One-dimensional titanium dioxide(TiO_(2))whiskers with controllable aspect ratios were synthesized by molten salt method adopting anatase TiO_(2)nanoparticles as precursor,sodium chloride(NaCl)and dibasic sodium phosp...One-dimensional titanium dioxide(TiO_(2))whiskers with controllable aspect ratios were synthesized by molten salt method adopting anatase TiO_(2)nanoparticles as precursor,sodium chloride(NaCl)and dibasic sodium phosphate(Na_(2)HPO_(4))as medium.The particle size of TiO_(2)nanoparticles and ratio of precursor and medium that can help to generate high aspect ratio TiO_(2)whiskers were studied and selected.Light-colored antimony-doped tin oxide@titanium dioxide(ATO@TiO_(2))conductive whiskers were prepared by coating ATO on TiO_(2)whiskers through coprecipitation then.Finally,the ATO@TiO_(2)light-colored conductive whiskers were dispersed in polyacrylonitrile(PAN)to fabricate light-colored conductive fibers.The experimental results show that the ATO@TiO_(2)whiskers exhibits ideal whiteness and conductivity with 65.5 Wb and 106Ω·cm,respectively,and the resistivity of conductive fibers was 6.07×10^(6)Ω·cm with 15wt%whisker content.展开更多
We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it ...We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results.展开更多
A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring sp...A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively.展开更多
LiFePO4/C composites were synthesized by a molten salt (MS) method using the mixture of LiCl,LiOH and NaCl.The prepared LiFePO4/C composites are characterized by X-ray diffractometry (XRD),field emission scanning elec...LiFePO4/C composites were synthesized by a molten salt (MS) method using the mixture of LiCl,LiOH and NaCl.The prepared LiFePO4/C composites are characterized by X-ray diffractometry (XRD),field emission scanning electron microscopy (FESEM) and charge-discharge test.XRD patterns indicate that LiFePO4 prepared in the temperature range of 550-700 ℃ crystallizes well in an olivine-type structure.Through FESEM images,the sphere-like and homogeneous particles of 0.2 μm can be observed.The charge-discharge test shows that the materials prepared at 600 ℃ for 12 h have good electrochemical performance.At the rates of 0.2C (34 mA/g) and 0.5C,the discharge capacities are 144.6 and 122.3 mA·h/g,respectively,together with good cycle performances.展开更多
Ce^(3+)as the active site on the CeO_(2)abrasive surface is the key to enhancing the material removal rate(MRR).The CeO_(2)abrasives with high chemical activity were prepared by the molten salt method under a reducing...Ce^(3+)as the active site on the CeO_(2)abrasive surface is the key to enhancing the material removal rate(MRR).The CeO_(2)abrasives with high chemical activity were prepared by the molten salt method under a reducing atmosphere.The crystal structure and morphology of CeO_(2)abrasive s were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FT-IR),ultraviolet—visible diffuse reflectance spectroscopy(UV-Vis DRS),and X-ray photoelectron spectroscopy(XPS).The CeO_(2)abrasives were obtained under different atmospheres(Air,Ar,and Ar/H_(2)).With the enhancement of the reducing atmosphere,the morphology of the abrasives transforms from spherical to octahedral,while more oxygen vacancies and Ce^(3+)are generated on the surface of CeO_(2)abrasives.The CMP experiments show that the MRRs of the CeO_(2)-Air,CeO_(2)-Ar,and CeO_(2)-Ar/H_(2)abrasives on SiO_(2)substrates are 337.60,578.74,and 691.28 nm/min,respectively.Moreover,as confirmed by atomic force microscopy(AFM),the substrate surfaces exhibit low roughness(20.5 nm)after being polished using all of the prepared samples.Especially,the MRR of CeO_(2)-Ar/H_(2)abrasives is increased by 104.76%compared with CeO_(2)-air abrasives.The improved CMP performance is attributed to the increased Ce^(3+)concentration and the octahedral morphology of the abrasives enhancing the chemical reaction and mechanical removal at the abrasive-substrate interface.展开更多
The construction of heterojunction photocatalysts for efficiently utilizing solar energy has attracted considerable attention to solve the energy crisis and reduce environmental pollution.In this study,we use the ener...The construction of heterojunction photocatalysts for efficiently utilizing solar energy has attracted considerable attention to solve the energy crisis and reduce environmental pollution.In this study,we use the energy released from an easily-occurred exothermic chemical reaction to serve as the drive force to trigger the formation of Cd S and C_(3)N_(4) nanocomposites which are successfully fabricated with cadmium nitrate and thiourea without addition of any solvents and protection of inert gas at initial temperature,a little higher than the melting point of thiourea.The as-prepared Cd S/C_(3)N_(4) materials exhibit high efficiency for photocatalytic hydrogen evolution reaction(HER)with the HER rate as high as 15,866μmol/(g·hr)under visible light irradiation(λ>420 nm),which is 89 and 9 times those of pristine C_(3)N_(4) and Cd S,respectively.Also,the apparent quantum efficiency(AQE)of Cd S/C_(3)N_(4)–1:2–200–2(Cd S/C_(3)N_(4)–1:2–200–2 means the ratio of Cd to S is 1:2 and the reaction temperature is set at 200℃ for two hours)reaches 3.25%atλ=420±15 nm.After irradiated for more than 24 hr,the HER efficiencies of Cd S/C_(3)N_(4) do not exhibit any attenuation.The DFT calculation suggests that the charge difference causes an internal electric field from C_(3)N_(4) pointing to Cd S,which can more effectively promote the transfer of photogenerated electrons from Cd S to C_(3)N_(4).Therefore,most HER should occur on C_(3)N_(4) surface where photogenerated electrons accumulate,which largely protects Cd S from photo-corrosion.展开更多
Two tetravalent uranium silicate and germanate M_(2)U^(Ⅳ)T_(3)O_(9)(M=K,Cs;T=Si,Ge)crystals were crystalized under inert gas by molten salt flux growth method.K_(2)USi_(3)O_(9)(1)crystallizes in the monoclinic space ...Two tetravalent uranium silicate and germanate M_(2)U^(Ⅳ)T_(3)O_(9)(M=K,Cs;T=Si,Ge)crystals were crystalized under inert gas by molten salt flux growth method.K_(2)USi_(3)O_(9)(1)crystallizes in the monoclinic space group P1_(21)/n1 with lattice parameters a=7.1076?,b=10.4776?,c=12.2957?,γ=120°and V=915.67?^(3).Cs_(2)UGe_(3)O_(9)(2)crystallizes in a hexagonal space group P-6 with lattice constants of a=7.5138?,b=7.5138?,c=11.0114?,γ=120°and V=538.38?^(3).Bond valence calculations indicate tetravalent uranium in both structures,which contain three-membered single-ring T_(3)O_(9)^(6-) trimers.K_(2)USi_(3)O_(9) is the first uranium silicate that contains the Si_(3)O_(9)^(6-) trimers.展开更多
Sr0.6 Ba0.4 Nb2 O6 micro-rods are prepared by the molten-salt method with K2 SO4,KCl-K2 SO4,and KCl as fluxes.It reveals that the Sr0.6 Ba0.4 Nb2 O6 synthesized with KCl as a flux exhibits a single phase with tetragon...Sr0.6 Ba0.4 Nb2 O6 micro-rods are prepared by the molten-salt method with K2 SO4,KCl-K2 SO4,and KCl as fluxes.It reveals that the Sr0.6 Ba0.4 Nb2 O6 synthesized with KCl as a flux exhibits a single phase with tetragonal tungsten bronze structure.The measurement of X-ray diffraction indicates that the Sr0.6 Ba0.4 Nb2 O6 micro-rods synthesized at 1 300℃are anisotropic.The morphology of the powers is examined by transmission electron microscope.It reveals that the length-diameter ratio of Sr0.6 Ba0.4 Nb2 O6 micro-rods increases with increasing annealing temperature from 900℃to 1 300℃.At 1 300℃,the rod possesses a large length-diameter ratio of 8∶1.Moreover,the analysis of the piezoelectric properties of single micro-rods using apiezo-response force microscope indicates that the domains of the material are arranged along its radial direction.展开更多
In this paper,indium doped SnO2 nanorods and nanowires have been prepared by the molten salt method,and the effects of indium doping concentration on the morphology and electrical properties of one-dimensional(1D) SnO...In this paper,indium doped SnO2 nanorods and nanowires have been prepared by the molten salt method,and the effects of indium doping concentration on the morphology and electrical properties of one-dimensional(1D) SnO2 nanostructures have been studied.It is found that indium doping concentration can affect the epitaxial growth,morphology and the electrical conductance of 1D SnO2 nanostructures.It is also found that the element made by using 6 mol% indium doped SnO2 nanorods responds to nitrogen gas.展开更多
Well-crystallized MgFeSiO4 microparticles were synthesized at different temperatures by a simple molten salt method using KCl flux. As a new cathode for rechargeable magnesium batteries,the material shows a reversible...Well-crystallized MgFeSiO4 microparticles were synthesized at different temperatures by a simple molten salt method using KCl flux. As a new cathode for rechargeable magnesium batteries,the material shows a reversible Mg2+ intercalation-deintercalation process. In 0.25 mol/L Mg(AlCl2EtBu) 2/THF electrolyte,MgFeSiO4 synthesized at 900°C can deliver a 125.1 mAh/g initial dis-charge capacity and a 91.4% capacity retention on the 20th cycle at a rate of 0.1C(about 15.6 mA/g) . The results show that MgFeSiO4 could be a good host for Mg2+ intercalation,and a potential cathode material for high-energy rechargeable magnesium batteries.展开更多
Hydro-sodalites are zeolitic materials with a wide variety of applications.Fly ash is an abundant industrial solid waste,rich in silicon and aluminum,from which hydro-sodalite can be synthesized.However,traditional hy...Hydro-sodalites are zeolitic materials with a wide variety of applications.Fly ash is an abundant industrial solid waste,rich in silicon and aluminum,from which hydro-sodalite can be synthesized.However,traditional hydrothermal synthesis methods are complex and cannot produce high-purity products.Therefore,there is a demand for processing routes to obtain high-purity hydro-sodalites.In the present study,high-purity hydro-sodalite(90.2 wt%)was prepared from fly ash by applying a hydrothermal method to a submolten salt system.Samples were characterized by powder X-ray diffraction(XRD),scanning electron microscopy(SEM),thermogravimetry and differential thermal analysis(TG–DTA),and Fourier transform infrared spectroscopy(FTIR)to confirm and quantify conversion of the raw material into the product phase.Purity of the samples prepared with an H2O/Na OH mass ratio of 1.5 and an H2O/fly ash mass ratio of 10 was calculated and the conversion process of the product phase was studied.Crystallinity of the product was influenced more by the Na OH concentration,less by the H2O/fly ash mass ratio.The main reaction process of the system is that the Si O ions produced by dissolution of the vitreous body in the fly ash and Na+ions in the solution reacted on the destroyed mullite skeleton to produce hydro-sodalite.This processing route could help mitigate processing difficulties,while producing high-purity hydro-sodalite from fly ash.展开更多
The structure and properties of molten salt solution o J Li,K|F,Cl system have been investiged by computerized simulation of molecular dynamic method.The partial RDF,the partial molar energy of mixing and the diffusio...The structure and properties of molten salt solution o J Li,K|F,Cl system have been investiged by computerized simulation of molecular dynamic method.The partial RDF,the partial molar energy of mixing and the diffusion coeffients of Li^+,K^+,F^- and Cl^- have been calculated. The results are in agreement with the experimental values.The regularities of the distribution of ions and mieroscopic holes are discussed based on the results of computerized simulation.展开更多
Mining method selection is the first and the most critical problem in mine design and depends on some parameters such as geotechnical and geological features and economic and geographic factors. In this paper, the fac...Mining method selection is the first and the most critical problem in mine design and depends on some parameters such as geotechnical and geological features and economic and geographic factors. In this paper, the factors affecting mining method selection are determined. These factors include shape, thick- ness, depth, slope, RMR and RSS of the orebody, RMR and RSS of the hanging wall and footwall. Then, the priorities of these factors are calculated. In order to calculate the priorities of factors and select the best mining method for Qapiliq salt mine, Iran, based on these priorities, fuzzy analytical hierarchy process (AHP) technique is used. For this purpose, a questionnaire was prepared and was given to the associated experts. Finally, after a comparison carried out based on the effective factors, between the four mining methods including area mining, room and pillar, cut and fill and stope and pillar methods, the stope and nillar mining method was selected as the most suitable method to this mine.展开更多
The Kuqa depression deposited thick rock salt,which has a lower density than surrounding rocks.When salt bodies form a certain scale,obvious negative gravity anomalies can be detected in the surface.Therefore,gravitat...The Kuqa depression deposited thick rock salt,which has a lower density than surrounding rocks.When salt bodies form a certain scale,obvious negative gravity anomalies can be detected in the surface.Therefore,gravitational method can quickly obtain the shape,plane distribution of deep-seated salt bodies and overall tectonic morphology of the basin.展开更多
A salt-assistant stearic acid method (SAM) capable of forming ultrafine K4Ce2Nb10O30 products was described. XRD pattern re-vealed that tetragonal K4Ce2Nb10O30 products could be obtained by heat treatment at 900 ℃ ...A salt-assistant stearic acid method (SAM) capable of forming ultrafine K4Ce2Nb10O30 products was described. XRD pattern re-vealed that tetragonal K4Ce2Nb10O30 products could be obtained by heat treatment at 900 ℃ for 2 h. Transmission electron microscopy (TEM) observations indicated the introduction of KCl could lead to the formation of rod-like K4Ce2Nb10O30 products. The species of salts played a crucial role in fine tuning the shapes and sizes of K4Ce2Nb10O30 products. Furthermore, the K4Ce2Nb10O30 prepared by salt-assistant SAM had considerable activity under visible light irradiation.展开更多
A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patt...A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation.展开更多
In view of the need for geomechanical safety analysis of repositories in salt rock, failure criteria,creep rupture criteria,material models,pillar design methods and criteria for the assessment of barrier efficiency a...In view of the need for geomechanical safety analysis of repositories in salt rock, failure criteria,creep rupture criteria,material models,pillar design methods and criteria for the assessment of barrier efficiency as well as investigations of the interaction between hydraulics and mechanics for the case of uncontrolled flooded repositories are necessary. The introduction of damage mechanics and of the Hou/Lux material model including damages into geomechanical safety analysis of repositories in salt rock can reduce some previous deficits in knowledge and modelling. This article will be as a part of geotechnical assessment to introduce the Hou/Lux material model,a new concept of hydro-mechanical coupling and a pillar design method as well as criteria for the assessment of efficiency of geological barriers.展开更多
基金Funded by the National Natural Science Foundation of China(No.51803076)the Natural Science Foundation of Jiangsu Province of China(No.BK20180629)+1 种基金the China Postdoctoral Science Foundation(No.2018M632231)the Key Laboratory of Special Protective Textiles of Ministry of Education(Jiangnan University)(No.TZFH-24-006)。
文摘One-dimensional titanium dioxide(TiO_(2))whiskers with controllable aspect ratios were synthesized by molten salt method adopting anatase TiO_(2)nanoparticles as precursor,sodium chloride(NaCl)and dibasic sodium phosphate(Na_(2)HPO_(4))as medium.The particle size of TiO_(2)nanoparticles and ratio of precursor and medium that can help to generate high aspect ratio TiO_(2)whiskers were studied and selected.Light-colored antimony-doped tin oxide@titanium dioxide(ATO@TiO_(2))conductive whiskers were prepared by coating ATO on TiO_(2)whiskers through coprecipitation then.Finally,the ATO@TiO_(2)light-colored conductive whiskers were dispersed in polyacrylonitrile(PAN)to fabricate light-colored conductive fibers.The experimental results show that the ATO@TiO_(2)whiskers exhibits ideal whiteness and conductivity with 65.5 Wb and 106Ω·cm,respectively,and the resistivity of conductive fibers was 6.07×10^(6)Ω·cm with 15wt%whisker content.
基金Funded by the National Natural Science Foundation for Young Scholars of China(No.51302073)the Hubei Provincial Key Laboratory of Green Materials for Light IndustryHubei University of Technology(No.202307B07)。
文摘We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results.
基金Project(2013CB632605)supported by the National Basic Research Development Program of ChinaProjects(51274178,51274179)supported by the National Natural Science Foundation of China
文摘A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively.
基金Project(06B002) supported by the Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(09JJ3092) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2008FJ3008) supported by the Planned Science and Technology Project of Hunan Province,China
文摘LiFePO4/C composites were synthesized by a molten salt (MS) method using the mixture of LiCl,LiOH and NaCl.The prepared LiFePO4/C composites are characterized by X-ray diffractometry (XRD),field emission scanning electron microscopy (FESEM) and charge-discharge test.XRD patterns indicate that LiFePO4 prepared in the temperature range of 550-700 ℃ crystallizes well in an olivine-type structure.Through FESEM images,the sphere-like and homogeneous particles of 0.2 μm can be observed.The charge-discharge test shows that the materials prepared at 600 ℃ for 12 h have good electrochemical performance.At the rates of 0.2C (34 mA/g) and 0.5C,the discharge capacities are 144.6 and 122.3 mA·h/g,respectively,together with good cycle performances.
基金the National Natural Science Foundation of China(51905324)the Scientific Research Program Funded by Shaanxi Provincial Education Department(20JK0545)the Doctoral Scientific Research Startup Foundation of Shaanxi University of Science and Technology(2018BJ-14)。
文摘Ce^(3+)as the active site on the CeO_(2)abrasive surface is the key to enhancing the material removal rate(MRR).The CeO_(2)abrasives with high chemical activity were prepared by the molten salt method under a reducing atmosphere.The crystal structure and morphology of CeO_(2)abrasive s were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FT-IR),ultraviolet—visible diffuse reflectance spectroscopy(UV-Vis DRS),and X-ray photoelectron spectroscopy(XPS).The CeO_(2)abrasives were obtained under different atmospheres(Air,Ar,and Ar/H_(2)).With the enhancement of the reducing atmosphere,the morphology of the abrasives transforms from spherical to octahedral,while more oxygen vacancies and Ce^(3+)are generated on the surface of CeO_(2)abrasives.The CMP experiments show that the MRRs of the CeO_(2)-Air,CeO_(2)-Ar,and CeO_(2)-Ar/H_(2)abrasives on SiO_(2)substrates are 337.60,578.74,and 691.28 nm/min,respectively.Moreover,as confirmed by atomic force microscopy(AFM),the substrate surfaces exhibit low roughness(20.5 nm)after being polished using all of the prepared samples.Especially,the MRR of CeO_(2)-Ar/H_(2)abrasives is increased by 104.76%compared with CeO_(2)-air abrasives.The improved CMP performance is attributed to the increased Ce^(3+)concentration and the octahedral morphology of the abrasives enhancing the chemical reaction and mechanical removal at the abrasive-substrate interface.
基金supported by National Key Research and Development Program of China(No.2016YFA0203100)the National Natural Science Foundation of China(Nos.21537004,21777169,and 21621064)the Beijing Municipal Natural Science Foundation(No.8202046)。
文摘The construction of heterojunction photocatalysts for efficiently utilizing solar energy has attracted considerable attention to solve the energy crisis and reduce environmental pollution.In this study,we use the energy released from an easily-occurred exothermic chemical reaction to serve as the drive force to trigger the formation of Cd S and C_(3)N_(4) nanocomposites which are successfully fabricated with cadmium nitrate and thiourea without addition of any solvents and protection of inert gas at initial temperature,a little higher than the melting point of thiourea.The as-prepared Cd S/C_(3)N_(4) materials exhibit high efficiency for photocatalytic hydrogen evolution reaction(HER)with the HER rate as high as 15,866μmol/(g·hr)under visible light irradiation(λ>420 nm),which is 89 and 9 times those of pristine C_(3)N_(4) and Cd S,respectively.Also,the apparent quantum efficiency(AQE)of Cd S/C_(3)N_(4)–1:2–200–2(Cd S/C_(3)N_(4)–1:2–200–2 means the ratio of Cd to S is 1:2 and the reaction temperature is set at 200℃ for two hours)reaches 3.25%atλ=420±15 nm.After irradiated for more than 24 hr,the HER efficiencies of Cd S/C_(3)N_(4) do not exhibit any attenuation.The DFT calculation suggests that the charge difference causes an internal electric field from C_(3)N_(4) pointing to Cd S,which can more effectively promote the transfer of photogenerated electrons from Cd S to C_(3)N_(4).Therefore,most HER should occur on C_(3)N_(4) surface where photogenerated electrons accumulate,which largely protects Cd S from photo-corrosion.
基金supported by the National Science Fund for Young Scholars(No.22106165)the National Science Fund for Distinguished Young Scholars(No.21925603)+1 种基金the Major Program of the National Natural Science Foundation of China(No.21790373)the National Natural Science Foundation of China(No.U20B2020)。
文摘Two tetravalent uranium silicate and germanate M_(2)U^(Ⅳ)T_(3)O_(9)(M=K,Cs;T=Si,Ge)crystals were crystalized under inert gas by molten salt flux growth method.K_(2)USi_(3)O_(9)(1)crystallizes in the monoclinic space group P1_(21)/n1 with lattice parameters a=7.1076?,b=10.4776?,c=12.2957?,γ=120°and V=915.67?^(3).Cs_(2)UGe_(3)O_(9)(2)crystallizes in a hexagonal space group P-6 with lattice constants of a=7.5138?,b=7.5138?,c=11.0114?,γ=120°and V=538.38?^(3).Bond valence calculations indicate tetravalent uranium in both structures,which contain three-membered single-ring T_(3)O_(9)^(6-) trimers.K_(2)USi_(3)O_(9) is the first uranium silicate that contains the Si_(3)O_(9)^(6-) trimers.
基金supported by the National Natural Science Foundation of China(No.11475086)
文摘Sr0.6 Ba0.4 Nb2 O6 micro-rods are prepared by the molten-salt method with K2 SO4,KCl-K2 SO4,and KCl as fluxes.It reveals that the Sr0.6 Ba0.4 Nb2 O6 synthesized with KCl as a flux exhibits a single phase with tetragonal tungsten bronze structure.The measurement of X-ray diffraction indicates that the Sr0.6 Ba0.4 Nb2 O6 micro-rods synthesized at 1 300℃are anisotropic.The morphology of the powers is examined by transmission electron microscope.It reveals that the length-diameter ratio of Sr0.6 Ba0.4 Nb2 O6 micro-rods increases with increasing annealing temperature from 900℃to 1 300℃.At 1 300℃,the rod possesses a large length-diameter ratio of 8∶1.Moreover,the analysis of the piezoelectric properties of single micro-rods using apiezo-response force microscope indicates that the domains of the material are arranged along its radial direction.
基金support from the Scientific Research Foundation for Young Talents of Fuzhou University (Grant No. 0041826483)Research Foundation for the Doctor of Guangdong Pharmaceutical University(Grant No. 2007YKX15)Research Foundation for the Excellent Yong Teacher of Guangdong Pharmaceutical University
文摘In this paper,indium doped SnO2 nanorods and nanowires have been prepared by the molten salt method,and the effects of indium doping concentration on the morphology and electrical properties of one-dimensional(1D) SnO2 nanostructures have been studied.It is found that indium doping concentration can affect the epitaxial growth,morphology and the electrical conductance of 1D SnO2 nanostructures.It is also found that the element made by using 6 mol% indium doped SnO2 nanorods responds to nitrogen gas.
基金supported by the National Natural Science Foundation of China (20603022,20973112)the National Basic Research Program of China (2007CB209700)
文摘Well-crystallized MgFeSiO4 microparticles were synthesized at different temperatures by a simple molten salt method using KCl flux. As a new cathode for rechargeable magnesium batteries,the material shows a reversible Mg2+ intercalation-deintercalation process. In 0.25 mol/L Mg(AlCl2EtBu) 2/THF electrolyte,MgFeSiO4 synthesized at 900°C can deliver a 125.1 mAh/g initial dis-charge capacity and a 91.4% capacity retention on the 20th cycle at a rate of 0.1C(about 15.6 mA/g) . The results show that MgFeSiO4 could be a good host for Mg2+ intercalation,and a potential cathode material for high-energy rechargeable magnesium batteries.
基金financially supported by the National Natural Science Foundation of China (No. 51474028)the National Key Research and Development Program of China (No. 2017YFC0210301)+1 种基金China Postdoctoral Science Foundation (No. 2017M621034)the Science and Technology Benefiting Citizens Program of Ningbo, China (No. 2015C50058)
文摘Hydro-sodalites are zeolitic materials with a wide variety of applications.Fly ash is an abundant industrial solid waste,rich in silicon and aluminum,from which hydro-sodalite can be synthesized.However,traditional hydrothermal synthesis methods are complex and cannot produce high-purity products.Therefore,there is a demand for processing routes to obtain high-purity hydro-sodalites.In the present study,high-purity hydro-sodalite(90.2 wt%)was prepared from fly ash by applying a hydrothermal method to a submolten salt system.Samples were characterized by powder X-ray diffraction(XRD),scanning electron microscopy(SEM),thermogravimetry and differential thermal analysis(TG–DTA),and Fourier transform infrared spectroscopy(FTIR)to confirm and quantify conversion of the raw material into the product phase.Purity of the samples prepared with an H2O/Na OH mass ratio of 1.5 and an H2O/fly ash mass ratio of 10 was calculated and the conversion process of the product phase was studied.Crystallinity of the product was influenced more by the Na OH concentration,less by the H2O/fly ash mass ratio.The main reaction process of the system is that the Si O ions produced by dissolution of the vitreous body in the fly ash and Na+ions in the solution reacted on the destroyed mullite skeleton to produce hydro-sodalite.This processing route could help mitigate processing difficulties,while producing high-purity hydro-sodalite from fly ash.
文摘The structure and properties of molten salt solution o J Li,K|F,Cl system have been investiged by computerized simulation of molecular dynamic method.The partial RDF,the partial molar energy of mixing and the diffusion coeffients of Li^+,K^+,F^- and Cl^- have been calculated. The results are in agreement with the experimental values.The regularities of the distribution of ions and mieroscopic holes are discussed based on the results of computerized simulation.
文摘Mining method selection is the first and the most critical problem in mine design and depends on some parameters such as geotechnical and geological features and economic and geographic factors. In this paper, the factors affecting mining method selection are determined. These factors include shape, thick- ness, depth, slope, RMR and RSS of the orebody, RMR and RSS of the hanging wall and footwall. Then, the priorities of these factors are calculated. In order to calculate the priorities of factors and select the best mining method for Qapiliq salt mine, Iran, based on these priorities, fuzzy analytical hierarchy process (AHP) technique is used. For this purpose, a questionnaire was prepared and was given to the associated experts. Finally, after a comparison carried out based on the effective factors, between the four mining methods including area mining, room and pillar, cut and fill and stope and pillar methods, the stope and nillar mining method was selected as the most suitable method to this mine.
基金financially supported by the project of investigation and evaluation of potash deposits in the Cretaceous-Tertiary salt basin of the Tarim basin from potash investigation project of China Geological Survey (No. 1212011220790)
文摘The Kuqa depression deposited thick rock salt,which has a lower density than surrounding rocks.When salt bodies form a certain scale,obvious negative gravity anomalies can be detected in the surface.Therefore,gravitational method can quickly obtain the shape,plane distribution of deep-seated salt bodies and overall tectonic morphology of the basin.
基金supported by the National Natural Science Foundation of China (50902070)the Natural Science Foundation of Jiangsu province (BK2009391)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (20093219120011)NUST Research Funding (ZDJH07)
文摘A salt-assistant stearic acid method (SAM) capable of forming ultrafine K4Ce2Nb10O30 products was described. XRD pattern re-vealed that tetragonal K4Ce2Nb10O30 products could be obtained by heat treatment at 900 ℃ for 2 h. Transmission electron microscopy (TEM) observations indicated the introduction of KCl could lead to the formation of rod-like K4Ce2Nb10O30 products. The species of salts played a crucial role in fine tuning the shapes and sizes of K4Ce2Nb10O30 products. Furthermore, the K4Ce2Nb10O30 prepared by salt-assistant SAM had considerable activity under visible light irradiation.
基金supported by the National Science Foundation for Young Scientists of China (51202171)~~
文摘A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation.
文摘In view of the need for geomechanical safety analysis of repositories in salt rock, failure criteria,creep rupture criteria,material models,pillar design methods and criteria for the assessment of barrier efficiency as well as investigations of the interaction between hydraulics and mechanics for the case of uncontrolled flooded repositories are necessary. The introduction of damage mechanics and of the Hou/Lux material model including damages into geomechanical safety analysis of repositories in salt rock can reduce some previous deficits in knowledge and modelling. This article will be as a part of geotechnical assessment to introduce the Hou/Lux material model,a new concept of hydro-mechanical coupling and a pillar design method as well as criteria for the assessment of efficiency of geological barriers.