Nondestructive measurement technology of phenotype can provide substantial phenotypic data support for applications such as seedling breeding,management,and quality testing.The current method of measuring seedling phe...Nondestructive measurement technology of phenotype can provide substantial phenotypic data support for applications such as seedling breeding,management,and quality testing.The current method of measuring seedling phenotypes mainly relies on manual measurement which is inefficient,subjective and destroys samples.Therefore,the paper proposes a nondestructive measurement method for the canopy phenotype of the watermelon plug seedlings based on deep learning.The Azure Kinect was used to shoot canopy color images,depth images,and RGB-D images of the watermelon plug seedlings.The Mask-RCNN network was used to classify,segment,and count the canopy leaves of the watermelon plug seedlings.To reduce the error of leaf area measurement caused by mutual occlusion of leaves,the leaves were repaired by CycleGAN,and the depth images were restored by image processing.Then,the Delaunay triangulation was adopted to measure the leaf area in the leaf point cloud.The YOLOX target detection network was used to identify the growing point position of each seedling on the plug tray.Then the depth differences between the growing point and the upper surface of the plug tray were calculated to obtain plant height.The experiment results show that the nondestructive measurement algorithm proposed in this paper achieves good measurement performance for the watermelon plug seedlings from the 1 true-leaf to 3 true-leaf stages.The average relative error of measurement is 2.33%for the number of true leaves,4.59%for the number of cotyledons,8.37%for the leaf area,and 3.27%for the plant height.The experiment results demonstrate that the proposed algorithm in this paper provides an effective solution for the nondestructive measurement of the canopy phenotype of the plug seedlings.展开更多
[Objectives]To screen effective agents for the management of root rot in tobacco floating seedlings.[Methods]A total of eight treatments were implemented in a large-scale field trial,which included three replications....[Objectives]To screen effective agents for the management of root rot in tobacco floating seedlings.[Methods]A total of eight treatments were implemented in a large-scale field trial,which included three replications.Each treatment was administered at the recommended dosages.[Results]The application of Metalaxyl-M·Fludioxonil+amino acids demonstrated a control efficacy of 93.65%against root rot in tobacco floating seedlings.In comparison,the application of Metalaxyl-M·Fludioxonil alone exhibited a control efficacy of 88.42%.The most effective treatment for promoting root growth in tobacco seedlings was Metalaxyl-M·Fludioxonil+amino acids,which resulted in a 54.65%increase in root growth compared to the blank control.This was followed by the application of Metalaxyl-M·Fludioxonil alone,which yielded a 39.53%increase in root growth relative to the blank control.[Conclusions]The application of Metalaxyl-M·Fludioxonil+amino acids is recommended for use in the seedling pools of tobacco seedling cultivation.Specifically,it is advised to incorporate 1 mL of Metalaxyl-M·Fludioxonil and 2 mL of amino acids into each seedling tray prior to their introduction into the seedling pool.This treatment has demonstrated significant efficacy in preventing and controlling root rot in tobacco floating seedlings,while also promoting the health of the root system and ensuring the quality of transplanted tobacco seedlings.展开更多
The photoperiod/thermo-sensitive genic male sterility(P/TGMS)system is crucial for hybrid rice production,but challenges persist in seed purity(due to fertility conversion and mixed male seeds)and mechanization.Here,w...The photoperiod/thermo-sensitive genic male sterility(P/TGMS)system is crucial for hybrid rice production,but challenges persist in seed purity(due to fertility conversion and mixed male seeds)and mechanization.Here,we developed a novel hybrid seed production scheme using herbicide-resistance alleles(OsALS and CYP81A6).P/TGMS lines were bred for imazamox sensitivity and bentazon resistance,while male parents were engineered for the opposite traits.This system enables mechanical harvesting and ensures hybrid purity by eliminating self-pollinated contaminants through herbicide application.We identified suitable sterile lines and developed complementary male parents via breeding and CRISPR/Cas9 editing,validated through herbicide assays.This strategy enhances hybrid seed purity and mechanization efficiency in two-line hybrid rice production.展开更多
Planting genetically improved,fast-growing tree seedlings is gaining importance as a strategy to enhance forest productivity and reduce labor requirements during plantation establishment.In this study,we evaluated the...Planting genetically improved,fast-growing tree seedlings is gaining importance as a strategy to enhance forest productivity and reduce labor requirements during plantation establishment.In this study,we evaluated the early growth and survival of advanced-generation Cryptomeria japonica seedlings compared to conventional stock,under varying planting densities and cultivation methods.A field experiment was conducted over 5 years using containergrown and bare-root seedlings derived from first-and second-generation plus trees,alongside traditional seedlings.The results showed that advanced-generation seedlings exhibited higher growth in tree height,stem diameter,and crown development than traditional seedlings,particularly when planted as container stock.These seedlings also had higher survival rates,likely due to their rapid initial height growth,which reduced the risks of accidental damage during weeding operations.Wider planting intervals increased the risk of man-made injury and seedling mortality,while faster-growing seedlings were more likely to escape from competing vegetation.Our findings highlight the potential of improved seedling stock to enhance early plantation success and reduce management inputs in the critical establishment phase of forestry.展开更多
Nitrogen(N)deficiency is a critical factor limiting natural regeneration in coastal shelterbelt forests,but the influence of different N forms on seedling establishment under varying light conditions remains poorly un...Nitrogen(N)deficiency is a critical factor limiting natural regeneration in coastal shelterbelt forests,but the influence of different N forms on seedling establishment under varying light conditions remains poorly understood.This study investigated the effects of N forms and N concentrations on Ligustrum compactum seedlings under simulated canopy gap conditions using a three-factor design:N form(NO_(3)^(-)-N,NH_(4)^(+)-N,mixed N),N concentration(30 and 60 kg ha^(-1)a^(-1)),and light intensity(30%,60%,and 90%full sunlight).Results showed that N addition significantly promoted seedling growth,net photosynthesis rate,and water use efficiency;however,the effects varied among N forms and concentrations.Overall,NO_(3)^(-)-N or mixed N were more favored by L.compactum seedlings;however,the N preference was altered by light intensity and N concentration.For instance,L.compactum showed greater NO_(3)^(-)-N or mixed N preference under low and medium light intensities,while displaying more NH_(4)^(+)-N preference under high light intensity.N concentration also affected the growth and N preference of L.compactum seedlings,but the variance explained by N concentration was lower than that of light intensity.Leaf C,N,P stoichiometry exhibited stronger correlations with seedling's morphological trait plasticity than those of leaf gas exchange,and further analysis demonstrated that leaf C:P and N:P were the top two critical factors affecting seedling growth,indicating that the coordination and balance among C,N,P elements were more important in explaining the seedling growth under N addition.Therefore,our results clarified that the N preference of L.compactum seedlings could be altered by light intensity and revealed that leaf C,N,P ratios were stronger predictors than leaf gas exchange parameters for explaining the N effects on seedling performance.These findings demonstrated the mechanisms of light-N interactions affecting seedling performance,providing practical guidance for optimizing N fertilization and improving natural regeneration in canopy gaps of degraded coastal shelterbelt forests.展开更多
This study presents a drone-based aerial imaging method for automated rice seedling detection and counting in paddy fields.Utilizing a drone equipped with a high-resolution camera,images are captured 14 days postsowin...This study presents a drone-based aerial imaging method for automated rice seedling detection and counting in paddy fields.Utilizing a drone equipped with a high-resolution camera,images are captured 14 days postsowing at a consistent altitude of six meters,employing autonomous flight for uniform data acquisition.The approach effectively addresses the distinct growth patterns of both single and clustered rice seedlings at this early stage.The methodology follows a two-step process:first,the GoogleNet deep learning network identifies the location and center points of rice plants.Then,the U-Net deep learning network performs classification and counting of individual plants and clusters.This combination of deep learning models achieved a 90%accuracy rate in classifying and counting both single and clustered seedlings.To validate the method’s effectiveness,results were compared against traditional manual counting conducted by agricultural experts.The comparison revealed minimal discrepancies,with a variance of only 2–4 clumps per square meter,confirming the reliability of the proposed method.This automated approach offers significant benefits by providing an efficient,accurate,and scalable solution for monitoring seedling growth.It enables farmers to optimize fertilizer and pesticide application,improve resource allocation,and enhance overall crop management,ultimately contributing to increased agricultural productivity.展开更多
C-14-glutamate and C-14-arginine were spreaded on leaves of six-day old barley (Hordeum vulgare L.) seedlings that were treated with NaCl 200 mmol/L. The result showed that the pathway of arginine-->ornithine-->...C-14-glutamate and C-14-arginine were spreaded on leaves of six-day old barley (Hordeum vulgare L.) seedlings that were treated with NaCl 200 mmol/L. The result showed that the pathway of arginine-->ornithine-->proline existed in the six-day old barley seedlings and was provoked remarkably by NaCl treatment. After seven days, proline accumulation contributed via the arginine-->ornithine-->proline pathway was 1.0 - 1.5 folds of that via the glutamate-->proline pathway. The activation of arginine-->ornithine-->proline pathway by salt stress in the salt-tolerant cultivar 'Jian 4' was 1.7 - 2.0 folds of that in the salt-sensitive cultivar 'KP 7', which suggested that the activation of arginine-->ornithine-->proline pathway in barley seedlings played an important role in improving salt tolerance of plants.展开更多
In the research, four shading treatments were set, including the treatments with shading degrees at 0, 40%, 60% and 70%, in order to explore storage rate and seedling growth of annual Phoebe bournei. The results showe...In the research, four shading treatments were set, including the treatments with shading degrees at 0, 40%, 60% and 70%, in order to explore storage rate and seedling growth of annual Phoebe bournei. The results showed that the storage rate is growing upon shading degree. In the research, for example, storage rate reached the peak with the shading degree at 70%, and only 42.2% with shading degree at 0. In addition, seedling height and ground diameter showed extremely significant differences among treatments, and the treatment with shading degree at 60% was the best.展开更多
[Objective] studying the influences of different UV-B radiation treatments in short time on some physiological characteristics of winter wheat seedlings was to provide reference for the mechanism of plant response to ...[Objective] studying the influences of different UV-B radiation treatments in short time on some physiological characteristics of winter wheat seedlings was to provide reference for the mechanism of plant response to ultraviolet irradiation in short time. [Method] The winter wheat taken as materials were treated with 15 and 30 pW/cm^2 UV-B radiation, then the physiological indexes such as pigment content and photosynthetic rate were determined. [ Results] The UV-B treatment caused the declines of chlorophyll content, soluble protein content and water content of leaves, besides, dose-effect was existed. The decline of 30 pW/cm^2 treatment was bigger than that of 15 μW/cm^2 treatment. The influences of UV-B radiation on carotenoid content and anthocyanidin content were similar; the change trends were declined firstly then increased. The UVB treatment with two doses restrained the electron transport of PSⅡ, particularly; the inhibitory effect was biggest after treated 2 h, and then this effect was declined in 4, 6 and 8 h, so the dose-effect was existed. The UV-B radiation with two doses restricted photosynthetic rate and the inhibitory effect increased with the increase of treatment time. The high dose treatment caused huge damage to membrane system, while the result of low dose treatment was not obvious. [ Conclusion] UV-B radiation treatment had dose-effect on winter wheat seedlings in short time and the influence of high dose was bigger than that of low dose. With the increase of treatment time, the damage was alleviated; besides, the result was not similar to that of UV-B radiation in long time.展开更多
[ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretic...[ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretical foundation for sweet sorghum breeding. [ Method] After germination, the germination potential, germination fraction and enzyme activity were detected, respectively. [ Result] The results showed that with the dose increased, the germination potential of sweet sorghum increased first and then decreased, while their germination fraction presented "shoulder like shape" ; the activity of LDH, SOD, CAT and GSH-Px increased first and then decreased with doses, they presented slight differences among different enzymes. [ Conclusion] Low dose radiation could accelerate germination of sweet sorghum seeds and enzyme activity could remain at a relatively high level. Enzyme activity decreased with high doses and the growth of sweet sorghum was inhibited.展开更多
[ Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [ Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to U...[ Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [ Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth were studied through hydroponics in laboratory. [ Result] The results showed that under irradiation of UV-B( T1-0.15 W/m^2 and T2-0.45 W/m^2), chlorophyll and indole-3-acetic acid(IAA) contents firstly decreased during the stress phase (1 -5 d) and then increased during the restoration phase (6 -9 d) while contents of malonadialdehyde(MDA) and abscisic acid(ABA) gradually increased during the imposition of UV-B radiation (1 -5 d) and subsequently decreased during recovery from UV-B stress (6 -9 d) . With adding of La (III) with the concentration of 20 mg · L^-1 , the decline/dse trend of chlorophyll, IAA, MDA and ABA contents was slowed down during the stress period while the rise/decline speed was accelerated during the recovery period. [ Conclusion] It suggests that the regulation of La ( III ) on membrane lipid peroxidation and endogenous hormones could increase chlorophyll and IAA contents, improve the metabolism of reactive oxygen species ( ROS), inhibit membrane lipid peroxidation, decrease the accumulation amount of ABA and alleviate injury of UV-B radiation to soybean seedlings. Further, the protective potential of La ( III ) was better under low UV-B radiation than under high one.展开更多
Hedysarum laeve Maxim. (Leguminosae) is one of the major species used frequently in revegetation of dune_field in the sandlands of the northern part of China by means of aerial sowing. Seedlings of the species after e...Hedysarum laeve Maxim. (Leguminosae) is one of the major species used frequently in revegetation of dune_field in the sandlands of the northern part of China by means of aerial sowing. Seedlings of the species after emergence above the sand surface may be buried in sand to various depths during its establishment in late spring and early summer. A study was made to examine the effects of sand burial at different levels of 0 (control), 33%, 67%, 100% and 133% of their shoot height, on the survivorship, growth, and biomass allocation pattern of H. laeve seedlings (one and two weeks old after emergence). When burial depth was up to 100% of their shoot height, about 70% seedlings died; and the burial at depth of 133% of their shoot height led to death of all seedlings. When seedlings was buried at depth of 33% and 67% of their shoot height, respectively, after six_week growth, their biomass of whole plant, blade, and root and relative growth rate were higher than the unburied counterparts. The seedlings in both 33% and 67% sand burial treatments did not significantly change their biomass allocation pattern comparing with the unburied ones. Furthermore, the number of leaves and shoot height of the seedlings in both 33% and 67% sand burial treatments were not significantly different from those of unburied individuals, respectively. The newly born leaves of the surviving seedlings, in 33%, 67%, and 100% burial treatments, during the period of experiment, were significantly more than those in control.展开更多
The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the...The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 靘olm-2s-1 photosynthetic photon flux density (PPFD) and 500 靘olm-2s-1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 靘olm-2s-1 PPFD were slower than those at 200 靘olm-2s-1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity.展开更多
Camptotheca acuminata seeds were sown in sterilized sands in the greenhouse in February of 2005. After 90-day growth, seedlings were inoculated with three species of arbuscular mycorrhizal fungi (AMF), Acaulospora m...Camptotheca acuminata seeds were sown in sterilized sands in the greenhouse in February of 2005. After 90-day growth, seedlings were inoculated with three species of arbuscular mycorrhizal fungi (AMF), Acaulospora mellea, Glomus diaphanum and Sclerocystis sinuosa.. The height, biomass, and absorptions of nitrogen and phosphorus of C. acuminata seedlings inoculated with AMF were investigated. The results showed that the formation of AM promoted the height growth and biomass accumulation of seedlings significantly and improved the absorption of phosphorus in seedlings. The height and biomass of mycorrhizal seedlings were 1.2 and 1.6 times higher than those of the non-mycorrhizal seedlings. The absorption of nitrogen was less influenced by the formation of AM. The nitrogen content in mycorrhizal seedling was equal to that of non-mycorrhizal seedlings. Compared with non-mycorrhizal seedlings, the nitrogen content of mycorrhizal seedlings inoculated with A. mellea changed considerably in the root, stem and leaves. The difference in nitrogen content was not significant between mycorrhizal seedlings inoculated with G. diaphanum and S. sinuosa. The AM formation stimulated the absorption of phosphorus, especially in roots, and also changed the allocation of nitrogen and phosphorus in different organs of seedlings. Compared with non-mycorrhizal seedlings, the ratio of nitrogen and phosphorus in mycorrhizal roots increased, but reduced in stem and leaves.展开更多
The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the ...The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.展开更多
Using early indica rice Zhongzao 39 and japonica rice Xiushui 134 as the experimental materials, the effects of 4 temperature levels after transplantation on turning green, leaf growth, tillering, dry matter accumulat...Using early indica rice Zhongzao 39 and japonica rice Xiushui 134 as the experimental materials, the effects of 4 temperature levels after transplantation on turning green, leaf growth, tillering, dry matter accumulation and nutrition absorption were studied using a greenhouse and an artificial climate chest. We found that (1) tillering did not occur and growth of one new leaf took over 15 days at 16℃. New leaf growth took over 10 days and tillering occurred after 15 days of transplanta- tion at 19 ℃. Tillering appeared 10 days after planting and new leaf growth took 5 days between 22 and 25 ℃. This showed that low temperature impeded the turn- ing green of rice seedlings and the temperature must reach above 19 ℃ to ensure timely appearance of new leaf, tillering and turning green in rice seedlings. (2) When the temperature was 10 increased, both 100-seedling dry weight and nitrogen absorption increased. At temperatures lower 11 than 19 ℃, both dry weight incre- ment and nitrogen absorption were low. Nitrogen absorption of all organs increased obviously between 19 and 22 ℃. Thus, 19 ℃ was found to be an minimum tem- perature for plant organs to absorb nutrients. (3)Tiller of seedling cultivated on dry- land soil and substrate grew quickly and tillering occurred about 7 days after trans- planting. After that, the growth rate was about 0.18 tiller per day. For seedlings cultivated in slurry, tillering occurred 10 days after transplanting and the tillers grew at a rate of 0.16 tiller per day. However, substrate choice during the seedling rais- ing stage had no significant influence on leaf age. (4) Japonica rice exhibited stronger resistance to low temperature than indica rice. Tillering began at about the same time after transplanting in both rice varieties, but japonica rice exhibited higher tillering speed than early indica rice. The speed of leaf growth was higher in japoni- ca rice before transplantation but higher in indica rice after transplantation.展开更多
[Objective] The purpose was to discuss the effects of different NaCl concentrations on fresh weight and dry weight,ion absorption and distribution in oil sunflower seedlings. [Method] Under the simulated salt environm...[Objective] The purpose was to discuss the effects of different NaCl concentrations on fresh weight and dry weight,ion absorption and distribution in oil sunflower seedlings. [Method] Under the simulated salt environment by using NaCl solutions at different concentrations,the dry weight,fresh weight and ion content of oil sunflower seedlings were determined. [Result] With the increase of NaCl concentration,the growth rate of oil sunflower seedling was inhibited. In addition,its fresh weight and dry weight also decreased; the fresh weight of leaf decreased most significantly by 60%,and that of cotyledon decreased most slightly by 13% at 200 mmol/L NaCl concentration. The dry weight of root,stem,leaf and cotyledon decreased by 35%,39%,55% and 8% respectively,showing a similar decreasing trend with fresh weight. Under NaCl stress,Na+ content in root and stem of oil sunflower seedling increased while K+ decreased. Na+ content was mainly concentrated in roots and stems much more than in leaves; K+ content in roots decreased most significantly by 21% compared with control,and it was relatively high in leaf. Ca2+ and Mg2+ content was decreased slightly in roots and stems; Ca2+ content in leaves and cotyledons was stable; Mg2+ content was slightly increased. [Conclusion] Oil sunflower maintained high mineral ion absorptionunder salt stress,that maybe the part reason for high salt tolerance of oil sunflower seedlings.展开更多
基金funded by the National Key Research and Development Program of China(Grant No.2019YFD1001900)the HZAU-AGIS Cooperation Fund(Grant No.SZYJY2022006).
文摘Nondestructive measurement technology of phenotype can provide substantial phenotypic data support for applications such as seedling breeding,management,and quality testing.The current method of measuring seedling phenotypes mainly relies on manual measurement which is inefficient,subjective and destroys samples.Therefore,the paper proposes a nondestructive measurement method for the canopy phenotype of the watermelon plug seedlings based on deep learning.The Azure Kinect was used to shoot canopy color images,depth images,and RGB-D images of the watermelon plug seedlings.The Mask-RCNN network was used to classify,segment,and count the canopy leaves of the watermelon plug seedlings.To reduce the error of leaf area measurement caused by mutual occlusion of leaves,the leaves were repaired by CycleGAN,and the depth images were restored by image processing.Then,the Delaunay triangulation was adopted to measure the leaf area in the leaf point cloud.The YOLOX target detection network was used to identify the growing point position of each seedling on the plug tray.Then the depth differences between the growing point and the upper surface of the plug tray were calculated to obtain plant height.The experiment results show that the nondestructive measurement algorithm proposed in this paper achieves good measurement performance for the watermelon plug seedlings from the 1 true-leaf to 3 true-leaf stages.The average relative error of measurement is 2.33%for the number of true leaves,4.59%for the number of cotyledons,8.37%for the leaf area,and 3.27%for the plant height.The experiment results demonstrate that the proposed algorithm in this paper provides an effective solution for the nondestructive measurement of the canopy phenotype of the plug seedlings.
文摘[Objectives]To screen effective agents for the management of root rot in tobacco floating seedlings.[Methods]A total of eight treatments were implemented in a large-scale field trial,which included three replications.Each treatment was administered at the recommended dosages.[Results]The application of Metalaxyl-M·Fludioxonil+amino acids demonstrated a control efficacy of 93.65%against root rot in tobacco floating seedlings.In comparison,the application of Metalaxyl-M·Fludioxonil alone exhibited a control efficacy of 88.42%.The most effective treatment for promoting root growth in tobacco seedlings was Metalaxyl-M·Fludioxonil+amino acids,which resulted in a 54.65%increase in root growth compared to the blank control.This was followed by the application of Metalaxyl-M·Fludioxonil alone,which yielded a 39.53%increase in root growth relative to the blank control.[Conclusions]The application of Metalaxyl-M·Fludioxonil+amino acids is recommended for use in the seedling pools of tobacco seedling cultivation.Specifically,it is advised to incorporate 1 mL of Metalaxyl-M·Fludioxonil and 2 mL of amino acids into each seedling tray prior to their introduction into the seedling pool.This treatment has demonstrated significant efficacy in preventing and controlling root rot in tobacco floating seedlings,while also promoting the health of the root system and ensuring the quality of transplanted tobacco seedlings.
基金supported by the Zhongshan Biological Breeding Laboratory,China(Grant No.ZSBBL-KY2023-07)the Jiangsu Agricultural Science and Technology Innovation Fund,China(Grant No.CX(22)3138)+1 种基金the National Natural Science Foundation of China(Grant Nos.32101736,32002124)the Jiangsu Provincial Key Research and Development Program,China(Grant No.BE2021360-2).
文摘The photoperiod/thermo-sensitive genic male sterility(P/TGMS)system is crucial for hybrid rice production,but challenges persist in seed purity(due to fertility conversion and mixed male seeds)and mechanization.Here,we developed a novel hybrid seed production scheme using herbicide-resistance alleles(OsALS and CYP81A6).P/TGMS lines were bred for imazamox sensitivity and bentazon resistance,while male parents were engineered for the opposite traits.This system enables mechanical harvesting and ensures hybrid purity by eliminating self-pollinated contaminants through herbicide application.We identified suitable sterile lines and developed complementary male parents via breeding and CRISPR/Cas9 editing,validated through herbicide assays.This strategy enhances hybrid seed purity and mechanization efficiency in two-line hybrid rice production.
基金supported by FFPRI FTBC Operational Expense Grants。
文摘Planting genetically improved,fast-growing tree seedlings is gaining importance as a strategy to enhance forest productivity and reduce labor requirements during plantation establishment.In this study,we evaluated the early growth and survival of advanced-generation Cryptomeria japonica seedlings compared to conventional stock,under varying planting densities and cultivation methods.A field experiment was conducted over 5 years using containergrown and bare-root seedlings derived from first-and second-generation plus trees,alongside traditional seedlings.The results showed that advanced-generation seedlings exhibited higher growth in tree height,stem diameter,and crown development than traditional seedlings,particularly when planted as container stock.These seedlings also had higher survival rates,likely due to their rapid initial height growth,which reduced the risks of accidental damage during weeding operations.Wider planting intervals increased the risk of man-made injury and seedling mortality,while faster-growing seedlings were more likely to escape from competing vegetation.Our findings highlight the potential of improved seedling stock to enhance early plantation success and reduce management inputs in the critical establishment phase of forestry.
基金financially supported by the National Natural Science Foundation of China(32101506)the Shenyang Top Youth Program(U35)the Youth Innovation Promotion Association of CAS(2023205)。
文摘Nitrogen(N)deficiency is a critical factor limiting natural regeneration in coastal shelterbelt forests,but the influence of different N forms on seedling establishment under varying light conditions remains poorly understood.This study investigated the effects of N forms and N concentrations on Ligustrum compactum seedlings under simulated canopy gap conditions using a three-factor design:N form(NO_(3)^(-)-N,NH_(4)^(+)-N,mixed N),N concentration(30 and 60 kg ha^(-1)a^(-1)),and light intensity(30%,60%,and 90%full sunlight).Results showed that N addition significantly promoted seedling growth,net photosynthesis rate,and water use efficiency;however,the effects varied among N forms and concentrations.Overall,NO_(3)^(-)-N or mixed N were more favored by L.compactum seedlings;however,the N preference was altered by light intensity and N concentration.For instance,L.compactum showed greater NO_(3)^(-)-N or mixed N preference under low and medium light intensities,while displaying more NH_(4)^(+)-N preference under high light intensity.N concentration also affected the growth and N preference of L.compactum seedlings,but the variance explained by N concentration was lower than that of light intensity.Leaf C,N,P stoichiometry exhibited stronger correlations with seedling's morphological trait plasticity than those of leaf gas exchange,and further analysis demonstrated that leaf C:P and N:P were the top two critical factors affecting seedling growth,indicating that the coordination and balance among C,N,P elements were more important in explaining the seedling growth under N addition.Therefore,our results clarified that the N preference of L.compactum seedlings could be altered by light intensity and revealed that leaf C,N,P ratios were stronger predictors than leaf gas exchange parameters for explaining the N effects on seedling performance.These findings demonstrated the mechanisms of light-N interactions affecting seedling performance,providing practical guidance for optimizing N fertilization and improving natural regeneration in canopy gaps of degraded coastal shelterbelt forests.
基金funded by the Ministry of Education and Training Project(code number:B2023-TCT-08).
文摘This study presents a drone-based aerial imaging method for automated rice seedling detection and counting in paddy fields.Utilizing a drone equipped with a high-resolution camera,images are captured 14 days postsowing at a consistent altitude of six meters,employing autonomous flight for uniform data acquisition.The approach effectively addresses the distinct growth patterns of both single and clustered rice seedlings at this early stage.The methodology follows a two-step process:first,the GoogleNet deep learning network identifies the location and center points of rice plants.Then,the U-Net deep learning network performs classification and counting of individual plants and clusters.This combination of deep learning models achieved a 90%accuracy rate in classifying and counting both single and clustered seedlings.To validate the method’s effectiveness,results were compared against traditional manual counting conducted by agricultural experts.The comparison revealed minimal discrepancies,with a variance of only 2–4 clumps per square meter,confirming the reliability of the proposed method.This automated approach offers significant benefits by providing an efficient,accurate,and scalable solution for monitoring seedling growth.It enables farmers to optimize fertilizer and pesticide application,improve resource allocation,and enhance overall crop management,ultimately contributing to increased agricultural productivity.
文摘C-14-glutamate and C-14-arginine were spreaded on leaves of six-day old barley (Hordeum vulgare L.) seedlings that were treated with NaCl 200 mmol/L. The result showed that the pathway of arginine-->ornithine-->proline existed in the six-day old barley seedlings and was provoked remarkably by NaCl treatment. After seven days, proline accumulation contributed via the arginine-->ornithine-->proline pathway was 1.0 - 1.5 folds of that via the glutamate-->proline pathway. The activation of arginine-->ornithine-->proline pathway by salt stress in the salt-tolerant cultivar 'Jian 4' was 1.7 - 2.0 folds of that in the salt-sensitive cultivar 'KP 7', which suggested that the activation of arginine-->ornithine-->proline pathway in barley seedlings played an important role in improving salt tolerance of plants.
基金Supported by Forestry Science and Technology Project of Hunan Province(XLK201406)~~
文摘In the research, four shading treatments were set, including the treatments with shading degrees at 0, 40%, 60% and 70%, in order to explore storage rate and seedling growth of annual Phoebe bournei. The results showed that the storage rate is growing upon shading degree. In the research, for example, storage rate reached the peak with the shading degree at 70%, and only 42.2% with shading degree at 0. In addition, seedling height and ground diameter showed extremely significant differences among treatments, and the treatment with shading degree at 60% was the best.
基金Supported by Natural Science Foundation of China(Grant:30771156)Student Technology New Ideas Project of Liaocheng University(Grant:SRT08111SM2)~~
文摘[Objective] studying the influences of different UV-B radiation treatments in short time on some physiological characteristics of winter wheat seedlings was to provide reference for the mechanism of plant response to ultraviolet irradiation in short time. [Method] The winter wheat taken as materials were treated with 15 and 30 pW/cm^2 UV-B radiation, then the physiological indexes such as pigment content and photosynthetic rate were determined. [ Results] The UV-B treatment caused the declines of chlorophyll content, soluble protein content and water content of leaves, besides, dose-effect was existed. The decline of 30 pW/cm^2 treatment was bigger than that of 15 μW/cm^2 treatment. The influences of UV-B radiation on carotenoid content and anthocyanidin content were similar; the change trends were declined firstly then increased. The UVB treatment with two doses restrained the electron transport of PSⅡ, particularly; the inhibitory effect was biggest after treated 2 h, and then this effect was declined in 4, 6 and 8 h, so the dose-effect was existed. The UV-B radiation with two doses restricted photosynthetic rate and the inhibitory effect increased with the increase of treatment time. The high dose treatment caused huge damage to membrane system, while the result of low dose treatment was not obvious. [ Conclusion] UV-B radiation treatment had dose-effect on winter wheat seedlings in short time and the influence of high dose was bigger than that of low dose. With the increase of treatment time, the damage was alleviated; besides, the result was not similar to that of UV-B radiation in long time.
基金Supported by Director Fund for the Year 2008 Project(0806230SZO)Training Projects of Light of Western in Chinese Academy of Sciences(0906040XBO)Chinese Academy of science and Technology Project in Support of Gansu(0806300YDO)~~
文摘[ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretical foundation for sweet sorghum breeding. [ Method] After germination, the germination potential, germination fraction and enzyme activity were detected, respectively. [ Result] The results showed that with the dose increased, the germination potential of sweet sorghum increased first and then decreased, while their germination fraction presented "shoulder like shape" ; the activity of LDH, SOD, CAT and GSH-Px increased first and then decreased with doses, they presented slight differences among different enzymes. [ Conclusion] Low dose radiation could accelerate germination of sweet sorghum seeds and enzyme activity could remain at a relatively high level. Enzyme activity decreased with high doses and the growth of sweet sorghum was inhibited.
基金Supported by the Foundation of State Developing and ReformingCommittee(No.IFZ20051210)the National Natural Science Foundationof China(No.30570323,No.20471030)the Programsin Science and Technology of Nantong(No.DE2009006,No.S2009019)~~
文摘[ Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [ Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth were studied through hydroponics in laboratory. [ Result] The results showed that under irradiation of UV-B( T1-0.15 W/m^2 and T2-0.45 W/m^2), chlorophyll and indole-3-acetic acid(IAA) contents firstly decreased during the stress phase (1 -5 d) and then increased during the restoration phase (6 -9 d) while contents of malonadialdehyde(MDA) and abscisic acid(ABA) gradually increased during the imposition of UV-B radiation (1 -5 d) and subsequently decreased during recovery from UV-B stress (6 -9 d) . With adding of La (III) with the concentration of 20 mg · L^-1 , the decline/dse trend of chlorophyll, IAA, MDA and ABA contents was slowed down during the stress period while the rise/decline speed was accelerated during the recovery period. [ Conclusion] It suggests that the regulation of La ( III ) on membrane lipid peroxidation and endogenous hormones could increase chlorophyll and IAA contents, improve the metabolism of reactive oxygen species ( ROS), inhibit membrane lipid peroxidation, decrease the accumulation amount of ABA and alleviate injury of UV-B radiation to soybean seedlings. Further, the protective potential of La ( III ) was better under low UV-B radiation than under high one.
文摘Hedysarum laeve Maxim. (Leguminosae) is one of the major species used frequently in revegetation of dune_field in the sandlands of the northern part of China by means of aerial sowing. Seedlings of the species after emergence above the sand surface may be buried in sand to various depths during its establishment in late spring and early summer. A study was made to examine the effects of sand burial at different levels of 0 (control), 33%, 67%, 100% and 133% of their shoot height, on the survivorship, growth, and biomass allocation pattern of H. laeve seedlings (one and two weeks old after emergence). When burial depth was up to 100% of their shoot height, about 70% seedlings died; and the burial at depth of 133% of their shoot height led to death of all seedlings. When seedlings was buried at depth of 33% and 67% of their shoot height, respectively, after six_week growth, their biomass of whole plant, blade, and root and relative growth rate were higher than the unburied counterparts. The seedlings in both 33% and 67% sand burial treatments did not significantly change their biomass allocation pattern comparing with the unburied ones. Furthermore, the number of leaves and shoot height of the seedlings in both 33% and 67% sand burial treatments were not significantly different from those of unburied individuals, respectively. The newly born leaves of the surviving seedlings, in 33%, 67%, and 100% burial treatments, during the period of experiment, were significantly more than those in control.
文摘The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 靘olm-2s-1 photosynthetic photon flux density (PPFD) and 500 靘olm-2s-1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 靘olm-2s-1 PPFD were slower than those at 200 靘olm-2s-1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity.
基金This paper was supported by the Heilongjiang Province Foundation for Distinguished Youth Scholars (JC-02-11)
文摘Camptotheca acuminata seeds were sown in sterilized sands in the greenhouse in February of 2005. After 90-day growth, seedlings were inoculated with three species of arbuscular mycorrhizal fungi (AMF), Acaulospora mellea, Glomus diaphanum and Sclerocystis sinuosa.. The height, biomass, and absorptions of nitrogen and phosphorus of C. acuminata seedlings inoculated with AMF were investigated. The results showed that the formation of AM promoted the height growth and biomass accumulation of seedlings significantly and improved the absorption of phosphorus in seedlings. The height and biomass of mycorrhizal seedlings were 1.2 and 1.6 times higher than those of the non-mycorrhizal seedlings. The absorption of nitrogen was less influenced by the formation of AM. The nitrogen content in mycorrhizal seedling was equal to that of non-mycorrhizal seedlings. Compared with non-mycorrhizal seedlings, the nitrogen content of mycorrhizal seedlings inoculated with A. mellea changed considerably in the root, stem and leaves. The difference in nitrogen content was not significant between mycorrhizal seedlings inoculated with G. diaphanum and S. sinuosa. The AM formation stimulated the absorption of phosphorus, especially in roots, and also changed the allocation of nitrogen and phosphorus in different organs of seedlings. Compared with non-mycorrhizal seedlings, the ratio of nitrogen and phosphorus in mycorrhizal roots increased, but reduced in stem and leaves.
基金This research was supported by Key Knowledge Innova-tion Project (SCXZD0102) of Institute of Applied Ecology Chinese Academy of Sciences and sponsored by the Science and Technology Department of Inner Mongolia Autonomic Region,P. R. China (2001010)
文摘The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.
基金Supported by Special Scientific Research Funds for Commonweal Section(Agriculture)(201203029,201003016)China Rice Industry System Project(2011-2015)Special Funding for Basic Scientific Research and Zhejiang Provincial Natural Science Foundation(LY13C130004)~~
文摘Using early indica rice Zhongzao 39 and japonica rice Xiushui 134 as the experimental materials, the effects of 4 temperature levels after transplantation on turning green, leaf growth, tillering, dry matter accumulation and nutrition absorption were studied using a greenhouse and an artificial climate chest. We found that (1) tillering did not occur and growth of one new leaf took over 15 days at 16℃. New leaf growth took over 10 days and tillering occurred after 15 days of transplanta- tion at 19 ℃. Tillering appeared 10 days after planting and new leaf growth took 5 days between 22 and 25 ℃. This showed that low temperature impeded the turn- ing green of rice seedlings and the temperature must reach above 19 ℃ to ensure timely appearance of new leaf, tillering and turning green in rice seedlings. (2) When the temperature was 10 increased, both 100-seedling dry weight and nitrogen absorption increased. At temperatures lower 11 than 19 ℃, both dry weight incre- ment and nitrogen absorption were low. Nitrogen absorption of all organs increased obviously between 19 and 22 ℃. Thus, 19 ℃ was found to be an minimum tem- perature for plant organs to absorb nutrients. (3)Tiller of seedling cultivated on dry- land soil and substrate grew quickly and tillering occurred about 7 days after trans- planting. After that, the growth rate was about 0.18 tiller per day. For seedlings cultivated in slurry, tillering occurred 10 days after transplanting and the tillers grew at a rate of 0.16 tiller per day. However, substrate choice during the seedling rais- ing stage had no significant influence on leaf age. (4) Japonica rice exhibited stronger resistance to low temperature than indica rice. Tillering began at about the same time after transplanting in both rice varieties, but japonica rice exhibited higher tillering speed than early indica rice. The speed of leaf growth was higher in japoni- ca rice before transplantation but higher in indica rice after transplantation.
基金Supported by CAS Western Light, " Dr. West funded " Project(0806270XBB)~~
文摘[Objective] The purpose was to discuss the effects of different NaCl concentrations on fresh weight and dry weight,ion absorption and distribution in oil sunflower seedlings. [Method] Under the simulated salt environment by using NaCl solutions at different concentrations,the dry weight,fresh weight and ion content of oil sunflower seedlings were determined. [Result] With the increase of NaCl concentration,the growth rate of oil sunflower seedling was inhibited. In addition,its fresh weight and dry weight also decreased; the fresh weight of leaf decreased most significantly by 60%,and that of cotyledon decreased most slightly by 13% at 200 mmol/L NaCl concentration. The dry weight of root,stem,leaf and cotyledon decreased by 35%,39%,55% and 8% respectively,showing a similar decreasing trend with fresh weight. Under NaCl stress,Na+ content in root and stem of oil sunflower seedling increased while K+ decreased. Na+ content was mainly concentrated in roots and stems much more than in leaves; K+ content in roots decreased most significantly by 21% compared with control,and it was relatively high in leaf. Ca2+ and Mg2+ content was decreased slightly in roots and stems; Ca2+ content in leaves and cotyledons was stable; Mg2+ content was slightly increased. [Conclusion] Oil sunflower maintained high mineral ion absorptionunder salt stress,that maybe the part reason for high salt tolerance of oil sunflower seedlings.