-light dark solitons. When it propagates along the axial direction, the soliton will transform into a steady spatial weak-light ring dark soltion. In addition, the stability of two-dimensional spatial optical solitons is testified numerically.
基金supported by the National Key Technologies R&D Program of China(Grant No.2018YFA0306101)the Key R&D Program of Guangdong Province(Grant No.2018B030329001)+1 种基金the Scientific instrument developing project of the Chinese Academy of Science(Grant No.YJKYYQ20170032)the National Natural Science Foundation of China(Grant No.61505196)
文摘A brief introduction of semiconductor self-assembled quantum dots (QDs) applied in single-photon sources is given. Single QDs in confined quantum optical microcavity systems are reviewed along with their optical properties and coupling characteristics. Subsequently, the recent progresses in In(Ga)As QDs systems are summarized including the preparation of quantum light sources, multiple methods for embedding single QDs into different microcavities and the scalability of single-photon emitting wavelength. Particularly, several In(Ga)As QD single-photon devices are surveyed including In(Ga)As QDs coupling with nanowires, InAs QDs coupling with distributed Bragg reflection microcavity and the In(Ga)As QDs coupling with micropillar microcavities. Furthermore, applications in the field of single QDs technology are illustrated, such as the entangled photon emission by spontaneous parametric down conversion, the single-photon quantum storage, the chip preparation of single-photon sources as well as the single-photon resonance-fluorescence measurements.
文摘In this paper,amino capped CdSe/ZnS quantum dots(QDs)were immobilized on the 11-mercaptoundecanoic acid(MUA)self-assembled Au surface(SAM/Au)by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride(EDC).Atomic force microscopy(AFM),fluorescence imaging and electrochemistry were employed to characterize the surface.The results showed that CdSe/ZnS QDs were immobilized on the surface of SAM/Au successfully.Based on this method,the fluorescence of the QDs on the SAM/Au was monitored on-line.
文摘The effect of buried misfit dislocation on the distribution of Ge self-assembled quantum dots (SAQDs) grown on a relaxed SiGe buffer layer was investigated. The strain field of arrays of buried dislocations in a relaxed SiGe buffer layer provided preferential nucleation sites for quantum dots. Burgers vector analysis using plan-view transmission electron microscopy (TEM) verified that the preferential nucleation sites of Ge SAQDs depended on the Burgers vector direction of corresponding dislocations. The measurement of the lateral distance between SAQDs and dislocations together with crosssection TEM observation clarified that the location of SAQDs was at the intersection of the dislocation slip plane and the top surface. The misfit strain should be an additional factor governing the uniformity in size, shape and distribution of Ge SAQDs.
文摘Local structure of uncapped and Si capped Ge quantum dots grown on Si(100) has been probed by X ray absorption fine structure spectroscopy. It is found that the uncapped Ge dots are partially oxidized and partially alloyed with Si. The amount of Ge present in the Ge phase is found to be about 20 30%. In the Si capped sample, Ge is found to be dissolved in silicon, the fraction of Ge atoms existing as pure Ge phase being not more than 10%.
基金supported by the National Natural Science Foundation of China (Grant Nos.12494604,12393834,12393831,62274014,6223501662335015)the National Key R&D Program of China (Grant No.2024YFA1208900)。
文摘The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon sources in the near-infrared band(λ∼700–1000 nm),several challenges have yet to be addressed for ideal single-photon emission at the telecommunication band.In this study,we present a droplet-epitaxy strategy for O-band to C-band single-photon source-based semiconductor quantum dots(QDs)using metal-organic vaporphase epitaxy(MOVPE).By investigating the growth conditions of the epitaxial process,we have successfully synthesized InAs/InP QDs with narrow emission lines spanning a broad spectral range of λ∼1200–1600 nm.The morphological and optical properties of the samples were characterized using atomic force microscopy and microphotoluminescence spectroscopy.The recorded single-photon purity of a plain QD structure reaches g^((2))(0)=0.16,with a radiative recombination lifetime as short as 1.5 ns.This work provides a crucial platform for future research on integrated microcavity enhancement techniques and coupled QDs with other quantum photonics in the telecom bands,offering significant prospects for quantum network applications.
文摘InP quantum dots(QDs)have been a major building block of modern display technology due to their high photoluminescence quantum yield(PLQY)in the visible spectrum,superior stability,and eco-friendly composition.However,their applications at short-wave infrared(SWIR)have been hindered by their low efficiency.Here,we report the synthesis of efficient and SWIR-emitting InP QDs by precisely controlling the InP core nucleation using a low-cost ammonia phosphorus precursor,while avoiding size-limiting ZnCl_(2) for effective copper doping.Subsequent epitaxial growth of a lattice-matched ZnSe/ZnS multishell enhanced the QD sphericity and surface smoothness and yielded a record PLQY of 66% with an emission peak at 960 nm.When QDs were integrated as the high-refractive-index luminescent core of a liquid waveguide-based luminescent solar concentrator(LSC),the device achieved an optical efficiency of 7.36%.This performance arises from their high PLQY,spectral alignment with the responsivity peak of silicon solar cells,and the optimized core/cladding waveguide structure.These results highlight the potential of InP QDs as a promising nanomaterial for SWIR emission and applications.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10674040)the Natural Science Foundation of Hebei Province of China (Grant No. A2011205092)the Scientific and Technological Research and Development Projects of Handan City (Grant No. 1128120063-3)
文摘The binding energy of a hydrogenic impurity in self-assembled double quantum dots is calculated via the finitedifference method. The variation in binding energy with donor position, structure parameters and external magnetic field is studied in detail. The results found are: (i) the binding energy has a complex behaviour due to coupling between the two dots; (ii) the binding energy is much larger when the donor is placed in the centre of one dot than in other positions; and (iii) the external magnetic field has different effects on the binding energy for different quantum-dot sizes or lateral confinements.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB921003)the National Natural Science Foundation of China(Grant Nos.11721404,51761145104,and 61675228)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB07030200 and XDPB0803)the CAS Interdisciplinary Innovation Team
文摘Semiconductor quantum dots have been intensively investigated because of their fundamental role in solid-state quan- tum information processing. The energy levels of quantum dots are quantized and can be tuned by external field such as optical, electric, and magnetic field. In this review, we focus on the development of magneto-optical properties of single InAs quantum dots embedded in GaAs matrix, including charge injection, relaxation, tunneling, wavefunction distribution, and coupling between different dimensional materials. Finally, the perspective of coherent manipulation of quantum state of single self-assembled quantum dots by photocurrent spectroscopy with an applied magnetic field is discussed.
基金This work was supported by the Scientific Research Foundation for the Returmed Overseas Chinese Scholars,Education Ministry of China.
文摘Structural and optical properties of vertically aligned InAs quantum dots (QDs) were embedded in Al0.5Ga0.5As spacer layers. The aligned QDs were grown at 520℃ in the Stranski-Krastanow (S-K) growth mode of molecular beam epitaxy. To impro ve QD characteristics, we employed a size- and density-controlled growth procedu re in the upper layers. Measurements by reflection high-energy electron diffract ion (RHEED) and atomic force microscopy (AFM) showed that both the size and dens ity of the QDs. The temperature dependence of the wavelength-integrated photolum inescence (PL) intensity revealed the InAs QD emission.
文摘A detailed comparison of continuum and valence force field strain calculations in quantum-dot structures is presented with particular emphasis to boundary conditions,their implementation in the finite-elementmethod,and associated implications for electronic states.The first part of this work provides the equation framework for the elastic continuum model including piezoelectric effects in crystal structures as well as detailing the Keating model equations used in the atomistic valence force field calculations.Given the variety of possible structure shapes,a choice of pyramidal,spherical and cubic-dot shapes is made having in mind their pronounced shape differences and practical relevance.In this part boundary conditions are also considered;in particular the relevance of imposing different types of boundary conditions is highlighted and discussed.In the final part,quantum dots with inhomogeneous indium concentration profiles are studied in order to highlight the importance of taking into account the exact In concentration profile for real quantum dots.The influence of strain,electric-field distributions,and material inhomogeneity of spherical quantum dots on electronic wavefunctions is briefly discussed.
文摘The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature is reported. The full width at half maximum of the band edge emitting peaks of the photoluminescence (PL) spectra at room temperature is less than 35meV for most of the multi-layer QD samples,revealing good,reproducible MBE growth conditions. Moreover,atomic force microscopy images show that the QD surface density can be controlled in the range from 1×10^10 to 7 ×10^10 cm^-2 . The best PL properties are obtained at a QD surface density of about 4×10^10cm^-2. Edge emitting lasers containing 3 and 5 stacked QD layers as the active layer lasing at room temperature in continuous wave operation mode are reported.
文摘Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.
文摘The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS QDs and hollow nanotube In_(2)O_(3)is successfully achieved using an electrostatic self-assembly method.Under visible light irradiation,all CdS-In_(2)O_(3)composites exhibit higher hydrogen evolution efficiency compared to pure CdS QDs.Notably,the photocatalytic H_(2)evolution rate of the optimal CdS-7%In_(2)O_(3)composite is determined to be 2258.59μmol g^(−1)h^(−1),approximately 12.3 times higher than that of pure CdS.The cyclic test indicates that the CdS-In_(2)O_(3)composite maintains considerable activity even after 5 cycles,indicating its excellent stability.In situ X-ray photoelectron spectroscopy and density functional theory calculations confirm that carrier migration in CdS-In_(2)O_(3)composites adheres to a typical S-scheme heterojunction mechanism.Additionally,a series of characterizations demonstrate that the formation of S-scheme heterojunctions between In_(2)O_(3)and CdS inhibits charge recombination and accelerates the separation and migration of photogenerated carriers in the CdS QDs,thus achieving enhanced photocatalytic performance.This work elucidates the pivotal role of S-scheme heterojunctions in photocatalytic H_(2)production and offers novel insights into the construction of effective composite photocatalysts.
基金supported by the National Natural Science Foundation of China(62374142,12175189 and 11904302)External Cooperation Program of Fujian(2022I0004)+1 种基金Fundamental Research Funds for the Central Universities(20720190005 and 20720220085)Major Science and Technology Project of Xiamen in China(3502Z20191015).
文摘The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and mixed reality applications.Alongside the controlled synthesis of high-performance QDs,a reliable QD patterning technology is crucial in overcoming this challenge.Among the various methods available,photolithography-based patterning technologies show great potentials in producing ultra-fine QD patterns at micron scale.This review article presents the recent advancements in the field of QD patterning using photolithography techniques and explores their applications in micro-display technology.Firstly,we discuss QD patterning through photolithography techniques employing photoresist(PR),which falls into two categories:PRassisted photolithography and photolithography of QDPR.Subsequently,direct photolithography techniques based on photo-induced crosslinking of photosensitive groups and photo-induced ligand cleavage mechanisms are thoroughly reviewed.Meanwhile,we assess the performance of QD arrays fabricated using these photolithography techniques and their integration into QD light emitting diode display devices as well as color conversionbased micro light emitting diode display devices.Lastly,we summarize the most recent developments in this field and outline future prospects.
基金supported by the National Natural Science Foundation of China(Nos.62374142 and 22005255)Fundamental Research Funds for the Central Universities(Nos.20720220085 and 20720240064)+2 种基金External Cooperation Program of Fujian(No.2022I0004)Major Science and Technology Project of Xiamen in China(No.3502Z20191015)Xiamen Natural Science Foundation Youth Project(No.3502Z202471002)。
文摘Quantum dots(QDs),a type of nanoscale semiconductor material with unique optical and electrical properties like adjustable emission and high photoluminescence quantum yields,are suitable for applications in optoelectronics.However,QDs are typically degraded under humid and high-temperature circumstances,greatly limiting their practical value.Coating the QD surface with an inorganic silica layer is a feasible method for improving stability and endurance in a variety of applications.This paper comprehensively reviews silica coating methodologies on QD surfaces and explores their applications in optoelectronic domains.Firstly,the paper provides mainstream silica coating approaches,which can be divided into two categories:in-situ hydrolysis of silylating reagents on QD surfaces and template techniques for encapsulation QDs.Subsequently,the recent applications of the silica-coated QDs on optoelectronic fields including light-emitting diodes,solar cells,photodetectors were discussed.Finally,it reviews recent advances in silica-coated QD technology and prospects for future applications.
基金financial support from the Doctoral Foundation of Henan University of Engineering(No.D2022025)National Natural Science Foundation of China(No.U2004162)+1 种基金National Natural Science Foundation of China(No.52302138)Key Project for Science and Technology Development of Henan Province(No.232102320221)。
文摘With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.
基金supported by the National Natural Science Foundation of China Project(No.52163001)the Guizhou Minzu University Research Platform Grant(No.GZMUGCZX[2021]01)+2 种基金the Guizhou Provincial Science and Technology Program Project Grant(Qiankehe Platform Talents-CXTD[2021]005,Qiankehe Platform Talents-GCC[2022]010-1,Qiankehe Fuqi[2023]001)the Central Guided Local Science and Technology Development Funds Project(Qiankehe Zhong Yindi[2023]035)the Doctor Startup Fund of Guizhou Minzu University(Grant No.GZMUZK[2024]QD77).
文摘Aqueous zinc ion batteries have received widespread attention.However,the growth of zinc dendrites and hydrogen evolution reaction generation seriously hinder the practical application of zinc ion bat-teries.Herein,it is reported that a multifunctional dendrites-free low-temperature PVA-based gel elec-trolyte by introducing negatively charged polymer carbon quantum dots(QDs)and the organic antifreeze dimethyl sulfoxide(DMSO)into it.The QDs carrying a large number of functional groups on the surface can effectively adsorb Zn^(2+),eliminating the“tip effect”,and inducing the uniform deposition of Zn^(2+)and the formation of a dendrites-free structure.Meanwhile,the solvation structure of adsorbed Zn^(2+)can be controlled by charged groups to reduce the generation of side reactions,thus obtaining high-performance zinc ion batteries.The Zn/polyaniline(PANi)full battery can be stably cycled more than 1000 times at-20℃,and the design of this gel electrolyte can provide good feasibility for safe,stable,and flexible energy storage devices.
基金supported by the National Research Foundation of Korea(NRF)through a grant provided by the Korean government(No.NRF-2021R1F1A1063451).
文摘Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.
基金Supported by National Key Research and Development Program in the 14th five year plan(2021YFA1200700)Strategic Priority Re⁃search Program of the Chinese Academy of Sciences(XDB0580000)Natural Science Foundation of China(62025405,62104235,62105348).
文摘Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.