Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed To...Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed Tomography (CT) system of LightSpeed RT16 Xtra CT scanner. Quality control was done using a vendor-provided QA Phantom, and the six aspects of image quality were measured. For CT dosimetry, Computed Tomography Dose index volume (CTDIvol) was performed using Computed Tomography Dose Index (CTDI) Phantom. CTDI Phantom consists of three parts: Pediatric Head, Adult Head, and Adult Body Phantom. A 10 cm long pencil ion chamber DCT-10 was used to measure the dose at different positions inside the CTDI Phantom. Data were collected using MagicMax Universal software. For dose estimation of the CTDIvol Report of AAPM Task Group, 96 and 111 formalisms were used. For Pediatric Head, Adult Head, and Adult Body Phantom the measured CIDIvol was 61.04 mGy, 48.11 mGy, and 18.08 mGy respectively. The study has shown deviations of 7%, 15%, and 19% between estimated and console-displayed doses for Pediatric Head, Adult Head, and Adult Body scan techniques respectively. The six aspects of image quality measured by QA Phantom were found to be compatible with the specifications of the machine and CTDIvol measured by CTDI Phantom were found within a tolerance limit of ±20%. Hence, the QC and dosimetry of the mentioned machine are within the limit.展开更多
To expand scanning area and attack range without changing the inner structure of intelligent warhead, a new arrangement mode of the scanner for intelligent mine is proposed. The required coordinate systems are es...To expand scanning area and attack range without changing the inner structure of intelligent warhead, a new arrangement mode of the scanner for intelligent mine is proposed. The required coordinate systems are established firstly on the basis of advanced dynamics principle. and the exterior ballistics equations are deduced. Then the equations of scanning trails are established by the method of space analytic geometry. To get the scanning trails. the differential equations are transformed into discrete simulation model using the algorithm of fourth order Runge-Kutta and then are simulated using Matlab. Compared with the scanning trails obtained by the traditional layout of scanner, the scanning trails obtained by the proposed layout of scanner has larger horizontal range of scanning circle and bigger trarget acquisition probability. Therefore, the new arrangement mode of the scanner for intelligent mine can increase attack range.展开更多
Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method b...Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method based on genetic clustering VGA-clustering is presented. By integrating the spatial neighbouring information of range data into fuzzy clustering algorithm, a weighted fuzzy clustering algorithm (WFCA) instead of standard clustering algorithm is introduced to realize feature extraction of laser scanner. Aimed at the unknown clustering number in advance, several validation index functions are used to estimate the validity of different clustering algorithms and one validation index is selected as the fitness function of genetic algorithm so as to determine the accurate clustering number automatically. At the same time, an improved genetic algorithm IVGA on the basis of VGA is proposed to solve the local optimum of clustering algorithm, which is implemented by increasing the population diversity and improving the genetic operators of elitist rule to enhance the local search capacity and to quicken the convergence speed. By the comparison with other algorithms, the effectiveness of the algorithm introduced is demonstrated.展开更多
In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structur...In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structured light measurement model based on a galvanometer scanner was proposed to obtain the 3D information of the workpiece. A height calibration method was proposed to further ensure measurement accuracy, so as to achieve accurate laser focusing. In-situ machining software was developed to realize time-saving and labor-saving 3D laser processing. The feasibility and practicability of this in-situ laser machining system were verified using specific cases. In comparison with the conventional line structured light measurement method, the proposed methods do not require light plane calibration, and do not need additional motion axes for 3D reconstruction;thus they provide technical and cost advantages. The insitu laser machining system realizes a simple operation process by integrating measurement and machining,which greatly reduces labor and time costs.展开更多
Marking arbitrary three-dimensional(3D) target curves on given objects with curved surface is required in many industrial fields, such as fabric prepreg placement in composite material part fabrication, product assemb...Marking arbitrary three-dimensional(3D) target curves on given objects with curved surface is required in many industrial fields, such as fabric prepreg placement in composite material part fabrication, product assembly, surface painting for decoration, etc. A shortcut to the solution of this intractable problem is proposed by utilizing a galvanometric laser scanner(GLS) with the aid of a camera. Without using the existing tedious GLS calibration procedures,the proposed method directly establishes a mapping between the 3D coordinates of the laser spots on the object surface and the control voltages of the scanner. A single-hidden layer feedforward neural network(SLFN) is employed to model the mapping. By projecting a dense grid of laser spots on the object to be marked and simultaneously taking only one image, the SLFN model is trained in minutes via a linear solving mechanism. Experiments demonstrate that the trained SLFN model has a good generalization performance for marking 3D target curves. The 3D laser marking errors on experimental objects are less than 0.5 mm. The proposed method is especially suitable for on-site use and can be conveniently extended to multiple GLSs for marking large complex objects.展开更多
文摘Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed Tomography (CT) system of LightSpeed RT16 Xtra CT scanner. Quality control was done using a vendor-provided QA Phantom, and the six aspects of image quality were measured. For CT dosimetry, Computed Tomography Dose index volume (CTDIvol) was performed using Computed Tomography Dose Index (CTDI) Phantom. CTDI Phantom consists of three parts: Pediatric Head, Adult Head, and Adult Body Phantom. A 10 cm long pencil ion chamber DCT-10 was used to measure the dose at different positions inside the CTDI Phantom. Data were collected using MagicMax Universal software. For dose estimation of the CTDIvol Report of AAPM Task Group, 96 and 111 formalisms were used. For Pediatric Head, Adult Head, and Adult Body Phantom the measured CIDIvol was 61.04 mGy, 48.11 mGy, and 18.08 mGy respectively. The study has shown deviations of 7%, 15%, and 19% between estimated and console-displayed doses for Pediatric Head, Adult Head, and Adult Body scan techniques respectively. The six aspects of image quality measured by QA Phantom were found to be compatible with the specifications of the machine and CTDIvol measured by CTDI Phantom were found within a tolerance limit of ±20%. Hence, the QC and dosimetry of the mentioned machine are within the limit.
文摘To expand scanning area and attack range without changing the inner structure of intelligent warhead, a new arrangement mode of the scanner for intelligent mine is proposed. The required coordinate systems are established firstly on the basis of advanced dynamics principle. and the exterior ballistics equations are deduced. Then the equations of scanning trails are established by the method of space analytic geometry. To get the scanning trails. the differential equations are transformed into discrete simulation model using the algorithm of fourth order Runge-Kutta and then are simulated using Matlab. Compared with the scanning trails obtained by the traditional layout of scanner, the scanning trails obtained by the proposed layout of scanner has larger horizontal range of scanning circle and bigger trarget acquisition probability. Therefore, the new arrangement mode of the scanner for intelligent mine can increase attack range.
基金the National Natural Science Foundation of China (60234030)the Natural Science Foundationof He’nan Educational Committee of China (2007520019, 2008B520015)Doctoral Foundation of Henan Polytechnic Universityof China (B050901, B2008-61)
文摘Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method based on genetic clustering VGA-clustering is presented. By integrating the spatial neighbouring information of range data into fuzzy clustering algorithm, a weighted fuzzy clustering algorithm (WFCA) instead of standard clustering algorithm is introduced to realize feature extraction of laser scanner. Aimed at the unknown clustering number in advance, several validation index functions are used to estimate the validity of different clustering algorithms and one validation index is selected as the fitness function of genetic algorithm so as to determine the accurate clustering number automatically. At the same time, an improved genetic algorithm IVGA on the basis of VGA is proposed to solve the local optimum of clustering algorithm, which is implemented by increasing the population diversity and improving the genetic operators of elitist rule to enhance the local search capacity and to quicken the convergence speed. By the comparison with other algorithms, the effectiveness of the algorithm introduced is demonstrated.
文摘In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structured light measurement model based on a galvanometer scanner was proposed to obtain the 3D information of the workpiece. A height calibration method was proposed to further ensure measurement accuracy, so as to achieve accurate laser focusing. In-situ machining software was developed to realize time-saving and labor-saving 3D laser processing. The feasibility and practicability of this in-situ laser machining system were verified using specific cases. In comparison with the conventional line structured light measurement method, the proposed methods do not require light plane calibration, and do not need additional motion axes for 3D reconstruction;thus they provide technical and cost advantages. The insitu laser machining system realizes a simple operation process by integrating measurement and machining,which greatly reduces labor and time costs.
基金partly supported by the National Natural Science Foundation of China (No. 51575276)
文摘Marking arbitrary three-dimensional(3D) target curves on given objects with curved surface is required in many industrial fields, such as fabric prepreg placement in composite material part fabrication, product assembly, surface painting for decoration, etc. A shortcut to the solution of this intractable problem is proposed by utilizing a galvanometric laser scanner(GLS) with the aid of a camera. Without using the existing tedious GLS calibration procedures,the proposed method directly establishes a mapping between the 3D coordinates of the laser spots on the object surface and the control voltages of the scanner. A single-hidden layer feedforward neural network(SLFN) is employed to model the mapping. By projecting a dense grid of laser spots on the object to be marked and simultaneously taking only one image, the SLFN model is trained in minutes via a linear solving mechanism. Experiments demonstrate that the trained SLFN model has a good generalization performance for marking 3D target curves. The 3D laser marking errors on experimental objects are less than 0.5 mm. The proposed method is especially suitable for on-site use and can be conveniently extended to multiple GLSs for marking large complex objects.