In this paper, we study the containment control problem for nonlinear second-order systems with unknown parameters and multiple stationary/dynamic leaders. The topologies that characterize the interaction among the le...In this paper, we study the containment control problem for nonlinear second-order systems with unknown parameters and multiple stationary/dynamic leaders. The topologies that characterize the interaction among the leaders and the followers are directed graphs. Necessary and sufficient criteria which guarantee the control objectives are established for both stationary leaders(regulation case) and dynamic leaders(dynamic tracking case) based protocols. The final states of all the followers are exclusively determined by the initial values of the leaders and the topology structures. In the regulation case, all the followers converge into the convex hull spanned by the leaders,while in the dynamic tracking case, not only the positions of the followers converge into the convex hull but also the velocities of the followers converge into the velocity convex hull of the leaders.Finally, all the theoretical results are illustrated by numerical simulations.展开更多
Two second-order consensus algorithms with a time-vary reference state without relative velocity measurements are proposed in a directed topology. Necessary and sufficient conditions are presented to ensure second-ord...Two second-order consensus algorithms with a time-vary reference state without relative velocity measurements are proposed in a directed topology. Necessary and sufficient conditions are presented to ensure second-order consensus. It is shown that all the coupling strengths and the ei- genvalues of the Laplacian matrix play important roles in reaching consensus. Specially when all non- zero eigenvalues of the Laplacian matrix are real, consensus can be achieved if and only if the cou- pling strengths are positive and the directed topology has a spanning tree for the first algorithm, and for the second one, consensus can be achieved if and only if the coupling strengths are positive. Fi- nally, simulation examples are presented to verify the theoretical analysis.展开更多
We study the mean-square composite-rotating consensus problem of second-order multi-agent systems with communication noises, where all agents rotate around a common center and the center of rotation spins around a fix...We study the mean-square composite-rotating consensus problem of second-order multi-agent systems with communication noises, where all agents rotate around a common center and the center of rotation spins around a fixed point simultaneously. Firstly, a time-varying consensus gain is introduced to attenuate to the effect of communication noises. Secondly, sufficient conditions are obtained for achieving the mean-square composite-rotating consensus. Finally, simulations are provided to demonstrate the effectiveness of the proposed algorithm.展开更多
The stabilization problem of second-order bilinear systems with time delay is investigated.Feedback controls are chosen so that the strong and exponential stabilization of the system is ensured.The obtained results ar...The stabilization problem of second-order bilinear systems with time delay is investigated.Feedback controls are chosen so that the strong and exponential stabilization of the system is ensured.The obtained results are illustrated by wave and beam equations with simulation.展开更多
Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To de...Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.展开更多
Reinforcement learning behavioral control(RLBC)is limited to an individual agent without any swarm mission,because it models the behavior priority learning as a Markov decision process.In this paper,a novel multi-agen...Reinforcement learning behavioral control(RLBC)is limited to an individual agent without any swarm mission,because it models the behavior priority learning as a Markov decision process.In this paper,a novel multi-agent reinforcement learning behavioral control(MARLBC)method is proposed to overcome such limitations by implementing joint learning.Specifically,a multi-agent reinforcement learning mission supervisor(MARLMS)is designed for a group of nonlinear second-order systems to assign the behavior priorities at the decision layer.Through modeling behavior priority switching as a cooperative Markov game,the MARLMS learns an optimal joint behavior priority to reduce dependence on human intelligence and high-performance computing hardware.At the control layer,a group of second-order reinforcement learning controllers are designed to learn the optimal control policies to track position and velocity signals simultaneously.In particular,input saturation constraints are strictly implemented via designing a group of adaptive compensators.Numerical simulation results show that the proposed MARLBC has a lower switching frequency and control cost than finite-time and fixed-time behavioral control and RLBC methods.展开更多
Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for...Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.展开更多
This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different ...This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.展开更多
Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop ...Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop eigenvector matrix and the feedback gains are established based on two simple Smith form reductions. The approach utilizes directly the original system data and involves manipulations only on n-dimensional matrices. Furthermore, it reveals all the degrees of freedom which can be further utilized to achieve additional system specifications. An example shows the effect of the proposed approach.展开更多
Curtain wall systems have evolved from aesthetic facade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness.This reviewpresents a comprehensive exa...Curtain wall systems have evolved from aesthetic facade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness.This reviewpresents a comprehensive examination of curtain walls from an energy-engineering perspective,highlighting their structural typologies(Stick and Unitized),material configurations,and integration with smart technologies such as electrochromic glazing,parametric design algorithms,and Building Management Systems(BMS).Thestudy explores the thermal,acoustic,and solar performance of curtain walls across various climatic zones,supported by comparative analyses and iconic case studies including Apple Park,Burj Khalifa,and Milad Tower.Key challenges—including installation complexity,high maintenance costs,and climate sensitivity—are critically assessed alongside proposed solutions.A central innovation of this work lies in framing curtain walls not only as passive architectural elements but as dynamic interfaces that modulate energy flows,reduce HVAC loads,and enhance occupant comfort.The reviewed data indicate that optimized curtain wall configurations—especially those integrating electrochromic glazing and BIPV modules—can achieve annual energy consumption reductions ranging fromapproximately 5%to 27%,depending on climate,control strategy,and facade typology.The findings offer a valuable reference for architects,energy engineers,and decision-makers seeking to integrate high-performance facades into future-ready building designs.展开更多
This paper considers eigenstructure assignment in second-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related to a type of so-called second-order Sylvester ma...This paper considers eigenstructure assignment in second-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related to a type of so-called second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effectiveness of the proposed approaches. Keywords Second-order linear systems - Eigenstructure assignment - Proportional plus derivative feedback - Parametric solution - Singular value decompoition - Right factorization This work was supported in part by the Chinese Outstanding Youth Foundation (No.69504002).展开更多
The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can...The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness.Treatment options for retinal diseases are limited,and there is an urgent need for innovative therapeutic strategies.Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells.Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration,potentially restoring vision.This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases:viral and non-viral systems.Viral vectors,including lentiviruses and adeno-associated viruses,exploit the innate ability of viruses to infiltrate cells,which is followed by the introduction of therapeutic genetic material into target cells for gene correction.Lentiviruses can accommodate exogenous genes up to 8 kb in length,but their mechanism of integration into the host genome presents insertion mutation risks.Conversely,adeno-associated viruses are safer,as they exist as episomes in the nucleus,yet their limited packaging capacity constrains their application to a narrower spectrum of diseases,which necessitates the exploration of alternative delivery methods.In parallel,progress has also occurred in the development of novel non-viral delivery systems,particularly those based on liposomal technology.Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors.These innovative systems include solid lipid nanoparticles,polymer nanoparticles,dendrimers,polymeric micelles,and polymeric nanoparticles.Compared with their viral counterparts,non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids,mRNA,or protein molecules into cells.This bypasses the need for DNA transcription and processing,which significantly enhances therapeutic efficiency.Nevertheless,the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo.This review explores the various delivery systems for retinal therapies and retinal nerve regeneration,and details the characteristics,advantages,limitations,and clinical applications of each vector type.By systematically outlining these factors,our goal is to guide the selection of the optimal delivery tool for a specific retinal disease,which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.展开更多
To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make th...To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make the agents achieve a dynamical consensus. Based on frequency-domain analysis, sufficient conditions are gained for second-order multi-agent systems with communication delay under leaderless and leader-following consensus algorithms respectively. Simulation illustrates the correctness of the results.展开更多
This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which...This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.展开更多
In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalize...In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.展开更多
A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure ass...A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.展开更多
In this paper,the event-triggered consensus control problem for nonlinear uncertain multi-agent systems subject to unknown parameters and external disturbances is considered.The dynamics of subsystems are second-order...In this paper,the event-triggered consensus control problem for nonlinear uncertain multi-agent systems subject to unknown parameters and external disturbances is considered.The dynamics of subsystems are second-order with similar structures,and the nodes are connected by undirected graphs.The event-triggered mechanisms are not only utilized in the transmission of information from the controllers to the actuators,and from the sensors to the controllers within each agent,but also in the communication between agents.Based on the adaptive backstepping method,extra estimators are introduced to handle the unknown parameters,and the measurement errors that occur during the event-triggered communication are well handled by designing compensating terms for the control signals.The presented distributed event-triggered adaptive control laws can guarantee the boundness of the consensus tracking errors and the Zeno behavior is avoided.Meanwhile,the update frequency of the controllers and the load of communication burden are vastly reduced.The obtained control protocol is further applied to a multi-input multi-output second-order nonlinear multi-agent system,and the simulation results show the effectiveness and advantages of our proposed method.展开更多
This paper is concerned with distributed fault detection of second-order discrete-time multi-agent systems with adversary,where the adversary is regarded as a slowly time-varying signal.Firstly,a novel intrusion detec...This paper is concerned with distributed fault detection of second-order discrete-time multi-agent systems with adversary,where the adversary is regarded as a slowly time-varying signal.Firstly,a novel intrusion detection scheme based on the theory of unknown input observability( UIO) is proposed. By constructing a bank of UIO,the states of the malicious agents can be directly estimated. Secondly,the faulty-node-removal algorithm is provided.Simulations are also provided to demonstrate the effectiveness of the theoretical results.展开更多
In this paper, a consensus algorithm of multi-agent second-order dynamical systems with nonsymmetric interconnection and heterogeneous delays is studied. With the hypothesis of directed weighted topology graph with a ...In this paper, a consensus algorithm of multi-agent second-order dynamical systems with nonsymmetric interconnection and heterogeneous delays is studied. With the hypothesis of directed weighted topology graph with a globally reachable node, decentralized consensus condition is obtained by applying generalized Nyquist criterion. For the systems with both communication and input delays, it is shown that the consensus condition is dependent on input delays but independent of communication delays.展开更多
Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-...Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-Razumikhin functions respectively, consensus criterions in the form of linear matrix inequality (LMI) are obtained for the system with time-varying communication delays under static interconnection topology con- verging to the leader's states. Moreover, the delay-dependent consensus criterion in the form of LMI is also obtained for the system with time-invariant communication delay and switching topologies by constructing Lyapunov-Krasovskii functional. Numerical simulations present the correctness of the results.展开更多
基金supported by the National Natural Science Foundation of China(61203354)
文摘In this paper, we study the containment control problem for nonlinear second-order systems with unknown parameters and multiple stationary/dynamic leaders. The topologies that characterize the interaction among the leaders and the followers are directed graphs. Necessary and sufficient criteria which guarantee the control objectives are established for both stationary leaders(regulation case) and dynamic leaders(dynamic tracking case) based protocols. The final states of all the followers are exclusively determined by the initial values of the leaders and the topology structures. In the regulation case, all the followers converge into the convex hull spanned by the leaders,while in the dynamic tracking case, not only the positions of the followers converge into the convex hull but also the velocities of the followers converge into the velocity convex hull of the leaders.Finally, all the theoretical results are illustrated by numerical simulations.
基金Supported by the National Natural Science Foundation of China(61074031)
文摘Two second-order consensus algorithms with a time-vary reference state without relative velocity measurements are proposed in a directed topology. Necessary and sufficient conditions are presented to ensure second-order consensus. It is shown that all the coupling strengths and the ei- genvalues of the Laplacian matrix play important roles in reaching consensus. Specially when all non- zero eigenvalues of the Laplacian matrix are real, consensus can be achieved if and only if the cou- pling strengths are positive and the directed topology has a spanning tree for the first algorithm, and for the second one, consensus can be achieved if and only if the coupling strengths are positive. Fi- nally, simulation examples are presented to verify the theoretical analysis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61304155 and 11371049)Beijing Municipal Government Foundation for Talents,China(Grant No.2012D005003000005)
文摘We study the mean-square composite-rotating consensus problem of second-order multi-agent systems with communication noises, where all agents rotate around a common center and the center of rotation spins around a fixed point simultaneously. Firstly, a time-varying consensus gain is introduced to attenuate to the effect of communication noises. Secondly, sufficient conditions are obtained for achieving the mean-square composite-rotating consensus. Finally, simulations are provided to demonstrate the effectiveness of the proposed algorithm.
文摘The stabilization problem of second-order bilinear systems with time delay is investigated.Feedback controls are chosen so that the strong and exponential stabilization of the system is ensured.The obtained results are illustrated by wave and beam equations with simulation.
基金supported by the National Natural Science Foundation of China under Grants 62476138 and 42375016.
文摘Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.
基金Project supported by the National Natural Science Foundation of China(No.92367109)。
文摘Reinforcement learning behavioral control(RLBC)is limited to an individual agent without any swarm mission,because it models the behavior priority learning as a Markov decision process.In this paper,a novel multi-agent reinforcement learning behavioral control(MARLBC)method is proposed to overcome such limitations by implementing joint learning.Specifically,a multi-agent reinforcement learning mission supervisor(MARLMS)is designed for a group of nonlinear second-order systems to assign the behavior priorities at the decision layer.Through modeling behavior priority switching as a cooperative Markov game,the MARLMS learns an optimal joint behavior priority to reduce dependence on human intelligence and high-performance computing hardware.At the control layer,a group of second-order reinforcement learning controllers are designed to learn the optimal control policies to track position and velocity signals simultaneously.In particular,input saturation constraints are strictly implemented via designing a group of adaptive compensators.Numerical simulation results show that the proposed MARLBC has a lower switching frequency and control cost than finite-time and fixed-time behavioral control and RLBC methods.
基金support from the Contract Research(“Development of Breathable Fabrics with Nano-Electrospun Membrane”,CityU ref.:9231419“Research and application of antibacterial and healing-promoting smart nanofiber dressing for children’s burn wounds”,CityU ref:PJ9240111)+1 种基金the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”,Grant No.51673162)Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare”,Grant No.9380116).
文摘Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70571059)
文摘This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.
文摘Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop eigenvector matrix and the feedback gains are established based on two simple Smith form reductions. The approach utilizes directly the original system data and involves manipulations only on n-dimensional matrices. Furthermore, it reveals all the degrees of freedom which can be further utilized to achieve additional system specifications. An example shows the effect of the proposed approach.
文摘Curtain wall systems have evolved from aesthetic facade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness.This reviewpresents a comprehensive examination of curtain walls from an energy-engineering perspective,highlighting their structural typologies(Stick and Unitized),material configurations,and integration with smart technologies such as electrochromic glazing,parametric design algorithms,and Building Management Systems(BMS).Thestudy explores the thermal,acoustic,and solar performance of curtain walls across various climatic zones,supported by comparative analyses and iconic case studies including Apple Park,Burj Khalifa,and Milad Tower.Key challenges—including installation complexity,high maintenance costs,and climate sensitivity—are critically assessed alongside proposed solutions.A central innovation of this work lies in framing curtain walls not only as passive architectural elements but as dynamic interfaces that modulate energy flows,reduce HVAC loads,and enhance occupant comfort.The reviewed data indicate that optimized curtain wall configurations—especially those integrating electrochromic glazing and BIPV modules—can achieve annual energy consumption reductions ranging fromapproximately 5%to 27%,depending on climate,control strategy,and facade typology.The findings offer a valuable reference for architects,energy engineers,and decision-makers seeking to integrate high-performance facades into future-ready building designs.
文摘This paper considers eigenstructure assignment in second-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related to a type of so-called second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effectiveness of the proposed approaches. Keywords Second-order linear systems - Eigenstructure assignment - Proportional plus derivative feedback - Parametric solution - Singular value decompoition - Right factorization This work was supported in part by the Chinese Outstanding Youth Foundation (No.69504002).
基金Hongguang Wu,Both authors contributed equally to this work and share first authorshipLing Dong,Both authors contributed equally to this work and share first authorship。
文摘The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness.Treatment options for retinal diseases are limited,and there is an urgent need for innovative therapeutic strategies.Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells.Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration,potentially restoring vision.This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases:viral and non-viral systems.Viral vectors,including lentiviruses and adeno-associated viruses,exploit the innate ability of viruses to infiltrate cells,which is followed by the introduction of therapeutic genetic material into target cells for gene correction.Lentiviruses can accommodate exogenous genes up to 8 kb in length,but their mechanism of integration into the host genome presents insertion mutation risks.Conversely,adeno-associated viruses are safer,as they exist as episomes in the nucleus,yet their limited packaging capacity constrains their application to a narrower spectrum of diseases,which necessitates the exploration of alternative delivery methods.In parallel,progress has also occurred in the development of novel non-viral delivery systems,particularly those based on liposomal technology.Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors.These innovative systems include solid lipid nanoparticles,polymer nanoparticles,dendrimers,polymeric micelles,and polymeric nanoparticles.Compared with their viral counterparts,non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids,mRNA,or protein molecules into cells.This bypasses the need for DNA transcription and processing,which significantly enhances therapeutic efficiency.Nevertheless,the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo.This review explores the various delivery systems for retinal therapies and retinal nerve regeneration,and details the characteristics,advantages,limitations,and clinical applications of each vector type.By systematically outlining these factors,our goal is to guide the selection of the optimal delivery tool for a specific retinal disease,which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61104092,61134007,and61203147the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make the agents achieve a dynamical consensus. Based on frequency-domain analysis, sufficient conditions are gained for second-order multi-agent systems with communication delay under leaderless and leader-following consensus algorithms respectively. Simulation illustrates the correctness of the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,61374047,and 61403168)
文摘This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.
基金This work was supported by National Natural Science Foundation of China(No.60710002)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT).
文摘In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.
文摘A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.
基金supported by National Key R&D Program of China(No.2018YFA0703800)Science Fund for Creative Research Group of the National Natural Science Foundation of China(No.61621002)。
文摘In this paper,the event-triggered consensus control problem for nonlinear uncertain multi-agent systems subject to unknown parameters and external disturbances is considered.The dynamics of subsystems are second-order with similar structures,and the nodes are connected by undirected graphs.The event-triggered mechanisms are not only utilized in the transmission of information from the controllers to the actuators,and from the sensors to the controllers within each agent,but also in the communication between agents.Based on the adaptive backstepping method,extra estimators are introduced to handle the unknown parameters,and the measurement errors that occur during the event-triggered communication are well handled by designing compensating terms for the control signals.The presented distributed event-triggered adaptive control laws can guarantee the boundness of the consensus tracking errors and the Zeno behavior is avoided.Meanwhile,the update frequency of the controllers and the load of communication burden are vastly reduced.The obtained control protocol is further applied to a multi-input multi-output second-order nonlinear multi-agent system,and the simulation results show the effectiveness and advantages of our proposed method.
基金National Natural Science Foundations of China(Nos.61203147,61374047,61203126,60973095)
文摘This paper is concerned with distributed fault detection of second-order discrete-time multi-agent systems with adversary,where the adversary is regarded as a slowly time-varying signal.Firstly,a novel intrusion detection scheme based on the theory of unknown input observability( UIO) is proposed. By constructing a bank of UIO,the states of the malicious agents can be directly estimated. Secondly,the faulty-node-removal algorithm is provided.Simulations are also provided to demonstrate the effectiveness of the theoretical results.
基金supported by National Natural Science Foundation of China (No. 60774016, No. 60875039, No. 60904022)the Science Foundation of Education Office of Shandong Province of China (No. J08LJ01)Internal Visiting Scholar Object for Excellence Youth Teacher of the College of Shandong Province of China
文摘In this paper, a consensus algorithm of multi-agent second-order dynamical systems with nonsymmetric interconnection and heterogeneous delays is studied. With the hypothesis of directed weighted topology graph with a globally reachable node, decentralized consensus condition is obtained by applying generalized Nyquist criterion. For the systems with both communication and input delays, it is shown that the consensus condition is dependent on input delays but independent of communication delays.
基金supported by the Fundamental Research Funds for the Central Universities(JUSRP11020)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20090093120006)
文摘Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-Razumikhin functions respectively, consensus criterions in the form of linear matrix inequality (LMI) are obtained for the system with time-varying communication delays under static interconnection topology con- verging to the leader's states. Moreover, the delay-dependent consensus criterion in the form of LMI is also obtained for the system with time-invariant communication delay and switching topologies by constructing Lyapunov-Krasovskii functional. Numerical simulations present the correctness of the results.