Production of this crop is experiencing significant challenges, resulting in a decline in seed and fiber quality. To address this challenge, generations of high-performance cotton plants of the Gossypium hirsutum L. s...Production of this crop is experiencing significant challenges, resulting in a decline in seed and fiber quality. To address this challenge, generations of high-performance cotton plants of the Gossypium hirsutum L. species have been developed and are currently being commercialized. This study evaluated the impact of gin types on the agro-industrial quality of cotton in Côte d’Ivoire. To this end, cotton from the G3, R1, and R2 generations was harvested, sampled, and ginned on machines with 10 and 170 saws in the localities of Ouangolodougou, Ferkessédougou, Korhogo, M’Bengué, Boundiali, Séguéla, and Mankono, as well as at the Centre National de Recherche Agronomique CNRA) in Bouaké. The results demonstrated that cotton fibers obtained from ginning on 10-saw machines exhibited superior quality compared to those from 170-saw machines. Fiber length, fiber length uniformity, and short fiber rate exhibited the highest deviations according to gin type. The use of 170-saw gins resulted in a notable decline in quality. Conversely, micronaire index, fiber tenacity and elongation, and reflectance remained consistent across machine types. These results will enable us to more effectively regulate and advise cotton-processing factories, which primarily utilize 170-saw gins to enhance agro-industrial quality in Côte d’Ivoire. Furthermore, these results will assist breeders in incorporating them into their processes to enhance the quality of the varieties they offer to farmers.展开更多
In the field of deep space exploration,the rapid development of terahertz spectrometer has put forward higher requirements to the back-end chirp transform spectrometer(CTS)system.In order to simultaneously meet the me...In the field of deep space exploration,the rapid development of terahertz spectrometer has put forward higher requirements to the back-end chirp transform spectrometer(CTS)system.In order to simultaneously meet the measurement requirements of wide bandwidth and high accuracy spectral lines,we built a CTS system with an analysis bandwidth of 1 GHz and a frequency resolution of 100 kHz around the surface acoustic wave(SAW)chirp filter with a bandwidth of 1 GHz.In this paper,the relationship between the CTS nonlinear phase error shift model and the basic measurement parameters is studied,and the effect of CTS phase mismatch on the pulse compression waveform is analyzed by simulation.And the expander error optimization method is proposed for the problem that the large nonlinear error of the expander leads to the unbalanced response of the CTS system and the serious distortion of the compressed pulse waveform under large bandwidth.It is verified through simulation and experiment that the method is effective for reducing the root mean square error(RMSE)of the phase of the expander from 18.75°to 6.65°,reducing the in-band standard deviation of the CTS frequency resolution index from 8.43 kHz to 4.72 kHz,solving the problem of serious distortion of the compressed pulse waveform,and improving the uneven CTS response under large bandwidth.展开更多
Great attention has been paid on fabricating diamond wire by using the brazing diamond because of its strong chemical bonding strength and controllability of grits distribution. Although several serving performances o...Great attention has been paid on fabricating diamond wire by using the brazing diamond because of its strong chemical bonding strength and controllability of grits distribution. Although several serving performances of brazed diamond wire have been reported, seldom do these studies refer to its process characteristics. Sawing performances of a brazed diamond wire are investigated and compared with those of a sintered diamond wire on a wire saw machine. The surface topographies of beads selected from the two wires are micro observed before sawing. The sawing tests are carried out in constant feed rate feeding(CFF) and constant normal force feeding(CNFF). In CFF test, sawing force, power, and the cut depths of positions on contact curve are measured. Then, coupled with the observations of beads topographies, sawing force and its ratio, relations of power against material removal rate, and contact curve linearity are compared and discussed. In CNFF test, the sawing rates of the two wires are investigated. The results indicate that the brazed wire performs with lower sawing force(less 16% of tangential force and 28% of normal force), more energy efficiency(nearly one-fifth of sawing power is saved), at a higher sawing rate (the rate is doubled) and with better contact curve linearity as compared with the sintered wire. This proposed research experimentally evaluates the sawing performances of brazed diamond wire from the aspect of process parameters, which can provide a basis for popularizing the brazed diamond wire.展开更多
As a starting point in equipment manufacturing,sawing plays an important role in industrial production.Intelligent manufacturing equipment is an important carrier of intelligent manufacturing technologies.Due to the b...As a starting point in equipment manufacturing,sawing plays an important role in industrial production.Intelligent manufacturing equipment is an important carrier of intelligent manufacturing technologies.Due to the backwardness of intelligent technology,the comprehensive performance of sawing equipments in China is obviously different from that in foreign countries.State of the art of advanced sawing equipments is investigated along with the technical bottleneck of sawing machine tool manufacturing,and a new industrial scheme of replacing turning-milling by sawing is described.The key technologies of processing-measuring integrated control,multi-body dynamic optimization,the collaborative sawing network framework,the distributed cloud sawing platform,and the self-adapting service method are analyzed;with consideration of the problems of poor processing control stableness,low single machine intelligence level,no on-line processing data service and active flutter suppression of sawing with wide-width and heavy-load working conditions.Suggested directions for further research,industry implementation,and industry-research collaboration are provided.展开更多
An experimental study was carried out to quantitati ve ly evaluate the loads acting on the diamond grits during circular sawing of two kinds of typical granite with diamond segmented saw blade. Measurements were mad e...An experimental study was carried out to quantitati ve ly evaluate the loads acting on the diamond grits during circular sawing of two kinds of typical granite with diamond segmented saw blade. Measurements were mad e of the horizontal and vertical force components and the consumed power in order to obtain the tangential and the normal force components. The temperatures at the diamond-granite contact zone were measured using a foil thermocouple. T he measurement, together with the net sawing power, was subsequently used to est imate the energy partition to the granite by a temperature matching technique. B ased on the energy partition values, the temperatures at individual cutting poin ts were estimated using an analytical model. SEM was used to follow the topograp hies of worn diamond segments. The average force acting on each diamond grit was found to be only 4% of the diamond compressive strength measured by a static me thod. The strength disparity of diamond grits and the random protrusion of grits beyond bond matrix should be significant factors in accounting for the wear of diamond grits. The wear of diamond grits was also found to be closely related to the high temperatures generated at individual cutting points and the pop-outs of diamonds from the bond matrix might be mainly attributed to the heat conducte d to the segments.展开更多
In this study,magnetic abrasives were obtained by crushing and sieving sintered iron-silicon carbide(Fe-SiC)composites.Fe and SiC powders with different mesh numbers were pre-compacted using different pressures and th...In this study,magnetic abrasives were obtained by crushing and sieving sintered iron-silicon carbide(Fe-SiC)composites.Fe and SiC powders with different mesh numbers were pre-compacted using different pressures and then sintered at various temperatures and with different holding times.The dispersion uniformity of the SiC powder was improved through surface modification using polyethylene glycol(PEG)300.The resulting magnetic abrasives were characterized in terms of phase composition,density,relative permeability,and microstructure;this was followed by a comprehensive analysis to reveal the optimal processing parameters.The ideal combination of process parameters for preparing SiC magnetic-abrasive grains for the magnetic induction-wire sawing process was obtained,which are preparation load of 60 kN,a SiC mesh number of 1,500,a sintering temperature of 1100℃,and a holding time of 4 h.展开更多
Diamond grits are indispensable for sawing granite or concrete.Each year about 1 000 tons of diamond grits are consumed for such purposes.In all cases,mono crystalline diamond is used.However, polycrystalline grits(po...Diamond grits are indispensable for sawing granite or concrete.Each year about 1 000 tons of diamond grits are consumed for such purposes.In all cases,mono crystalline diamond is used.However, polycrystalline grits(polygrits) are generally better performed than mono grits as abrasives.For example,poly grits of cubic boron nitride(e.g.Borazon(?) CBN-550 of Diamond Innovations) can cut faster and they last longer than mono grits(e.g.Borazon(?) CBN-500). Polygrits of alumina(e.g.Cubitron(?) of 3M) also out perform by far glassy grits(e.g.white alumina).For diamond superabrasives,micron polygrits formed by shock waves may polish as fast as mono grits of the same size,but without causing as much scratches due to the presence of smaller sintered grains.The improved performance of poly grits is attributed to their ability to micro chipping that renews the sharp cutting corners from time to time.By contrast,mono grits tend to round off at low cutting force or macro fracture at high cutting force,so they may lose the cutting ability rapidly. For sawing granite with mesh sizes 40/50 or coarser,poly grits of diamond have not been available until recently.In this research,we have made polygrits in mini cube with sizes of 18/20,20/25,and 30/40.Turbo grinders and wire saws were made by brazing both mono grits and polygrits on steel substrates.Cutting performance on granite demonstrated that grinding speed was faster with turbo grinder,and the surface finish was smoother with wire saw for poly grits than mono ones. Polygrits and mono grits of diamond were mixed for comparison(upper left).Polygrits of mini cubes were brazed on the pearl of a wire saw(upper right).Mono diamond grits were brazed on a turbo grinder(bottom diagrams ).展开更多
文摘Production of this crop is experiencing significant challenges, resulting in a decline in seed and fiber quality. To address this challenge, generations of high-performance cotton plants of the Gossypium hirsutum L. species have been developed and are currently being commercialized. This study evaluated the impact of gin types on the agro-industrial quality of cotton in Côte d’Ivoire. To this end, cotton from the G3, R1, and R2 generations was harvested, sampled, and ginned on machines with 10 and 170 saws in the localities of Ouangolodougou, Ferkessédougou, Korhogo, M’Bengué, Boundiali, Séguéla, and Mankono, as well as at the Centre National de Recherche Agronomique CNRA) in Bouaké. The results demonstrated that cotton fibers obtained from ginning on 10-saw machines exhibited superior quality compared to those from 170-saw machines. Fiber length, fiber length uniformity, and short fiber rate exhibited the highest deviations according to gin type. The use of 170-saw gins resulted in a notable decline in quality. Conversely, micronaire index, fiber tenacity and elongation, and reflectance remained consistent across machine types. These results will enable us to more effectively regulate and advise cotton-processing factories, which primarily utilize 170-saw gins to enhance agro-industrial quality in Côte d’Ivoire. Furthermore, these results will assist breeders in incorporating them into their processes to enhance the quality of the varieties they offer to farmers.
文摘In the field of deep space exploration,the rapid development of terahertz spectrometer has put forward higher requirements to the back-end chirp transform spectrometer(CTS)system.In order to simultaneously meet the measurement requirements of wide bandwidth and high accuracy spectral lines,we built a CTS system with an analysis bandwidth of 1 GHz and a frequency resolution of 100 kHz around the surface acoustic wave(SAW)chirp filter with a bandwidth of 1 GHz.In this paper,the relationship between the CTS nonlinear phase error shift model and the basic measurement parameters is studied,and the effect of CTS phase mismatch on the pulse compression waveform is analyzed by simulation.And the expander error optimization method is proposed for the problem that the large nonlinear error of the expander leads to the unbalanced response of the CTS system and the serious distortion of the compressed pulse waveform under large bandwidth.It is verified through simulation and experiment that the method is effective for reducing the root mean square error(RMSE)of the phase of the expander from 18.75°to 6.65°,reducing the in-band standard deviation of the CTS frequency resolution index from 8.43 kHz to 4.72 kHz,solving the problem of serious distortion of the compressed pulse waveform,and improving the uneven CTS response under large bandwidth.
基金supported by National Natural Science Foundation of China(Grant Nos. 51235004, 51105148, 51175194)Program for Changjiang Scholars and Innovative Research Team in University of China(Grant No. IRT1063)
文摘Great attention has been paid on fabricating diamond wire by using the brazing diamond because of its strong chemical bonding strength and controllability of grits distribution. Although several serving performances of brazed diamond wire have been reported, seldom do these studies refer to its process characteristics. Sawing performances of a brazed diamond wire are investigated and compared with those of a sintered diamond wire on a wire saw machine. The surface topographies of beads selected from the two wires are micro observed before sawing. The sawing tests are carried out in constant feed rate feeding(CFF) and constant normal force feeding(CNFF). In CFF test, sawing force, power, and the cut depths of positions on contact curve are measured. Then, coupled with the observations of beads topographies, sawing force and its ratio, relations of power against material removal rate, and contact curve linearity are compared and discussed. In CNFF test, the sawing rates of the two wires are investigated. The results indicate that the brazed wire performs with lower sawing force(less 16% of tangential force and 28% of normal force), more energy efficiency(nearly one-fifth of sawing power is saved), at a higher sawing rate (the rate is doubled) and with better contact curve linearity as compared with the sintered wire. This proposed research experimentally evaluates the sawing performances of brazed diamond wire from the aspect of process parameters, which can provide a basis for popularizing the brazed diamond wire.
基金Supported by Natural Science Foundation of China(Grant No.51775501)Natural Science Foundation of Zhejiang Province,China(Grant Nos.LZ21E050003,LR16E050001,LY17E050004).
文摘As a starting point in equipment manufacturing,sawing plays an important role in industrial production.Intelligent manufacturing equipment is an important carrier of intelligent manufacturing technologies.Due to the backwardness of intelligent technology,the comprehensive performance of sawing equipments in China is obviously different from that in foreign countries.State of the art of advanced sawing equipments is investigated along with the technical bottleneck of sawing machine tool manufacturing,and a new industrial scheme of replacing turning-milling by sawing is described.The key technologies of processing-measuring integrated control,multi-body dynamic optimization,the collaborative sawing network framework,the distributed cloud sawing platform,and the self-adapting service method are analyzed;with consideration of the problems of poor processing control stableness,low single machine intelligence level,no on-line processing data service and active flutter suppression of sawing with wide-width and heavy-load working conditions.Suggested directions for further research,industry implementation,and industry-research collaboration are provided.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (NSFC ) (No .5 0 1 75 0 3 0 ) ,theEducationDepartmentofFujianProvinceinChina (No .JA0 0 2 3 6) ,andtheNaturalScienceFoundationofFujianProvinceinChina (No .F0 1 1 0 0 0 2 )
文摘An experimental study was carried out to quantitati ve ly evaluate the loads acting on the diamond grits during circular sawing of two kinds of typical granite with diamond segmented saw blade. Measurements were mad e of the horizontal and vertical force components and the consumed power in order to obtain the tangential and the normal force components. The temperatures at the diamond-granite contact zone were measured using a foil thermocouple. T he measurement, together with the net sawing power, was subsequently used to est imate the energy partition to the granite by a temperature matching technique. B ased on the energy partition values, the temperatures at individual cutting poin ts were estimated using an analytical model. SEM was used to follow the topograp hies of worn diamond segments. The average force acting on each diamond grit was found to be only 4% of the diamond compressive strength measured by a static me thod. The strength disparity of diamond grits and the random protrusion of grits beyond bond matrix should be significant factors in accounting for the wear of diamond grits. The wear of diamond grits was also found to be closely related to the high temperatures generated at individual cutting points and the pop-outs of diamonds from the bond matrix might be mainly attributed to the heat conducte d to the segments.
基金supported by Talents Introduction Research Projects of NBPT[Grant Number RC201807]the National Nature Science Foundation of China(NSFC)[Grant Number 51475427].
文摘In this study,magnetic abrasives were obtained by crushing and sieving sintered iron-silicon carbide(Fe-SiC)composites.Fe and SiC powders with different mesh numbers were pre-compacted using different pressures and then sintered at various temperatures and with different holding times.The dispersion uniformity of the SiC powder was improved through surface modification using polyethylene glycol(PEG)300.The resulting magnetic abrasives were characterized in terms of phase composition,density,relative permeability,and microstructure;this was followed by a comprehensive analysis to reveal the optimal processing parameters.The ideal combination of process parameters for preparing SiC magnetic-abrasive grains for the magnetic induction-wire sawing process was obtained,which are preparation load of 60 kN,a SiC mesh number of 1,500,a sintering temperature of 1100℃,and a holding time of 4 h.
文摘Diamond grits are indispensable for sawing granite or concrete.Each year about 1 000 tons of diamond grits are consumed for such purposes.In all cases,mono crystalline diamond is used.However, polycrystalline grits(polygrits) are generally better performed than mono grits as abrasives.For example,poly grits of cubic boron nitride(e.g.Borazon(?) CBN-550 of Diamond Innovations) can cut faster and they last longer than mono grits(e.g.Borazon(?) CBN-500). Polygrits of alumina(e.g.Cubitron(?) of 3M) also out perform by far glassy grits(e.g.white alumina).For diamond superabrasives,micron polygrits formed by shock waves may polish as fast as mono grits of the same size,but without causing as much scratches due to the presence of smaller sintered grains.The improved performance of poly grits is attributed to their ability to micro chipping that renews the sharp cutting corners from time to time.By contrast,mono grits tend to round off at low cutting force or macro fracture at high cutting force,so they may lose the cutting ability rapidly. For sawing granite with mesh sizes 40/50 or coarser,poly grits of diamond have not been available until recently.In this research,we have made polygrits in mini cube with sizes of 18/20,20/25,and 30/40.Turbo grinders and wire saws were made by brazing both mono grits and polygrits on steel substrates.Cutting performance on granite demonstrated that grinding speed was faster with turbo grinder,and the surface finish was smoother with wire saw for poly grits than mono ones. Polygrits and mono grits of diamond were mixed for comparison(upper left).Polygrits of mini cubes were brazed on the pearl of a wire saw(upper right).Mono diamond grits were brazed on a turbo grinder(bottom diagrams ).